1
|
Yang H, Xia Y, Ma Y, Gao M, Hou S, Xu S, Wang Y. Inhibition of the cGAS-STING pathway: contributing to the treatment of cerebral ischemia-reperfusion injury. Neural Regen Res 2025; 20:1900-1918. [PMID: 38993125 PMCID: PMC11691458 DOI: 10.4103/nrr.nrr-d-24-00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/05/2024] [Accepted: 05/02/2024] [Indexed: 07/13/2024] Open
Abstract
The cGAS-STING pathway plays an important role in ischemia-reperfusion injury in the heart, liver, brain, and kidney, but its role and mechanisms in cerebral ischemia-reperfusion injury have not been systematically reviewed. Here, we outline the components of the cGAS-STING pathway and then analyze its role in autophagy, ferroptosis, cellular pyroptosis, disequilibrium of calcium homeostasis, inflammatory responses, disruption of the blood-brain barrier, microglia transformation, and complement system activation following cerebral ischemia-reperfusion injury. We further analyze the value of cGAS-STING pathway inhibitors in the treatment of cerebral ischemia-reperfusion injury and conclude that the pathway can regulate cerebral ischemia-reperfusion injury through multiple mechanisms. Inhibition of the cGAS-STING pathway may be helpful in the treatment of cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Hang Yang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Yulei Xia
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Yue Ma
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Mingtong Gao
- Department of Emergency, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| | - Shuai Hou
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Shanshan Xu
- Department of Emergency, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| | - Yanqiang Wang
- Department of Neurology II, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| |
Collapse
|
2
|
Chen J, Shi G, Yu L, Shan W, Sun J, Guo A, Wu J, Tang T, Zhang X, Wang Q. 3-HKA Promotes Vascular Remodeling After Stroke by Modulating the Activation of A1/A2 Reactive Astrocytes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412667. [PMID: 39854137 PMCID: PMC11923925 DOI: 10.1002/advs.202412667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/02/2025] [Indexed: 01/26/2025]
Abstract
Ischemic stroke is the most common cerebrovascular disease and the leading cause of permanent disability worldwide. Recent studies have shown that stroke development and prognosis are closely related to abnormal tryptophan metabolism. Here, significant downregulation of 3-hydroxy-kynurenamine (3-HKA) in stroke patients and animal models is identified. Supplementation with 3-HKA improved long-term neurological recovery, reduced infarct volume, and increased ipsilateral cerebral blood flow after distal middle cerebral artery occlusion (MCAO). 3-HKA promoted angiogenesis, functional blood vessel formation, and blood-brain barrier (BBB) repair. Moreover, 3-HKA inhibited A1-like (neurotoxic) astrocyte activation but promoted A2-like (neuroprotective) astrocyte polarization. Proteomic analysis revealed that 3-HKA inhibited AIM2 inflammasome activation after stroke, and co-labeling studies indicated that AIM2 expression typically increased in astrocytes at 7 and 14 days after stroke. Consistently, in co-cultures of primary mouse brain microvascular endothelial cells and astrocytes, 3-HKA promoted angiogenesis after oxygen-glucose deprivation (OGD). AIM2 overexpression in astrocytes abrogated 3-HKA-driven vascular remodeling in vitro and in vivo, suggesting that 3-HKA may regulate astrocyte-mediated vascular remodeling by impeding AIM2 inflammasome activation. In conclusion, 3-HKA may promote post-stroke vascular remodeling by regulating A1/A2 astrocyte activation, thereby improving long-term neurological recovery, suggesting that supplementation with 3-HKA may be an efficient therapy for stroke.
Collapse
Affiliation(s)
- Jun‐Min Chen
- Department of NeurologyBeijing Tiantan HospitalCapital Medical UniversityBeijing100070China
- Department of NeurologySecond Hospital of Hebei Medical UniversityShijiazhuang050000China
- China National Clinical Research Center for Neurological DiseasesBeijing100070China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio‐cerebrovascular DiseaseShijiazhuang050000China
| | - Guang Shi
- Department of NeurologySecond Hospital of Hebei Medical UniversityShijiazhuang050000China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio‐cerebrovascular DiseaseShijiazhuang050000China
| | - Lu‐Lu Yu
- Department of NeurologyBeijing Tiantan HospitalCapital Medical UniversityBeijing100070China
- China National Clinical Research Center for Neurological DiseasesBeijing100070China
| | - Wei Shan
- Department of NeurologyBeijing Tiantan HospitalCapital Medical UniversityBeijing100070China
- China National Clinical Research Center for Neurological DiseasesBeijing100070China
- Beijing Institute of Brain DisordersCollaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijing100069China
| | - Jing‐Yu Sun
- Key Laboratory of Organ Regeneration and ReconstructionState Key Laboratory of Membrane BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- Beijing Institute for Stem Cell and Regenerative MedicineBeijing100101China
- University of Chinese Academy of SciencesBeijing101408China
| | - An‐Chen Guo
- China National Clinical Research Center for Neurological DiseasesBeijing100070China
- Beijing Institute of Brain DisordersCollaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijing100069China
- Beijing Key Laboratory of Drug and Device Research and Development for Cerebrovascular DiseasesBeijing100070China
| | - Jian‐Ping Wu
- Department of NeurologyBeijing Tiantan HospitalCapital Medical UniversityBeijing100070China
- China National Clinical Research Center for Neurological DiseasesBeijing100070China
- Advanced Innovation Center for Human Brain ProtectionCapital Medical UniversityBeijing100070China
| | - Tie‐Shan Tang
- Key Laboratory of Organ Regeneration and ReconstructionState Key Laboratory of Membrane BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- Beijing Institute for Stem Cell and Regenerative MedicineBeijing100101China
- University of Chinese Academy of SciencesBeijing101408China
| | - Xiang‐Jian Zhang
- Department of NeurologySecond Hospital of Hebei Medical UniversityShijiazhuang050000China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio‐cerebrovascular DiseaseShijiazhuang050000China
| | - Qun Wang
- Department of NeurologyBeijing Tiantan HospitalCapital Medical UniversityBeijing100070China
- China National Clinical Research Center for Neurological DiseasesBeijing100070China
- Beijing Institute of Brain DisordersCollaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijing100069China
| |
Collapse
|
3
|
Sun H, Wang H, Wu C, Liu G, He M, Zhang H, Hou F, Liao H. Enhancing Neuron Activity Promotes Functional Recovery by Inhibiting Microglia-Mediated Synapse Elimination After Stroke. Stroke 2025; 56:505-516. [PMID: 39772780 DOI: 10.1161/strokeaha.124.049265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 11/05/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND Activating glutamatergic neurons in the ipsilesional motor cortex can promote functional recovery after stroke. However, the underlying molecular mechanisms remain unclear. Clarifying key molecular mechanisms involved in recovery could help understand the development of neuromodulation strategies after stroke. METHODS Adeno-associated virus 2/9-CamKIIa-hM3Dq-mCherry was injected into ipsilesional motor cortex by stereotaxic in the photothrombotic stroke model. Starting from the third day after the stroke, male mice were injected intraperitoneally with clozapine-N-oxide every day to activate excitatory neurons. C1q-blocking antibody and annexin V were used to inhibit C1q and exposed phosphatidylserine (EPS), respectively. The cylinder test and grid-walking test were performed to evaluate functional recovery. The potential molecular mechanisms of excitatory neuronal activation on microglia-mediated synaptic pruning after stroke by immunofluorescence, real-time polymerase chain reaction, Western blotting, and RNA sequencing. RESULTS Activating excitatory neurons significantly promoted functional recovery and inhibited microglia-mediated synaptic pruning after stroke. Furthermore, it decreased EPS and C1q levels in synapses. On the contrary, inhibiting excitatory neurons aggravated functional defects, promoted microglia-mediated synaptic pruning, and increased EPS and C1q levels in synapses. Selective blocking of EPS repressed C1q tagging of synapses and microglia-mediated synaptic pruning and improved functional recovery. Meanwhile, blocking EPS markedly rescued synaptic density, and motor function deteriorated by chemogenetic inhibition. In addition, C1q-blocking antibody prevented phosphatidylserine engulfment by microglia. CONCLUSIONS Together, these data provide mechanistic insight into microglia-mediated synapse pruning after neuronal activation after stroke and identify the role of C1q binding to EPS in stroke treatment during the repair phase.
Collapse
Affiliation(s)
- Hao Sun
- New Drug Screening Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (H.S., H.W., C.W., G.L., M.H., H.Z., F.H., H.L.)
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing, China (H.S., H.L.)
| | - Heng Wang
- New Drug Screening Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (H.S., H.W., C.W., G.L., M.H., H.Z., F.H., H.L.)
| | - Chaoran Wu
- New Drug Screening Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (H.S., H.W., C.W., G.L., M.H., H.Z., F.H., H.L.)
| | - Gang Liu
- New Drug Screening Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (H.S., H.W., C.W., G.L., M.H., H.Z., F.H., H.L.)
| | - Meijun He
- New Drug Screening Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (H.S., H.W., C.W., G.L., M.H., H.Z., F.H., H.L.)
| | - Hao Zhang
- New Drug Screening Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (H.S., H.W., C.W., G.L., M.H., H.Z., F.H., H.L.)
| | - Fengsheng Hou
- New Drug Screening Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (H.S., H.W., C.W., G.L., M.H., H.Z., F.H., H.L.)
| | - Hong Liao
- New Drug Screening Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (H.S., H.W., C.W., G.L., M.H., H.Z., F.H., H.L.)
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing, China (H.S., H.L.)
| |
Collapse
|
4
|
Wu J, Shyy M, Shyy JYJ, Xiao H. Role of inflammasomes in endothelial dysfunction. Br J Pharmacol 2024; 181:4958-4972. [PMID: 38952037 DOI: 10.1111/bph.16479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/14/2024] [Accepted: 05/04/2024] [Indexed: 07/03/2024] Open
Abstract
The vascular endothelium dynamically responds to environmental cues and plays a pivotal role in maintaining vascular homeostasis by regulating vasomotor tone, blood cell trafficking, permeability and immune responses. However, endothelial dysfunction results in various pathological conditions. Inflammasomes are large intracellular multimeric complexes activated by pathogens or cellular damage. Inflammasomes in vascular endothelial cells (ECs) initiate innate immune responses, which have emerged as significant mediators in endothelial dysfunction, contributing to the pathophysiology of an array of diseases. This review summarizes the mechanisms and ramifications of inflammasomes in ECs and related vascular diseases such as atherosclerosis, abdominal aortic aneurysm, stroke, and lung and kidney diseases. We also discuss potential drugs targeting EC inflammasomes and their applications in treating vascular diseases.
Collapse
Affiliation(s)
- Jimin Wu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China
- Haihe Laboratory of Cell Ecosystem, Beijing, China
| | - Melody Shyy
- Biological Sciences, University of California, Santa Barbara, Santa Barbara, California, USA
| | - John Y-J Shyy
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Han Xiao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China
- Haihe Laboratory of Cell Ecosystem, Beijing, China
| |
Collapse
|
5
|
Zeng ZJ, Lin X, Yang L, Li Y, Gao W. Activation of Inflammasomes and Relevant Modulators for the Treatment of Microglia-mediated Neuroinflammation in Ischemic Stroke. Mol Neurobiol 2024; 61:10792-10804. [PMID: 38789893 DOI: 10.1007/s12035-024-04225-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024]
Abstract
As the brain's resident immune patrol, microglia mediate endogenous immune responses to central nervous system injury in ischemic stroke, thereby eliciting either neuroprotective or neurotoxic effects. The association of microglia-mediated neuroinflammation with the progression of ischemic stroke is evident through diverse signaling pathways, notably involving inflammasomes. Within microglia, inflammasomes play a pivotal role in promoting the maturation of interleukin-1β (IL-1β) and interleukin-18 (IL-18), facilitating pyroptosis, and triggering immune infiltration, ultimately leading to neuronal cell dysfunction. Addressing the persistent and widespread inflammation holds promise as a breakthrough in enhancing the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Ze-Jie Zeng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiaobing Lin
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Liu Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yi Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Wen Gao
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
6
|
Yu D, Zheng S, Sui L, Xi Y, He T, Liu Z. The role of AIM2 in inflammation and tumors. Front Immunol 2024; 15:1466440. [PMID: 39600708 PMCID: PMC11588630 DOI: 10.3389/fimmu.2024.1466440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/16/2024] [Indexed: 11/29/2024] Open
Abstract
Absent in melanoma 2 (AIM2) serves as an intracellular nucleic acid sensor that predominantly detects double-stranded DNA (dsDNA) within the cells. This detection initiates the assembly of inflammasome and activates the inflammasome signaling cascade, resulting in the production of inflammatory mediators and the cleavage of Gasdermins. Consequently, these processes culminate in inflammatory responses and pyroptotic cell death. AIM2 plays a pivotal role in modulating inflammation and tumorigenesis, functioning through both inflammasome-dependent and independent mechanisms. Its influence on the host immune response is dual-faceted, exhibiting both promotive and inhibitory effects in the contexts of inflammation and tumors. These effects are predominantly contingent upon the specific cell type expressing AIM2 and the nature of the host's disease. This article seeks to review the latest advancements in understanding the cell-specific functions of AIM2 in inflammation and tumorigenesis, with the objective of offering insights for further research on AIM2 and informing the development of targeted therapeutic strategies for clinical application.
Collapse
Affiliation(s)
- Dalang Yu
- School of Basic Medicine, Fuzhou Medical College of Nanchang University, Fuzhou, Jiangxi, China
| | - Siping Zheng
- School of Graduate, Gannan Medical University, Ganzhou, Jiangxi, China
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Lina Sui
- School of Graduate, Gannan Medical University, Ganzhou, Jiangxi, China
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yuling Xi
- School of Graduate, Gannan Medical University, Ganzhou, Jiangxi, China
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Tiansheng He
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Zhiping Liu
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
7
|
Tang C, Jia F, Wu M, Wang Y, Lu X, Li J, Ding Y, Chen W, Chen X, Han F, Xu H. Elastase-targeting biomimic nanoplatform for neurovascular remodeling by inhibiting NETosis mediated AlM2 inflammasome activation in ischemic stroke. J Control Release 2024; 375:404-421. [PMID: 39288890 DOI: 10.1016/j.jconrel.2024.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
Neutrophil elastase (NE) is a protease released by activated neutrophils in the brain parenchyma after cerebral ischemia, which plays a pivotal role in the regulation of neutrophil extracellular traps (NETs) formation. The excess NETs could lead to blood-brain barrier (BBB) breakdown, overwhelming neuroinflammation, and neuronal injury. While the potential of targeting neutrophils and inhibiting NE activity to mitigate ischemic stroke (IS) pathology has been recognized, effective strategies that inhibit NETs formation remain under-explored. Herein, a biomimic multifunctional nanoplatform (HM@ST/TeTeLipos) was developed for active NE targeting and IS treatment. The core of the HM@ST/TeTeLipos consisted of sivelestat-loaded ditelluride-containing liposomes with ROS-responsive and NE-inhibiting properties. The outer shell was composed of platelet-neutrophil hybrid membrane vesicles (HMVs), which acted to hijack neutrophils and neutralize proinflammatory cytokines. Our studies revealed that HM@ST/TeTeLipos could effectively inhibit NE activity, thereby suppressing the release of NETs, impeding the activation of the AIM2 inflammasome, and consequently redirecting the immune response away from a pro-inflammatory M1 microglia phenotype. This resulted in enhanced neurovascular remodeling, reduced BBB disruption, and diminished neuroinflammation, ultimately promoting neuron survival. We believe that this innovative approach holds significant potential for improving the treatment of IS and various NE-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Chunming Tang
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Feng Jia
- Department of Neurosurgery, Yancheng NO.1 People's Hospital, The Affiliated Yancheng First Hospital of Nanjing University Medical School, 224008, China
| | - Min Wu
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yanling Wang
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xiaowei Lu
- Department of Geriatric Neurology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jinyu Li
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yan Ding
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Weilin Chen
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| | - Xufeng Chen
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Feng Han
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| | - Huae Xu
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
8
|
Bi Y, Xie Z, Cao X, Ni H, Xia S, Bao X, Huang Q, Xu Y, Zhang Q. Cedrol attenuates acute ischemic injury through inhibition of microglia-associated neuroinflammation via ERβ-NF-κB signaling pathways. Brain Res Bull 2024; 218:111102. [PMID: 39414157 DOI: 10.1016/j.brainresbull.2024.111102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 09/15/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024]
Abstract
Microglia-associated neuroinflammation plays essential roles in pathology of acute stroke. Cedrol, a natural compound extracted from ginger, has been shown to confer inhibitory effects on inflammation in various diseases. However, whether Cedrol suppresses neuroinflammation and protects brains from acute ischemic injury still remains unclear. In this study, we found that Cedrol inhibited microglia activation and the production of inflammatory factors in LPS-challenged microglia and the penumbra region of middle cerebral artery occlusion (MCAO) mice. We also found that Cedrol reduced the infarct size and mNSS scores and improved acute cerebral ischemia-induced behavioral outcomes, suggesting remarked neuroprotection of Cedrol. Molecular docking analysis showed that Cedrol bound to estrogen receptor β (ERβ) with moderate-strong affinity. Intriguingly, treatment with fulvestrant, an ER blocker, abolished the anti-inflammatory effects of Cedrol. Cedrol significantly reversed the LPS- and MCAO-induced increases in phosphorylation levels of IκB and NF-κB P65 in primary microglia and MCAO mice, respectively. Additionally, Cedrol was observed to rescue LPS-induced shuttling of NF-κB P65 from cytoplasm to nuclei in primary microglia, indicating inhibitory effects of Cedrol on NF-κB signaling. These results suggest microglia associated neuroinflammation may be mediated by ERβ-NF-κB signaling pathway. Together, our study reveals that Cedrol protected brain function from acute cerebral ischemia through inhibition of microglia-associated neuroinflammation via ERβ-NF-κB signaling pathways, and Cedrol may serve as an alternative option for treatment of acute stroke injury.
Collapse
Affiliation(s)
- Yu Bi
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, China; Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China; Department of Neurology,Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Ziyi Xie
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, China; Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China; Department of Neurology,Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Xiang Cao
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China; Department of Neurology,Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Huanyu Ni
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Shengnan Xia
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China; Department of Neurology,Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Xinyu Bao
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China; Department of Neurology,Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Qinyue Huang
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China; Department of Neurology,Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Qingxiu Zhang
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, China; Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China; Department of Neurology,Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.
| |
Collapse
|
9
|
Wang Y, Du J, Hu Y, Zhang S. CXCL10 impairs synaptic plasticity and was modulated by cGAS-STING pathway after stroke in mice. J Neurophysiol 2024; 132:722-732. [PMID: 38919986 DOI: 10.1152/jn.00079.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024] Open
Abstract
Sensorimotor deficits following stroke remain a major cause of disability, but little is known about the specific pathological mechanisms. Exploring the pathological mechanisms and identifying potential therapeutic targets to promote functional rehabilitation after stroke are essential. CXCL10, also known as interferon-γ-inducible protein 10 (IP-10), plays an important role in multiple brain disorders by mediating synaptic plasticity, yet its role in stroke is still unclear. In this study, mice were subjected to photothrombotic (PT) stroke, and sensorimotor deficits were determined by the ladder walking tests, tape removal tests, and rotarod tests. The density of dendritic spines and synaptic plasticity was determined in Thy1-EGFP mice and evaluated by electrophysiology. We found that photothrombotic stroke induced sensorimotor deficits and upregulated the expression of CXCL10, whereas suppressing the expression of CXCL10 by adeno-associated virus (AAV) ameliorated sensorimotor deficits and increased the levels of synapse-related proteins, the density of dendritic spines, and synaptic strength. Furthermore, the cyclic GMP-AMP (cGAMP) synthase (cGAS)-stimulus of interferon genes (STING) pathway was activated by stroke and induced CXCL10 release, and cGAS or STING antagonists downregulated the levels of CXCL10 and improved synaptic plasticity after stroke. Collectively, our results indicate that cGAS-STING pathway activation promoted CXCL10 release and impaired synaptic plasticity during stroke recovery.NEW & NOTEWORTHY Chemokine-mediated inflammatory response plays a critical role in stroke. CXCL10 plays an important role in multiple brain disorders by mediating synaptic plasticity, yet its role in stroke recovery is still unclear. Herein, we identified a new mechanism that cyclic GMP-AMP (cGAMP) synthase (cGAS)-stimulus of interferon genes (STING) pathway activation promoted CXCL10 release and impaired synaptic plasticity during stroke recovery. Our findings highlight the potential therapeutic strategy of targeting the cGAS-STING pathway to treat stroke.
Collapse
Affiliation(s)
- Yi Wang
- Department of Child Healthcare, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Juan Du
- College of Life Sciences, Chongqing Normal University, Chongqing, People's Republic of China
- School of Pharmacy and Nursing, Chongqing Vocational College of Light Industry, Chongqing, People's Republic of China
| | - Youfang Hu
- Department of Child Healthcare, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Sufen Zhang
- Department of Child Healthcare, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
10
|
Chen SH, Hu FL, Wang G, Liang XS, He CJ. Importance of AIM2 as a serum marker for reflecting severity and predicting a poor outcome of human severe traumatic brain injury: A prospective longitudinal cohort study. Clin Chim Acta 2024; 559:119691. [PMID: 38685373 DOI: 10.1016/j.cca.2024.119691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/17/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Absent in melanoma 2 (AIM2) participates in neuroinflammation. Here, the prognostic significance of serum AIM2 was explored in severe traumatic brain injury (sTBI). METHODS A total of 135 sTBI patients and 80 healthy controls were recruited in this prospective cohort study. Serum C-reactive protein (CRP) and AIM2 levels were measured. Glasgow Coma Scale (GCS) and Rotterdam computed tomography (CT) classification were recorded as the severity indicators. Prognostic parameters were posttraumatic six-month extended Glasgow outcome scale (GOSE) scores and poor outcome (GOSE scores of 1-4). RESULTS As opposed to controls, there were significantly elevated serum AIM2 levels after sTBI. Serum AIM2 levels were independently correlated with serum CRP levels, GCS scores, Rotterdam CT scores, GOSE scores and poor outcome. Also, serum AIM2 levels were efficiently predictive of poor outcome under the receiver operating characteristic (ROC) curve. Under the restricted cubic spline, serum AIM2 levels were linearly correlated with risk of poor outcome. Using subgroup analysis, serum AIM2 levels did not significantly interact with other indices, such as age, gender, alcohol drinking, cigarette smoking, etc. Also, combination model, in which serum AIM2, GCS scores and Rotterdam CT scores were merged, was outlined using nomogram and performed well under calibration curve, ROC curve and decision curve. CONCLUSIONS Raised serum AIM2 levels after sTBI, in intimate correlation with systemic inflammation and trauma severity, are independently discriminative of posttraumatic six-month neurological outcome, substantializing serum AIM2 as an inflammatory prognostic biomarker of sTBI.
Collapse
Affiliation(s)
- Si-Hua Chen
- Department of Neurosurgery, Affiliated Hospital of Shaoxing University(Shaoxing Municipal Hospital), No. 999 Zhongxing South Road, Yuecheng District, Shaoxing City 312000, Zhejiang Province, China
| | - Fang-Lin Hu
- Department of Neurosurgery, Affiliated Hospital of Shaoxing University(Shaoxing Municipal Hospital), No. 999 Zhongxing South Road, Yuecheng District, Shaoxing City 312000, Zhejiang Province, China.
| | - Gang Wang
- Department of Neurosurgery, Affiliated Hospital of Shaoxing University(Shaoxing Municipal Hospital), No. 999 Zhongxing South Road, Yuecheng District, Shaoxing City 312000, Zhejiang Province, China
| | - Xiao-Song Liang
- Department of Neurosurgery, Affiliated Hospital of Shaoxing University(Shaoxing Municipal Hospital), No. 999 Zhongxing South Road, Yuecheng District, Shaoxing City 312000, Zhejiang Province, China
| | - Chen-Jun He
- Department of Neurosurgery, Affiliated Hospital of Shaoxing University(Shaoxing Municipal Hospital), No. 999 Zhongxing South Road, Yuecheng District, Shaoxing City 312000, Zhejiang Province, China
| |
Collapse
|
11
|
Lin J, Wang J, Fang J, Li M, Xu S, Little PJ, Zhang D, Liu Z. The cytoplasmic sensor, the AIM2 inflammasome: A precise therapeutic target in vascular and metabolic diseases. Br J Pharmacol 2024; 181:1695-1719. [PMID: 38528718 DOI: 10.1111/bph.16355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 01/02/2024] [Accepted: 02/12/2024] [Indexed: 03/27/2024] Open
Abstract
Cardio-cerebrovascular diseases encompass pathological changes in the heart, brain and vascular system, which pose a great threat to health and well-being worldwide. Moreover, metabolic diseases contribute to and exacerbate the impact of vascular diseases. Inflammation is a complex process that protects against noxious stimuli but is also dysregulated in numerous so-called inflammatory diseases, one of which is atherosclerosis. Inflammation involves multiple organ systems and a complex cascade of molecular and cellular events. Numerous studies have shown that inflammation plays a vital role in cardio-cerebrovascular diseases and metabolic diseases. The absent in melanoma 2 (AIM2) inflammasome detects and is subsequently activated by double-stranded DNA in damaged cells and pathogens. With the assistance of the mature effector molecule caspase-1, the AIM2 inflammasome performs crucial biological functions that underpin its involvement in cardio-cerebrovascular diseases and related metabolic diseases: The production of interleukin-1 beta (IL-1β), interleukin-18 (IL-18) and N-terminal pore-forming Gasdermin D fragment (GSDMD-N) mediates a series of inflammatory responses and programmed cell death (pyroptosis and PANoptosis). Currently, several agents have been reported to inhibit the activity of the AIM2 inflammasome and have the potential to be evaluated for use in clinical settings. In this review, we systemically elucidate the assembly, biological functions, regulation and mechanisms of the AIM2 inflammasome in cardio-cerebrovascular diseases and related metabolic diseases and outline the inhibitory agents of the AIM2 inflammasome as potential therapeutic drugs.
Collapse
Affiliation(s)
- Jiuguo Lin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, China
| | - Jiaojiao Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, China
| | - Jian Fang
- Huadu District People's Hospital of Guangzhou, Guangzhou, China
| | - Meihang Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, China
| | - Suowen Xu
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Peter J Little
- Pharmacy Australia Centre of Excellence, School of Pharmacy, University of Queensland, Woolloongabba, Queensland, Australia
| | - Dongmei Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Zhiping Liu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, China
| |
Collapse
|
12
|
Ye L, Hu M, Mao R, Tan Y, Sun M, Jia J, Xu S, Liu Y, Zhu X, Xu Y, Bai F, Shu S. Conditional knockout of AIM2 in microglia ameliorates synaptic plasticity and spatial memory deficits in a mouse model of Alzheimer's disease. CNS Neurosci Ther 2024; 30:e14555. [PMID: 38105588 PMCID: PMC11163192 DOI: 10.1111/cns.14555] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/19/2023] Open
Abstract
AIMS Synaptic dysfunction is a hallmark pathology of Alzheimer's disease (AD) and is strongly associated with cognitive impairment. Abnormal phagocytosis by the microglia is one of the main causes of synapse loss in AD. Previous studies have shown that the absence of melanoma 2 (AIM2) inflammasome activity is increased in the hippocampus of APP/PS1 mice, but the role of AIM2 in AD remains unclear. METHODS Injection of Aβ1-42 into the bilateral hippocampal CA1 was used to mimic an AD mouse model (AD mice). C57BL/6 mice injected with AIM2 overexpression lentivirus and conditional knockout of microglial AIM2 mice were used to confirm the function of AIM2 in AD. Cognitive functions were assessed with novel object recognition and Morris water maze tests. The protein and mRNA expression levels were evaluated by western blotting, immunofluorescence staining, and qRT-PCR. Synaptic structure and function were detected by Golgi staining and electrophysiology. RESULTS The expression level of AIM2 was increased in AD mice, and overexpression of AIM2 induced synaptic and cognitive impairments in C57BL/6 mice, similar to AD mice. Elevated expression levels of AIM2 occurred in microglia in AD mice. Conditional knockout of microglial AIM2 rescued cognitive and synaptic dysfunction in AD mice. Excessive microglial phagocytosis activity of synapses was decreased after knockout of microglial AIM2, which was associated with inhibiting complement activation. CONCLUSION Our results demonstrated that microglial AIM2 plays a critical role in regulating synaptic plasticity and memory deficits associated with AD, providing a new direction for developing novel preventative and therapeutic interventions for this disease.
Collapse
Affiliation(s)
- Lei Ye
- Department of NeurologyNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Mengsha Hu
- Department of NeurologyNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
| | - Rui Mao
- Department of NeurologyNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Yi Tan
- Department of NeurologyNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Min Sun
- Department of NeurologyNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Junqiu Jia
- Department of NeurologyNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Siyi Xu
- Department of NeurologyNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Yi Liu
- Department of NeurologyNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Xiaolei Zhu
- Department of NeurologyNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Yun Xu
- Department of NeurologyNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
- Jiangsu Key Laboratory for Molecular MedicineMedical School of Nanjing UniversityNanjingChina
- Jiangsu Provincial Key Discipline of NeurologyNanjingChina
- Nanjing Neurology Medical CenterNanjingChina
- Nanjing Neuropsychiatry Clinic Medical CenterNanjingChina
| | - Feng Bai
- Department of NeurologyNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Shu Shu
- Department of NeurologyNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
- Jiangsu Key Laboratory for Molecular MedicineMedical School of Nanjing UniversityNanjingChina
- Jiangsu Provincial Key Discipline of NeurologyNanjingChina
- Nanjing Neurology Medical CenterNanjingChina
- Nanjing Neuropsychiatry Clinic Medical CenterNanjingChina
| |
Collapse
|
13
|
Zhang C, Wang C, Yang M, Wen H, Li P. Usability of serum AIM2 as a predictive biomarker of stroke-associated pneumonia and poor prognosis after acute supratentorial intracerebral hemorrhage: A prospective longitudinal cohort study. Heliyon 2024; 10:e31007. [PMID: 38778966 PMCID: PMC11109811 DOI: 10.1016/j.heliyon.2024.e31007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Background Absent in melanoma 2 (AIM2) is implicated in inflammatory processes. We measured serum AIM2 with intent to unveil its predictive significance for stroke-associated pneumonia (SAP) and functional prognosis following acute intracerebral hemorrhage (ICH). Methods In this prospective cohort study, serum AIM2 concentrations of 163 ICH patients were gauged upon admission and 57 of them also consented for measurements at days 1, 3, 5, 7, 10 and 14. Coupled with 57 individuals without health conditions, dynamic change of serum AIM2 levels were uncovered. National Institutes of Health Stroke Scale (NIHSS) scores and hematoma volume were identified as the dual indicators of severity. Poststroke six-month modified Rankin Scale (mRS) scores ranging from 3 to 6 indicated an unfavorable outcome. SAP was observed during the first seven days after ICH. Sequential univariate and multivariate analyses were performed to discern predictors of SAP and adverse prognosis. Results The serum levels of AIM2 in patients exhibited a marked elevation upon admission, reaching peak levels on the third and fifth days, and remained notably elevated until day 14 compared to those of the control group. Serum AIM2 levels showed independent correlations with both NIHSS scores and the volume of hematoma. Additionally, AIM2 concentrations were independently associated with a poor prognosis and SAP at the six-month mark. Within the framework of restricted cubic spline analysis, serum AIM2 concentrations exhibited a linear correlation with the likelihood of developing SAP and experiencing a poor prognosis. In the context of receiver operating characteristic (ROC) curve analysis, serum AIM2 concentrations effectively differentiated risks of SAP and poor prognosis. By employing segmented analysis, serum AIM2 concentrations showed negligible interactions with several traditional variables, such as age, gender, smoking habits, alcohol consumption, and more. The integrated model incorporating serum AIM2, NIHSS scores, and the volume of hematoma was depicted by employing a nomogram and demonstrated strong predictive performance for poor prognosis or SAP across various evaluation metrics, including ROC curve analysis, calibration curve analysis, and decision curve analysis. Conclusion Serum AIM2 levels show a marked increase shortly after intracerebral hemorrhage (ICH), which may accurately reflect stroke severity, and effectively predict SAP and poor neurological outcomes, and therefore serum AIM2 stands out as an encouraging predictive indicator for ICH.
Collapse
Affiliation(s)
- Chengliang Zhang
- Department of Neurology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, 100 Minjiang Road, Quzhou, 324000, Zhejiang Province, People's Republic of China
| | - Chuanliu Wang
- Department of Neurology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, 100 Minjiang Road, Quzhou, 324000, Zhejiang Province, People's Republic of China
| | - Ming Yang
- Department of Neurology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, 100 Minjiang Road, Quzhou, 324000, Zhejiang Province, People's Republic of China
| | - Han Wen
- Department of Neurology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, 100 Minjiang Road, Quzhou, 324000, Zhejiang Province, People's Republic of China
| | - Ping Li
- Department of Pulmonary and Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, 100 Minjiang Road, Quzhou, 324000, Zhejiang Province, People's Republic of China
| |
Collapse
|
14
|
Yang R, Chen J, Qu X, Liu H, Wang X, Tan C, Chen H, Wang X. Interleukin-22 Contributes to Blood-Brain Barrier Disruption via STAT3/VEGFA Activation in Escherichia coli Meningitis. ACS Infect Dis 2024; 10:988-999. [PMID: 38317607 PMCID: PMC10928716 DOI: 10.1021/acsinfecdis.3c00668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/07/2024]
Abstract
Escherichia coli continues to be the predominant Gram-negative pathogen causing neonatal meningitis worldwide. Inflammatory mediators have been implicated in the pathogenesis of meningitis and are key therapeutic targets. The role of interleukin-22 (IL-22) in various diseases is diverse, with both protective and pathogenic effects. However, little is understood about the mechanisms underlying the damaging effects of IL-22 on the blood-brain barrier (BBB) in E. coli meningitis. We observed that meningitic E. coli infection induced IL-22 expression in the serum and brain of mice. The tight junction proteins (TJPs) components ZO-1, Occludin, and Claudin-5 were degraded in the mouse brain and human brain microvascular endothelial cells (hBMEC) following IL-22 administration. Moreover, the meningitic E. coli-caused increase in BBB permeability in wild-type mice was restored by knocking out IL-22. Mechanistically, IL-22 activated the STAT3-VEGFA signaling cascade in E. coli meningitis, thus eliciting the degradation of TJPs to induce BBB disruption. Our data indicated that IL-22 is an essential host accomplice during E. coli-caused BBB disruption and could be targeted for the therapy of bacterial meningitis.
Collapse
Affiliation(s)
- Ruicheng Yang
- National
Key Laboratory of Agricultural Microbiology, College of Veterinary
Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key
Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable
Pig Production, Wuhan 430070, China
| | - Jiaqi Chen
- National
Key Laboratory of Agricultural Microbiology, College of Veterinary
Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key
Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable
Pig Production, Wuhan 430070, China
| | - Xinyi Qu
- National
Key Laboratory of Agricultural Microbiology, College of Veterinary
Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key
Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable
Pig Production, Wuhan 430070, China
| | - Hulin Liu
- National
Key Laboratory of Agricultural Microbiology, College of Veterinary
Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key
Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable
Pig Production, Wuhan 430070, China
| | - Xinyi Wang
- National
Key Laboratory of Agricultural Microbiology, College of Veterinary
Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key
Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable
Pig Production, Wuhan 430070, China
| | - Chen Tan
- National
Key Laboratory of Agricultural Microbiology, College of Veterinary
Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key
Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable
Pig Production, Wuhan 430070, China
- Frontiers
Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
- International
Research Center for Animal Disease, Ministry
of Science and Technology of the People’s Republic of China, Wuhan 430070, China
| | - Huanchun Chen
- National
Key Laboratory of Agricultural Microbiology, College of Veterinary
Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key
Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable
Pig Production, Wuhan 430070, China
- Frontiers
Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
- International
Research Center for Animal Disease, Ministry
of Science and Technology of the People’s Republic of China, Wuhan 430070, China
| | - Xiangru Wang
- National
Key Laboratory of Agricultural Microbiology, College of Veterinary
Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key
Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable
Pig Production, Wuhan 430070, China
- Frontiers
Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
- International
Research Center for Animal Disease, Ministry
of Science and Technology of the People’s Republic of China, Wuhan 430070, China
| |
Collapse
|
15
|
Fu R, Zhao L, Guo Y, Qin X, Xu W, Cheng X, Zhang Y, Xu S. AIM2 inflammasome: A potential therapeutic target in ischemic stroke. Clin Immunol 2024; 259:109881. [PMID: 38142900 DOI: 10.1016/j.clim.2023.109881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Ischemic stroke (IS) is a significant global public health issue with a high incidence, disability, and mortality rate. A robust inflammatory cascade with complex and wide-ranging mechanisms occurs following ischemic brain injury. Inflammasomes are multiprotein complexes in the cytoplasm that modulate the inflammatory response by releasing pro-inflammatory cytokines and inducing cellular pyroptosis. Among these inflammasomes, the Absent in Melanoma 2 (AIM2) inflammasome shows the ability to detect a wide range of pathogen DNAs, thereby triggering an inflammatory response. Recent studies have indicated that the aberrant expression of AIM2 inflammasome in various cells is closely associated with the pathological processes of ischemic brain injury. This paper summarizes the expression and regulatory role of AIM2 in CNS and peripheral immune cells and discusses current therapeutic approaches targeting AIM2 inflammasome. These findings aim to serve as a reference for future research in this field.
Collapse
Affiliation(s)
- Rong Fu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Linna Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Yuying Guo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Xiaoli Qin
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenzhe Xu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xueqi Cheng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yunsha Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shixin Xu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China.
| |
Collapse
|
16
|
Ravichandran KA, Heneka MT. Inflammasomes in neurological disorders - mechanisms and therapeutic potential. Nat Rev Neurol 2024; 20:67-83. [PMID: 38195712 DOI: 10.1038/s41582-023-00915-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 01/11/2024]
Abstract
Inflammasomes are molecular scaffolds that are activated by damage-associated and pathogen-associated molecular patterns and form a key element of innate immune responses. Consequently, the involvement of inflammasomes in several diseases that are characterized by inflammatory processes, such as multiple sclerosis, is widely appreciated. However, many other neurological conditions, including Alzheimer disease, Parkinson disease, amyotrophic lateral sclerosis, stroke, epilepsy, traumatic brain injury, sepsis-associated encephalopathy and neurological sequelae of COVID-19, all involve persistent inflammation in the brain, and increasing evidence suggests that inflammasome activation contributes to disease progression in these conditions. Understanding the biology and mechanisms of inflammasome activation is, therefore, crucial for the development of inflammasome-targeted therapies for neurological conditions. In this Review, we present the current evidence for and understanding of inflammasome activation in neurological diseases and discuss current and potential interventional strategies that target inflammasome activation to mitigate its pathological consequences.
Collapse
Affiliation(s)
- Kishore Aravind Ravichandran
- Department of Neuroinflammation, Institute of innate immunity, University of Bonn Medical Center Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Esch-sur-Alzette, Luxembourg.
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, North Worcester, MA, USA.
| |
Collapse
|
17
|
You G, Zheng L, Zhang Y, Zhang Y, Wang Y, Guo W, Liu H, Tatiana P, Vladimir K, Zan J. Tangeretin Attenuates Cerebral Ischemia-Reperfusion-Induced Neuronal Pyroptosis by Inhibiting AIM2 Inflammasome Activation via Regulating NRF2. Inflammation 2024; 47:145-158. [PMID: 37725272 DOI: 10.1007/s10753-023-01900-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/27/2023] [Accepted: 09/05/2023] [Indexed: 09/21/2023]
Abstract
Pyroptosis is closely involved in the pathopoiesis of cerebral ischemia and reperfusion (I/R) injury which seriously dangers human's life. Studies report that tangeretin (TANG), which is enriched in the peel of Citrus reticulata, has neuroprotective effects. Here, we explored whether absent in melanoma 2 (AIM2) inflammasome-mediated pyroptosis is involved in the cerebral I/R injury and the protective mechanism of TANG against cerebral I/R injury. In this study, we found that TANG treatment effectively alleviated I/R-induced brain injury and inhibited neuronal pyroptosis in an in vivo mice model with middle cerebral artery occlusion/reperfusion (MCAO/R) injury and in an in vitro hippocampal HT22 cell model with oxygen-glucose deprivation and reoxygenation (OGD/R) injury. Furthermore, we found TANG inhibited cerebral I/R-induced neuronal AIM2 inflammasome activation in vivo and in vitro via regulating nuclear factor E2-related factor 2 (NRF2). Moreover, administration of ML385, a chemical inhibitor of NRF2, notably blocked the neuroprotective effects of TANG against cerebral I/R injury. In conclusion, TANG attenuates cerebral I/R-induced neuronal pyroptosis by inhibiting AIM2 inflammasome activation via regulating NRF2. These findings indicate TANG is a potential therapeutic agent for cerebral I/R injury.
Collapse
Affiliation(s)
- Guoxing You
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Linbo Zheng
- Department of Traditional Chinese Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510310, China
| | - Yuanyuan Zhang
- The Affiliated Traditional Chinese Medicine Hospital of Guangzhou Medical University, Guangzhou, 510130, China
| | - Yuting Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yupeng Wang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Wenjie Guo
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Hao Liu
- Department of Traditional Chinese Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510310, China
| | - Philipovich Tatiana
- Institute of Physiology, National Academy of Sciences of Belarus, Minsk, 220072, Republic of Belarus
| | - Kulchitsky Vladimir
- Institute of Physiology, National Academy of Sciences of Belarus, Minsk, 220072, Republic of Belarus
| | - Jie Zan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
18
|
Qian Y, Yang L, Chen J, Zhou C, Zong N, Geng Y, Xia S, Yang H, Bao X, Chen Y, Xu Y. SRGN amplifies microglia-mediated neuroinflammation and exacerbates ischemic brain injury. J Neuroinflammation 2024; 21:35. [PMID: 38287411 PMCID: PMC10826034 DOI: 10.1186/s12974-024-03026-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/19/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Microglia is the major contributor of post-stroke neuroinflammation cascade and the crucial cellular target for the treatment of ischemic stroke. Currently, the endogenous mechanism underlying microglial activation following ischemic stroke remains elusive. Serglycin (SRGN) is a proteoglycan expressed in immune cells. Up to now, the role of SRGN on microglial activation and ischemic stroke is largely unexplored. METHODS Srgn knockout (KO), Cd44-KO and wild-type (WT) mice were subjected to middle cerebral artery occlusion (MCAO) to mimic ischemic stroke. Exogenous SRGN supplementation was achieved by stereotactic injection of recombinant mouse SRGN (rSRGN). Cerebral infarction was measured by 2,3,5-triphenyltetrazolium chloride (TTC) staining. Neurological functions were evaluated by the modified neurological severity score (mNSS) and grip strength. Microglial activation was detected by Iba1 immunostaining, morphological analysis and cytokines' production. Neuronal death was examined by MAP2 immunostaining and FJB staining. RESULTS The expression of SRGN and its receptor CD44 was significantly elevated in the ischemic mouse brains, especially in microglia. In addition, lipopolysaccharide (LPS) induced SRGN upregulation in microglia in vitro. rSRGN worsened ischemic brain injury in mice and amplified post-stroke neuroinflammation, while gene knockout of Srgn exerted reverse impacts. rSRGN promoted microglial proinflammatory activation both in vivo and in vitro, whereas Srgn-deficiency alleviated microglia-mediated inflammatory response. Moreover, the genetic deletion of Cd44 partially rescued rSRGN-induced excessed neuroinflammation and ischemic brain injury in mice. Mechanistically, SRGN boosted the activation of NF-κB signal, and increased glycolysis in microglia. CONCLUSION SRGN acts as a novel therapeutic target in microglia-boosted proinflammatory response following ischemic stroke.
Collapse
Affiliation(s)
- Yi Qian
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Lixuan Yang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Jian Chen
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Chao Zhou
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Ningning Zong
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Yang Geng
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Shengnan Xia
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Haiyan Yang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Xinyu Bao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Yan Chen
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
- Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China.
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China.
- Jiangsu Provincial Key Discipline of Neurology, Nanjing, 210008, China.
- Nanjing Neurology Medical Center, Nanjing, 210008, China.
| |
Collapse
|
19
|
Su D, Zhang R, Wang X, Ding Q, Che F, Zhang W, Wu W, Li P, Tang B. A new multi-parameter imaging platform for in vivo drug efficacy evaluation of ischemic stroke. Talanta 2024; 266:125133. [PMID: 37659227 DOI: 10.1016/j.talanta.2023.125133] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/06/2023] [Accepted: 08/26/2023] [Indexed: 09/04/2023]
Abstract
Ischemic stroke with high incidence and disability rate severely endangers human health. Current clinical treatment strategies are quite limited, new drugs for ischemic stroke are urgently needed. However, most existing methods for the efficacy evaluation of new drugs possess deficiencies of divorcing from the true biological context, single detection indicator and complex operations, leading to evaluation biases and delaying drug development process. In this work, leveraging the advantages of fluorescence imaging with non-invasive, real-time, in-situ, high selectivity and high sensitivity, a new multi-parameter simultaneous fluorescence imaging platform (MPSFL-Platform) based on two fluorescence materials was constructed to evaluate the efficacy of new drug for ischemic stroke. Through simultaneous fluorescence observing three key indicators of ischemic stroke, malondialdehyde (MDA), formaldehyde (FA), and monoamine oxidase A (MAO-A), the efficacy evaluations of three drugs for ischemic stroke were real-time and in-situ performed. Compared with edaravone and butylphthalide, edaravone dexborneol exhibited better therapeutic effect by using MPSFL-Platform. The successful establishment of MPSFL-Platform is serviceable to accelerate the conduction of preclinical trial and the exploration of pathophysiology mechanism for drugs related to ischemic stroke and other brain diseases, which is perspective to promote the efficiency of new drug development.
Collapse
Affiliation(s)
- Di Su
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, Shandong, People's Republic of China
| | - Ran Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, Shandong, People's Republic of China
| | - Xin Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, Shandong, People's Republic of China.
| | - Qi Ding
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, Shandong, People's Republic of China
| | - Feida Che
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, Shandong, People's Republic of China
| | - Wen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, Shandong, People's Republic of China
| | - Wei Wu
- Department of Neurology, Qi-Lu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, Shandong, People's Republic of China.
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, Shandong, People's Republic of China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, Shandong, People's Republic of China; Laoshan Laboratory, Qingdao, 266237, Shandong, People's Republic of China.
| |
Collapse
|
20
|
Kuang X, Chen S, Ye Q. The Role of Histone Deacetylases in NLRP3 Inflammasomesmediated Epilepsy. Curr Mol Med 2024; 24:980-1003. [PMID: 37519210 DOI: 10.2174/1566524023666230731095431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/08/2023] [Accepted: 06/19/2023] [Indexed: 08/01/2023]
Abstract
Epilepsy is one of the most common brain disorders that not only causes death worldwide, but also affects the daily lives of patients. Previous studies have revealed that inflammation plays an important role in the pathophysiology of epilepsy. Activation of inflammasomes can promote neuroinflammation by boosting the maturation of caspase-1 and the secretion of various inflammatory effectors, including chemokines, interleukins, and tumor necrosis factors. With the in-depth research on the mechanism of inflammasomes in the development of epilepsy, it has been discovered that NLRP3 inflammasomes may induce epilepsy by mediating neuronal inflammatory injury, neuronal loss and blood-brain barrier dysfunction. Therefore, blocking the activation of the NLRP3 inflammasomes may be a new epilepsy treatment strategy. However, the drugs that specifically block NLRP3 inflammasomes assembly has not been approved for clinical use. In this review, the mechanism of how HDACs, an inflammatory regulator, regulates the activation of NLRP3 inflammasome is summarized. It helps to explore the mechanism of the HDAC inhibitors inhibiting brain inflammatory damage so as to provide a potential therapeutic strategy for controlling the development of epilepsy.
Collapse
Affiliation(s)
- Xi Kuang
- Hainan Health Vocational College,Haikou, Hainan, 570311, China
| | - Shuang Chen
- Hubei Provincial Hospital of Integrated Chinese and Western Medicine, 430022, Hubei, China
| | - Qingmei Ye
- Hainan General Hospital & Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan, China
| |
Collapse
|
21
|
Yan H, Sasaki T, Gon Y, Nishiyama K, Kanki H, Mochizuki H. Driver gene KRAS aggravates cancer-associated stroke outcomes. Thromb Res 2024; 233:55-68. [PMID: 38029547 DOI: 10.1016/j.thromres.2023.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/04/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023]
Abstract
The incidence of cancer-associated stroke has increased with the prolonged survival times of cancer patients. Recent genetic studies have led to progress in cancer therapeutics, but relationships between oncogenic mutations and stroke remain elusive. Here, we focused on the driver gene KRAS, which is the predominant RAS isoform mutated in multiple cancer types, in cancer associated stroke study. KRASG13D/- and parental human colorectal carcinoma HCT116 cells were inoculated into mice that were then subjected to a photochemically-induced thrombosis model to establish ischemic stroke. We found that cancer inoculation exacerbated neurological deficits after stroke. Moreover, mice inoculated with KRASG13D/- cells showed worse neurological deficits after stroke compared with mice inoculated with parental cells. Stroke promoted tumor growth, and the KRASG13D/- allele enhanced this growth. Brain RNA sequencing analysis and serum ELISA showed that chemokines and cytokines mediating pro-inflammatory responses were upregulated in mice inoculated with KRASG13D/- cells compared with those inoculated with parental cells. STAT3 phosphorylation was promoted following ischemic stroke in the KRASG13D/- group compared with in the parental group, and STAT3 inhibition significantly ameliorated stroke outcomes by mitigating microglia/macrophage polarization. Finally, we compared the prognosis and mortality of colorectal cancer patients with or without stroke onset between 1 January 2007 and 31 December 2020 using a hospital-based cancer registry and found that colorectal cancer patients with stroke onset within 3 months after cancer diagnosis had a worse prognosis. Our work suggests an interplay between KRAS and ischemic stroke that may offer insight into future treatments for cancer-associated stroke.
Collapse
Affiliation(s)
- Haomin Yan
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Tsutomu Sasaki
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan; Department of Neurotherapeutics, Graduate School of Medicine, Osaka University, Osaka, Japan.
| | - Yasufumi Gon
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Kumiko Nishiyama
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Hideaki Kanki
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Hideki Mochizuki
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| |
Collapse
|
22
|
Li Y, Liu C, Chen Z, Lin H, Li X. Netrin-1 protects blood-brain barrier (BBB) integrity after cerebral ischemia-reperfusion by activating the Kruppel-like factor 2 (KLF2)/occludin pathway. J Biochem Mol Toxicol 2024; 38:e23623. [PMID: 38229322 DOI: 10.1002/jbt.23623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/04/2023] [Accepted: 12/14/2023] [Indexed: 01/18/2024]
Abstract
Ischemia/reperfusion (I/R)-induced neural damage and neuroinflammation have been associated with pathological progression during stroke. Netrin-1 is an important member of the family of laminin-related secreted proteins, which plays an important role in governing axon elongation. However, it is unknown whether Netrin-1 possesses a beneficial role in stroke. Here, we employed the middle cerebral artery occlusion (MCAO) model to study the function of Netrin-1 in alleviating brain injuries. Our results demonstrate that Netrin-1 rescued poststroke neurological deficits and inhibited production of the inflammatory cytokines such as interleukin 6 (IL-6) and endothelial chemokine (C-X-C motif) ligand 1 (Cxcl1). Importantly, Netrin-1 protected against MCAO-induced dysfunction of the blood-brain barrier (BBB) in mice and a reduction in the expression of the tight junction (TJ) protein occludin. Additionally, we report that Netrin-1 could ameliorate oxygen-glucose deprivation/reoxygenation (OGD/R)-induced injury and prevent aggravation in endothelial monolayer permeability in bEnd.3 human brain microvascular endothelial cells (HBMVECs). Mechanistically, Netrin-1 ameliorated OGD/R-induced decrease in occludin and Kruppel-like factor 2 (KLF2) in HBMVECs. Notably, silencing of KLF2 abolished the beneficial effects of Netrin-1 in protecting endothelial permeability and occludin expression, suggesting that these effects are mediated by KLF2. In conclusion, our findings suggest that Netrin-1 could constitute a novel therapeutic strategy for ischemic stroke.
Collapse
Affiliation(s)
- Yuanxiao Li
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Changyun Liu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Zhiting Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Hanbin Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Xiaofeng Li
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| |
Collapse
|
23
|
Mathias K, Machado RS, Stork S, Dos Santos D, Joaquim L, Generoso J, Danielski LG, Barichello T, Prophiro JS, Petronilho F. Blood-brain barrier permeability in the ischemic stroke: An update. Microvasc Res 2024; 151:104621. [PMID: 37918521 DOI: 10.1016/j.mvr.2023.104621] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Stroke is the second leading cause of death globally and the major cause of long-term disability. Among the types of strokes, ischemic stroke, which occurs due to obstruction of blood vessels responsible for cerebral irrigation, is considered the most prevalent, accounting for approximately 86 % of all stroke cases. This interruption of blood supply leads to a critical pathophysiological mechanism, including oxidative stress and neuroinflammation which are responsible for structural alterations of the blood-brain barrier (BBB). The increased BBB permeability associated with cerebral ischemia-reperfusion may contribute to a worse outcome after stroke. Thus, this narrative review aims to update the pathophysiological mechanisms involved in the increase in BBB permeability and to list the possible therapeutic strategies.
Collapse
Affiliation(s)
- Khiany Mathias
- Laboratory of Immunoparasitology, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil; Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil.
| | - Richard Simon Machado
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil; Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Solange Stork
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil; Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - David Dos Santos
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Larissa Joaquim
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil; Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Jaqueline Generoso
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Lucinéia Gainski Danielski
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Tatiana Barichello
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil; Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77054, USA
| | - Josiane Somariva Prophiro
- Laboratory of Immunoparasitology, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| |
Collapse
|
24
|
Liu PY, Li HQ, Dong MQ, Gu XY, Xu SY, Xia SN, Bao XY, Xu Y, Cao X. Infiltrating myeloid cell-derived properdin markedly promotes microglia-mediated neuroinflammation after ischemic stroke. J Neuroinflammation 2023; 20:260. [PMID: 37951917 PMCID: PMC10640761 DOI: 10.1186/s12974-023-02946-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND Emerging evidence has shown that myeloid cells that infiltrate into the peri-infarct region may influence the progression of ischemic stroke by interacting with microglia. Properdin, which is typically secreted by immune cells such as neutrophils, monocytes, and T cells, has been found to possess damage-associated molecular patterns (DAMPs) properties and can perform functions unrelated to the complement pathway. However, the role of properdin in modulating microglia-mediated post-stroke neuroinflammation remains unclear. METHODS Global and conditional (myeloid-specific) properdin-knockout mice were subjected to transient middle cerebral artery occlusion (tMCAO). Histopathological and behavioral tests were performed to assess ischemic brain injury in mice. Single-cell RNA sequencing and immunofluorescence staining were applied to explore the source and the expression level of properdin. The transcriptomic profile of properdin-activated primary microglia was depicted by transcriptome sequencing. Lentivirus was used for macrophage-inducible C-type lectin (Mincle) silencing in microglia. Conditioned medium from primary microglia was administered to primary cortex neurons to determine the neurotoxicity of microglia. A series of cellular and molecular biological techniques were used to evaluate the proinflammatory response, neuronal death, protein-protein interactions, and related signaling pathways, etc. RESULTS: The level of properdin was significantly increased, and brain-infiltrating neutrophils and macrophages were the main sources of properdin in the ischemic brain. Global and conditional myeloid knockout of properdin attenuated microglial overactivation and inflammatory responses at the acute stage of tMCAO in mice. Accordingly, treatment with recombinant properdin enhanced the production of proinflammatory cytokines and augmented microglia-potentiated neuronal death in primary culture. Mechanistically, recombinant properdin served as a novel ligand that activated Mincle receptors on microglia and downstream pathways to drive primary microglia-induced inflammatory responses. Intriguingly, properdin can directly bind to the microglial Mincle receptor to exert the above effects, while Mincle knockdown limits properdin-mediated microglial inflammation. CONCLUSION Properdin is a new medium by which infiltrating peripheral myeloid cells communicate with microglia, further activate microglia, and exacerbate brain injury in the ischemic brain, suggesting that targeted disruption of the interaction between properdin and Mincle on microglia or inhibition of their downstream signaling may improve the prognosis of ischemic stroke.
Collapse
Affiliation(s)
- Pin-Yi Liu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, People's Republic of China
| | - Hui-Qin Li
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, People's Republic of China
| | - Meng-Qi Dong
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, People's Republic of China
| | - Xin-Ya Gu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, People's Republic of China
| | - Si-Yi Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, People's Republic of China
| | - Sheng-Nan Xia
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, People's Republic of China
| | - Xin-Yu Bao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, People's Republic of China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, People's Republic of China.
- Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, Jiangsu, 210008, People's Republic of China.
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, People's Republic of China.
- Jiangsu Provincial Key Discipline of Neurology, Nanjing, Jiangsu, 210008, People's Republic of China.
- Nanjing Neurology Medical Center, Nanjing, Jiangsu, 210008, People's Republic of China.
| | - Xiang Cao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, People's Republic of China.
- Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, Jiangsu, 210008, People's Republic of China.
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, People's Republic of China.
- Jiangsu Provincial Key Discipline of Neurology, Nanjing, Jiangsu, 210008, People's Republic of China.
- Nanjing Neurology Medical Center, Nanjing, Jiangsu, 210008, People's Republic of China.
| |
Collapse
|
25
|
Liu Y, Wang L, Yang G, Chi X, Liang X, Zhang Y. Sirtuins: Promising Therapeutic Targets to Treat Ischemic Stroke. Biomolecules 2023; 13:1210. [PMID: 37627275 PMCID: PMC10452362 DOI: 10.3390/biom13081210] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023] Open
Abstract
Stroke is a major cause of mortality and disability globally, with ischemic stroke (IS) accounting for over 80% of all stroke cases. The pathological process of IS involves numerous signal molecules, among which are the highly conserved nicotinamide adenine dinucleotide (NAD+)-dependent enzymes known as sirtuins (SIRTs). SIRTs modulate various biological processes, including cell differentiation, energy metabolism, DNA repair, inflammation, and oxidative stress. Importantly, several studies have reported a correlation between SIRTs and IS. This review introduces the general aspects of SIRTs, including their distribution, subcellular location, enzyme activity, and substrate. We also discuss their regulatory roles and potential mechanisms in IS. Finally, we describe the current therapeutic methods based on SIRTs, such as pharmacotherapy, non-pharmacological therapeutic/rehabilitative interventions, epigenetic regulators, potential molecules, and stem cell-derived exosome therapy. The data collected in this study will potentially contribute to both clinical and fundamental research on SIRTs, geared towards developing effective therapeutic candidates for future treatment of IS.
Collapse
Affiliation(s)
- Yue Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; (Y.L.); (L.W.); (X.C.)
| | - Liuding Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; (Y.L.); (L.W.); (X.C.)
| | - Guang Yang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China;
| | - Xiansu Chi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; (Y.L.); (L.W.); (X.C.)
| | - Xiao Liang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; (Y.L.); (L.W.); (X.C.)
| | - Yunling Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; (Y.L.); (L.W.); (X.C.)
| |
Collapse
|
26
|
Cao GZ, Hou JY, Zhou R, Tian LL, Wang ML, Zhang Y, Xu H, Yang HJ, Zhang JJ. Single-cell RNA sequencing reveals that VIM and IFITM3 are vital targets of Dengzhan Shengmai capsule to protect against cerebral ischemic injury. JOURNAL OF ETHNOPHARMACOLOGY 2023; 311:116439. [PMID: 37004745 DOI: 10.1016/j.jep.2023.116439] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 06/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ischemic stroke is one of the leading causes of mortality, but therapies are limited. Dengzhan Shengmai capsule (DZSM) was included by the Chinese Pharmacopoeia 2020 and has been broadly used for the treatment of ischemic stroke. However, the mechanism of DZSM against ischemic stroke is unclear. AIM OF THE STUDY This study used RNA sequencing (RNA-seq) and single-cell RNA sequencing (scRNA-seq) to investigate the mechanism of action of DZSM against ischemic stroke. MATERIALS AND METHODS The rats were randomly divided into six groups: the Sham, I/R (water), I/R + DZSM-L (0.1134g/kg), I/R + DZSM-H (0.4536g/kg), I/R + NMDP (20mg/kg), and I/R + Ginaton (20mg/kg). The rats were administrated drugs for 5 days then followed by the ischemic brain injury caused by middle cerebral artery occlusion (MCAO). The neuroprotective effect was assessed by infraction rate, neurological deficit scores, regional cerebral blood flow (rCBF), hematoxylin and eosin (H&E) staining, and Nissl staining. Based on RNA-seq and scRNA-seq, the vital biological processes and core targets of DZSM against cerebral ischemia were revealed. Enzyme-linked immunosorbent assay (ELISA) and immunofluorescence (IF) staining were used to investigate the vital biological processes and core targets of DZSM against ischemic stroke. RESULTS Administration of DZSM significantly reduced the infarction rate and Zea Longa score, Garcia JH score, and ameliorated the reduction in rCBF. And alleviated the neuronal damage, such as increased neuronal density level and Nissl bodies density level. RNA-seq analysis revealed that DZSM played important roles in inflammation and apoptosis. ELISA and IF straining validation confirmed that DZSM significantly decreased the expression of IL-6, IL-1β, TNF-α, ICAM-1, IBA-1, MMP9, and Cleaved caspase-3 in MCAO rats. ScRNA-seq analysis identified 8 core targets in neurons including HSPB1, SPP1, MT2A, GFAP, IFITM3, VIM, CRIP1, and GPD1, and VIM and IFITM3 was verified to be decreased by DZSM in neurons. CONCLUSION Our study illustrates the neuroprotective effect of DZSM against ischemia stroke, and VIM and IFITM3 were identified as vital targets in neurons of DZSM in protecting against MCAO-induced I/R injury.
Collapse
Affiliation(s)
- Guang-Zhao Cao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Jing-Yi Hou
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Rui Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Liang-Liang Tian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Mao-Lin Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Yi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - He Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Hong-Jun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Jing-Jing Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Chinese Institute for Brain Research, Beijing, 102206, China.
| |
Collapse
|
27
|
Zhao L, Xu H, Liu X, Cheng Y, Xie J. The role of TET2-mediated ROBO4 hypomethylation in the development of diabetic retinopathy. J Transl Med 2023; 21:455. [PMID: 37430272 DOI: 10.1186/s12967-023-04310-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 06/26/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND In diabetic retinopathy, increasing evidence points to a link between the pathogenesis of retinal microangiopathy and the endothelial cell-specific factor roundabout4 (ROBO4). According to earlier research, specificity protein 1 (SP1) enhances the binding to the ROBO4 promoter, increasing Robo4 expression and hastening the progression of diabetic retinopathy. To determine if this is related to aberrant epigenetic modifications of ROBO4, we examined the methylation level of the ROBO4 promoter and the corresponding regulatory mechanism during the course of diabetic retinopathy and explored the effect of this mechanism on retinal vascular leakage and neovascularization. METHODS The methylation level of CpG sites in the ROBO4 promoter was detected in human retinal endothelial cells (HRECs) cultured under hyperglycemic conditions and retinas from streptozotocin-induced diabetic mice. The effects of hyperglycemia on DNA methyltransferase 1, Tet methylcytosine dioxygenase 2 (TET2), 5-methylcytosine, 5-hydroxymethylcytosine, and the binding of TET2 and SP1 to the ROBO4 promoter, as well as the expression of ROBO4, zonula occludens 1 (ZO-1) and occludin were examined. Short hairpin RNA was used to suppress the expression of TET2 or ROBO4 and the structural and functional changes in the retinal microvascular system were assessed. RESULTS In HRECs cultured under hyperglycemic conditions, the ROBO4 promoter methylation level decreased. Hyperglycemia-induced TET2 overexpression caused active demethylation of ROBO4 by oxidizing 5-methylcytosine to 5-hydroxymethylcytosine, which enhanced the binding of SP1 to ROBO4, increased the expression of ROBO4, and decreased the expression of ZO-1 and occludin, leading to the abnormalities in monolayer permeability, migratory ability and angiogenesis of HRECs. The above pathway was also demonstrated in the retinas of diabetic mice, which caused leakage from retinal capillaries and neovascularization. Inhibition of TET2 or ROBO4 expression significantly ameliorated the dysfunction of HRECs and retinal vascular abnormalities. CONCLUSIONS In diabetes, TET2 can regulate the expression of ROBO4 and its downstream proteins by mediating active demethylation of the ROBO4 promoter, which accelerates the development of retinal vasculopathy. These findings suggest that TET2-induced ROBO4 hypomethylation is a potential therapeutic target, and anti- TET2/ROBO4 therapy is anticipated to emerge as a novel strategy for early intervention and delayed progression of diabetic retinopathy.
Collapse
Affiliation(s)
- Liangliang Zhao
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Haitao Xu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Xin Liu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Yan Cheng
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jia'nan Xie
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
28
|
Ye L, Shu S, Jia J, Sun M, Xu S, Bao X, Bian H, Liu Y, Zhang M, Zhu X, Bai F, Xu Y. Absent in melanoma 2 mediates aging-related cognitive dysfunction by acting on complement-dependent microglial phagocytosis. Aging Cell 2023; 22:e13860. [PMID: 37177836 PMCID: PMC10352562 DOI: 10.1111/acel.13860] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 05/15/2023] Open
Abstract
Pattern separation (PS) dysfunction is a type of cognitive impairment that presents early during the aging process, and this deficit has been attributed to structural and functional alterations in the dentate gyrus (DG) of the hippocampus. Absent in melanoma 2 (AIM2) is an essential component of the inflammasome. However, whether AIM2 plays a role in aging-associated cognitive dysfunction remains unclear. Here, we found that PS function was impaired in aging mice and was accompanied by marked synaptic loss and increased expression of AIM2 in the DG. Subsequently, we used an AIM2 overexpression virus and mice with AIM2 deletion to investigate the role of AIM2 in regulating PS function and synaptic plasticity and the mechanisms involved. Our study revealed that AIM2 regulates microglial activation during synaptic pruning in the DG region via the complement pathway, leading to impaired synaptic plasticity and PS function in aging mice. These results suggest a critical role for AIM2 in regulating synaptic plasticity and PS function and provide a new direction for ameliorating aging-associated cognitive dysfunction.
Collapse
Affiliation(s)
- Lei Ye
- Department of Neurology, Nanjing Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Medical SchoolNanjing UniversityNanjingChina
| | - Shu Shu
- Department of Neurology, Nanjing Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Medical SchoolNanjing UniversityNanjingChina
| | - Junqiu Jia
- Department of Neurology, Nanjing Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Medical SchoolNanjing UniversityNanjingChina
| | - Min Sun
- Department of Neurology, Nanjing Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Medical SchoolNanjing UniversityNanjingChina
| | - Siyi Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Medical SchoolNanjing UniversityNanjingChina
| | - Xinyu Bao
- Department of Neurology, Nanjing Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Medical SchoolNanjing UniversityNanjingChina
| | - Huijie Bian
- Department of Neurology, Nanjing Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Medical SchoolNanjing UniversityNanjingChina
| | - Yi Liu
- Department of Neurology, Nanjing Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Medical SchoolNanjing UniversityNanjingChina
| | - Meijuan Zhang
- Department of Neurology, Nanjing Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Medical SchoolNanjing UniversityNanjingChina
| | - Xiaolei Zhu
- Department of Neurology, Nanjing Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Medical SchoolNanjing UniversityNanjingChina
| | - Feng Bai
- Department of Neurology, Nanjing Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Medical SchoolNanjing UniversityNanjingChina
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Medical SchoolNanjing UniversityNanjingChina
- Jiangsu Key Laboratory for Molecular MedicineMedical School of Nanjing UniversityNanjingChina
- Jiangsu Provincial Key Discipline of NeurologyNanjingChina
- Nanjing Neurology Medical CenterNanjingChina
- Nanjing Neuropsychiatry Clinic Medical CenterNanjingChina
| |
Collapse
|
29
|
Franklin ME, Bennett C, Arboite M, Alvarez-Ciara A, Corrales N, Verdelus J, Dietrich WD, Keane RW, de Rivero Vaccari JP, Prasad A. Activation of inflammasomes and their effects on neuroinflammation at the microelectrode-tissue interface in intracortical implants. Biomaterials 2023; 297:122102. [PMID: 37015177 PMCID: PMC10614166 DOI: 10.1016/j.biomaterials.2023.122102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/16/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023]
Abstract
Invasive neuroprosthetics rely on microelectrodes (MEs) to record or stimulate the activity of large neuron assemblies. However, MEs are subjected to tissue reactivity in the central nervous system (CNS) due to the foreign body response (FBR) that contribute to chronic neuroinflammation and ultimately result in ME failure. An endogenous, acute set of mechanisms responsible for the recognition and targeting of foreign objects, called the innate immune response, immediately follows the ME implant-induced trauma. Inflammasomes are multiprotein structures that play a critical role in the initiation of an innate immune response following CNS injuries. The activation of inflammasomes facilitates a range of innate immune response cascades and results in neuroinflammation and programmed cell death. Despite our current understanding of inflammasomes, their roles in the context of neural device implantation remain unknown. In this study, we implanted a non-functional Utah electrode array (UEA) into the rat somatosensory cortex and studied the inflammasome signaling and the corresponding downstream effects on inflammatory cytokine expression and the inflammasome-mediated cell death mechanism of pyroptosis. Our results not only demonstrate the continuous activation of inflammasomes and their contribution to neuroinflammation at the electrode-tissue interface but also reveal the therapeutic potential of targeting inflammasomes to attenuate the FBR in invasive neuroprosthetics.
Collapse
Affiliation(s)
- Melissa E Franklin
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA
| | - Cassie Bennett
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA
| | - Maelle Arboite
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA
| | | | - Natalie Corrales
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA
| | - Jennifer Verdelus
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA
| | - W Dalton Dietrich
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA; Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA; The Miami Project to Cure Paralysis, University of Miami, Miami, FL, USA
| | - Robert W Keane
- The Miami Project to Cure Paralysis, University of Miami, Miami, FL, USA; Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, USA; Center for Cognitive Neuroscience and Aging University of Miami Miller School of Medicine, Miami, FL, USA
| | - Juan Pablo de Rivero Vaccari
- The Miami Project to Cure Paralysis, University of Miami, Miami, FL, USA; Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, USA; Center for Cognitive Neuroscience and Aging University of Miami Miller School of Medicine, Miami, FL, USA
| | - Abhishek Prasad
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA; The Miami Project to Cure Paralysis, University of Miami, Miami, FL, USA.
| |
Collapse
|
30
|
Jung E, Kim YE, Jeon HS, Yoo M, Kim M, Kim YM, Koh SH, Choi YK. Chronic hypoxia of endothelial cells boosts HIF-1α-NLRP1 circuit in Alzheimer's disease. Free Radic Biol Med 2023:S0891-5849(23)00427-6. [PMID: 37245530 DOI: 10.1016/j.freeradbiomed.2023.05.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 05/30/2023]
Abstract
Cerebral microvasculature of patients with Alzheimer's disease (AD) exhibits reduced capillary diameter and impaired blood flow. Molecular mechanisms of ischemic vessels affecting AD progressions have not been well established yet. In the present study, we found that in vivo triple (PS1M146V, APPswe, tauP301L) transgenic AD mouse model (3x-Tg AD) brains and retinas showed hypoxic vessels expressing hypoxyprobe and hypoxia inducible factor-1α (HIF-1α). To mimic in vivo hypoxic vessels, we used in vitro oxygen-glucose deprivation (OGD)-treated endothelial cells. HIF-1α protein was increased through reactive oxygen species (ROS) producing NADPH oxidases (NOX) (i.e., Nox2, Nox4). OGD-induced HIF-1α upregulated Nox2 and Nox4, demonstrating crosstalk between HIF-1α and NOX (i.e., Nox2, Nox4). Interestingly, NLR family pyrin domain containing 1 (NLRP1) protein was promoted by OGD, and such effect was blocked by downregulation of Nox4 and HIF-1α. Knockdown of NLRP1 also diminished OGD-mediated protein levels of Nox2, Nox4, and HIF-1α in human brain microvascular endothelial cells. These results showed interplay among HIF-1α, Nox4 and NLRP1 in OGD-treated endothelial cells. Expression of NLRP3 was not detected well in hypoxic endothelial cells of 3x-Tg AD retinas or OGD-treated endothelial cells. Instead, hypoxic endothelial cells of 3x-Tg AD brains and retinas markedly expressed NLRP1, the adaptor molecule apoptosis-associated speck-like protein containing a CARD (ASC), caspase-1, and interleukin-1β (IL-1β). Taken together, our results suggest that AD brains and retinas can trigger chronic hypoxia especially in microvascular endothelial cells, consequently leading to NLRP1 inflammasome formation and upregulation of ASC-caspase-1-IL-1β cascades. In addition, NLRP1 can stimulate HIF-1α expression and form HIF-1α-NLRP1 circuit. These consequences might further destroy vascular system in AD.
Collapse
Affiliation(s)
- Eunyoung Jung
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Ye Eun Kim
- Department of Neurology, Hanyang University Guri Hospital, Guri, 11923, Republic of Korea
| | - Hui Su Jeon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Myeongjong Yoo
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Minsu Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Kangwon-do, 24341, Republic of Korea
| | - Seong-Ho Koh
- Department of Neurology, Hanyang University Guri Hospital, Guri, 11923, Republic of Korea.
| | - Yoon Kyung Choi
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
31
|
Roth S, Wernsdorf SR, Liesz A. The role of circulating cell-free DNA as an inflammatory mediator after stroke. Semin Immunopathol 2023:10.1007/s00281-023-00993-5. [PMID: 37212886 DOI: 10.1007/s00281-023-00993-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/03/2023] [Indexed: 05/23/2023]
Abstract
Stroke is the second leading cause of death worldwide and a leading cause of disability. Clinical and experimental studies highlighted the complex role of the immune system in the pathophysiology of stroke. Ischemic brain injury leads to the release of cell-free DNA, a damage-associated molecular pattern, which binds to pattern recognition receptors on immune cells such as toll-like receptors and cytosolic inflammasome sensors. The downstream signaling cascade then induces a rapid inflammatory response. In this review, we are highlighting the characteristics of cell-free DNA and how these can affect a local as well as a systemic response after stroke. For this purpose, we screened literature on clinical studies investigating cell-free DNA concentration and properties after brain ischemia. We report the current understanding for mechanisms of DNA uptake and sensing in the context of post-stroke inflammation. Moreover, we compare possible treatment options targeting cell-free DNA, DNA-sensing pathways, and the downstream mediators. Finally, we describe clinical implications of this inflammatory pathway for stroke patients, open questions, and potential future research directions.
Collapse
Affiliation(s)
- Stefan Roth
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany.
| | - Saskia R Wernsdorf
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Arthur Liesz
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
32
|
Green JP, El-Sharkawy LY, Roth S, Zhu J, Cao J, Leach AG, Liesz A, Freeman S, Brough D. Discovery of an inhibitor of DNA-driven inflammation that preferentially targets the AIM2 inflammasome. iScience 2023; 26:106758. [PMID: 37216118 PMCID: PMC10193008 DOI: 10.1016/j.isci.2023.106758] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/07/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Inflammation driven by DNA sensors is now understood to be important to disease pathogenesis. Here, we describe new inhibitors of DNA sensing, primarily of the inflammasome forming sensor AIM2. Biochemistry and molecular modeling has revealed 4-sulfonic calixarenes as potent inhibitors of AIM2 that likely work by binding competitively to the DNA-binding HIN domain. Although less potent, these AIM2 inhibitors also inhibit DNA sensors cGAS and TLR9 demonstrating a broad utility against DNA-driven inflammatory responses. The 4-sulfonic calixarenes inhibited AIM2-dependent post-stroke T cell death, highlighting a proof of concept that the 4-sulfonic calixarenes could be effective at combating post-stroke immunosuppression. By extension, we propose a broad utility against DNA-driven inflammation in disease. Finally, we reveal that the drug suramin, by virtue of its structural similarities, is an inhibitor of DNA-dependent inflammation and propose that suramin could be rapidly repurposed to meet an increasing clinical need.
Collapse
Affiliation(s)
- Jack P. Green
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK
- The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9PT, UK
| | - Lina Y. El-Sharkawy
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
| | - Stefan Roth
- Institute for Stroke and Dementia Research (ISD), University Hospital LMU Munich, 81377 Munich, Germany
| | - Jie Zhu
- Institute for Stroke and Dementia Research (ISD), University Hospital LMU Munich, 81377 Munich, Germany
| | - Jiayu Cao
- Institute for Stroke and Dementia Research (ISD), University Hospital LMU Munich, 81377 Munich, Germany
| | - Andrew G. Leach
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
| | - Arthur Liesz
- Institute for Stroke and Dementia Research (ISD), University Hospital LMU Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Sally Freeman
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
| | - David Brough
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK
- The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
33
|
Jia QY, Chen HL, Qi Z, Zhang XLN, Zheng LY, Liu TT, Yuan Y, Yang L, Wu CY. Network pharmacology to explore the mechanism of scutellarin in the treatment of brain ischaemia and experimental verification of JAK2/STAT3 signalling pathway. Sci Rep 2023; 13:7557. [PMID: 37160937 PMCID: PMC10169761 DOI: 10.1038/s41598-023-33156-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 04/07/2023] [Indexed: 05/11/2023] Open
Abstract
Scutellarin is used to treat brain ischaemia. However, its underlying mechanism of action remains unclear. This study aimed to elucidate the potential mechanism of action of scutellarin in brain ischaemia through network pharmacology and experimental verification. The JAK2/STAT3 signalling pathway was identified and experimentally verified. Expression of JAK2/STAT3 signalling related proteins in TNC-1 astrocytes with BV-2 microglia-conditioned medium (CM), CM + lipopolysaccharide (LPS) (CM + L), and CM pretreated with scutellarin + LPS (CM + SL) was analysed by Western Blot and immunofluorescence staining. Expression levels of JAK2, p-JAK2, STAT3, and p-STAT3 were evaluated in astrocytes pre-treated with AG490. Middle cerebral artery occlusion (MCAO) in rats was performed in different experimental groups to detect expression of the above biomarkers. Network pharmacology suggested that the JAK2/STAT3 signalling pathway is one of the mechanisms by which scutellarin mitigates cerebral ischaemic damage. In TNC-1 astrocytes, p-JAK2 and p-STAT3 expression were significantly up-regulated in the CM + L group. Scutellarin promoted the up-regulation of various markers and AG490 neutralised the effect of scutellarin. In vivo, up-regulation of p-JAK2 and p-STAT3 after ischaemia is known. These results are consistent with previous reports. Scutellarin further enhanced this upregulation at 1, 3, and 7 d after MCAO. Scutellarin exerts its therapeutic effects on cerebral ischaemia by activating the astrocyte JAK2/STAT3 signalling, which provides a firm experimental basis for its clinical application.
Collapse
Affiliation(s)
- Qiu-Ye Jia
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, People's Republic of China
| | - Hao-Lun Chen
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, People's Republic of China
| | - Zhi Qi
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, People's Republic of China
| | - Xiao-Li-Na Zhang
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, People's Republic of China
| | - Li-Yang Zheng
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, People's Republic of China
| | - Teng-Teng Liu
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, People's Republic of China
| | - Yun Yuan
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, People's Republic of China
| | - Li Yang
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, People's Republic of China.
| | - Chun-Yun Wu
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, People's Republic of China.
| |
Collapse
|
34
|
Deng L, Zhang J, Chen S, Wu Y, Fan X, Zuo T, Hu Q, Jiang L, Yang S, Dong Z. miR-671-5p Upregulation Attenuates Blood-Brain Barrier Disruption in the Ischemia Stroke Model Via the NF-кB/MMP-9 Signaling Pathway. Mol Neurobiol 2023; 60:3824-3838. [PMID: 36949221 DOI: 10.1007/s12035-023-03318-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/14/2023] [Indexed: 03/24/2023]
Abstract
Blood-brain barrier (BBB) disruption can induce further hemorrhagic transformation in ischemic stroke (IS). miR-671-5p, a micro-RNA, is abundant in the cortex of mammalian brains. Herein, we investigated the roles and potential mechanisms for the effects of miR-671-5p on BBB permeability in IS. Results showed that miR-671-5p levels were significantly downregulated in the cerebral cortex of middle cerebral artery occlusion/reperfusion (MCAO/R) C57/BL6 mice in vivo. miR-671-5p agomir administration via right intracerebroventricular injection significantly reduced infarct volume, improved neurological deficits, the axon of neurons and nerve fiber, attenuated cell injury and apoptosis, as well as reduced BBB permeability in MCAO/R mice. Treatment with miR-671-5p agomir alleviated tight junction proteins degradation, including claudin, occludin, and ZO-1 in MCAO/R mice, and these effects were reversed following NF-κB overexpression. Bend.3 brain endothelial cells were subjected to oxygen and glucose deprivation/reoxygenation (OGD/R) treatment in vivo, and then miR-671-5p agomir was transfected into the cells. This resulted in reduction of cytotoxicity, improved cell viability, trans-endothelial electrical resistance, reduced fluorescein sodium permeability, and inhibited tight junction degradation in Bend.3 OGD/R cells. However, these effects were reversed following NF-κB overexpression. These results demonstrated that upregulation of miR-671-5p in IS models in vivo and in vitro alleviated BBB permeability by targeting NF-κB/MMP-9. In summary, miR-671-5p is a potential therapeutic target for protecting BBB permeability in IS to minimize cerebral hemorrhage transformation.
Collapse
Affiliation(s)
- Ling Deng
- College of Pharmacology, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Jiyu Zhang
- Pain Department, Traditional Chinese Medicine Hospital of Jiulongpo District in Chongqing, Chongqing, 400050, China
| | - Sha Chen
- College of Pharmacology, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Yu Wu
- College of Pharmacology, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaomei Fan
- College of Pharmacology, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Tianrui Zuo
- College of Pharmacology, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Qingwen Hu
- College of Pharmacology, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Lu Jiang
- College of Pharmacology, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Shaonan Yang
- College of Pharmacology, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Zhi Dong
- College of Pharmacology, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
35
|
Exploring the Neuroprotective Mechanism of Curcumin Inhibition of Intestinal Inflammation against Parkinson's Disease Based on the Gut-Brain Axis. Pharmaceuticals (Basel) 2022; 16:ph16010039. [PMID: 36678536 PMCID: PMC9866255 DOI: 10.3390/ph16010039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022] Open
Abstract
Parkinson's disease (PD) is a chronic progressive neurodegenerative disease commonly seen in aged people, in which gastrointestinal dysfunction is the most common nonmotor symptom and the activation of the gut-brain axis by intestinal inflammation may contribute to the pathogenesis of PD. In a previous study, curcumin was considered neuroprotective in PD, and this neuroprotective mechanism may act by inhibiting intestinal inflammation. Therefore, the aim of this study was to evaluate the effect of curcumin on motor dysfunction and the loss of dopaminergic neurons in a PD mouse model, induced by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) using open field test and pole test behavioral assessments and the immunofluorescence and Western blot methods. Moreover, the effects of curcumin on gastrointestinal dysfunction, gastric barrier function, pro-inflammatory cytokines, and the SIRT1/NRF2 pathway in intestinal tissues in a PD mouse model were assessed using fecal parameters and intestinal dynamics, immunofluorescence, ELISA, and Western blot. A motor impairment study of an MPTP-induced mouse group prior to treatment with curcumin had a lower total movement distance and a slow average speed, while there was no statistical difference in the curcumin group. After treatment with curcumin, the total movement distance and average speed improved, the tyrosine hydroxylase (TH) rate in the substantia nigra pars compacta (SNpc) and striatum were reduced, the pyroptosis of AIM2 and caspase-1 activations were inhibited, and intestinal inflammatory factors and intestinal inflammation were reduced. Curcumin improved gastrointestinal disorders and gastrointestinal barrier function in the MPTP-induced mice and reversed MPTP-induced motor dysfunction and dopaminergic neuron loss in mice. The above effects may be partly dependent on curcumin activation of the SIRT1/NRF2 pathway in the colon. This study provides a potential opportunity to develop new preventive measures and novel therapeutic approaches that could target the gut-brain axis in the context of PD and provide a new intervention in the treatment of Parkinson's disease.
Collapse
|
36
|
Rui WJ, Li S, Yang L, Liu Y, Fan Y, Hu YC, Ma CM, Wang BW, Shi JP. Microglial AIM2 alleviates antiviral-related neuro-inflammation in mouse models of Parkinson's disease. Glia 2022; 70:2409-2425. [PMID: 35959803 DOI: 10.1002/glia.24260] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 11/05/2022]
Abstract
Inflammasome involvement in Parkinson's disease (PD) has been intensively investigated. Absent in melanoma 2 (AIM2) is an essential inflammasome protein known to contribute to the development of several neurological diseases. However, a specific role for AIM2 in PD has not been reported. In this study, we investigated the effect of AIM2 in the N-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced PD model by use of various knockout and bone marrow chimeric mice. The mechanism of action for AIM2 in PD was assessed by RNA-sequencing and in vitro primary microglial transfection. Results were validated in the A30P transgenic mouse model of PD. In the MPTP mouse model, AIM2 activation was found to negatively regulate neuro-inflammation independent of the inflammasome. Microglial AIM2 deficiency exacerbated behavioral and pathological features of both MPTP-induced and transgenic PD mouse models. Mechanistically, AIM2 reduced cyclic GMP-AMP synthase (cGAS)-mediated antiviral-related inflammation by inhibition of AKT-interferon regulatory factor 3 (IRF3) phosphorylation. These results demonstrate microglial AIM2 to inhibit the antiviral-related neuro-inflammation associated with PD and provide for a foundation upon which to identify new therapeutic targets for treatment of the disease.
Collapse
Affiliation(s)
- Wen-Juan Rui
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Sheng Li
- Department of Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lin Yang
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ying Liu
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yi Fan
- Department of Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ying-Chao Hu
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chun-Mei Ma
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Bing-Wei Wang
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jing-Ping Shi
- Department of Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
37
|
Li W, Yuan S, Sui X, Bian H, Wei M, Chen Z, Shao H, Shi W, Shi S, Ji X. Higher serum occludin after successful reperfusion Is associated with early neurological deterioration. CNS Neurosci Ther 2022; 28:999-1007. [PMID: 35338575 PMCID: PMC9160448 DOI: 10.1111/cns.13830] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 11/26/2022] Open
Abstract
Aims Early neurological deterioration (END) is an important factor that affects prognosis in patients with acute ischemic stroke. We explored the relationship between serum occludin levels after successful reperfusion and END in patients treated with endovascular thrombectomy (EVT). Methods We prospectively enrolled 120 stroke patients who underwent EVT with successful reperfusion. Enzyme‐linked immunosorbent assay was used to detect the serum occludin levels on admission and within 1 h after successful reperfusion. Receiver operating characteristic curves (ROC) and regression analysis were used to compare the relationship between serum occludin and END after thrombectomy. Results Among the 120 patients, 36 (30%) experienced END. The END group had higher serum occludin levels than the non‐END group after successful reperfusion [4.31 (3.71–5.38) vs 6.32 (5.88–6.99), p < 0.001]. The ROC curve showed that postoperative serum occludin levels had a significant prediction value for END (AUC: 0.86, p < 0.001). Regression analysis showed that serum occludin was an independent risk factor for END in EVT patients (adjusted odds ratio: 4.46, 95% confidence interval: 1.92–10.32; p < 0.001). Conclusions The higher serum occludin levels were strongly related to END after successful reperfusion. Serum occludin may be an independent risk factor for END in EVT patients.
Collapse
Affiliation(s)
- Weili Li
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.,Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Shuhua Yuan
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Xueqin Sui
- Department of General Medicine, Affiliated Hospital of Weifang Medical University, Shandong Province, China
| | - Hetao Bian
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Ming Wei
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China
| | - Zhiying Chen
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Haitao Shao
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Wenjuan Shi
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Shuhai Shi
- Department of Critical Care Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.,Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China.,Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| |
Collapse
|
38
|
Jiang W, Li J, Cai Y, Liu W, Chen M, Xu X, Deng M, Sun J, Zhou L, Huang Y, Wu S, Cheng X. The Novel lncRNA ENST00000530525 Affects ANO1, Contributing to Blood-Brain Barrier Injury in Cultured hCMEC/D3 Cells Under OGD/R Conditions. Front Genet 2022; 13:873230. [PMID: 35754821 PMCID: PMC9213740 DOI: 10.3389/fgene.2022.873230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Ischemic stroke (IS) is a major neurological disease with high fatality and residual disability burdens. Long noncoding RNAs (lncRNAs) have been found to play an important role in IS. However, the roles and significance of most lncRNAs in IS are still unknown. This study was performed to identify differentially expressed (DE) lncRNAs using a lncRNA microarray in whole blood samples of patients suffering from acute cerebral ischemia. Bioinformatics analyses, including GO, KEGG pathway enrichment analysis, and proximity to putative stroke risk location analysis were performed. The novel lncRNA, ENST00000530525, significantly decreased after IS. Furthermore, we evaluated lncRNA ENST00000530525 expression in cultured hCMEC/D3 cells under oxygen-glucose deprivation/reoxygenation (OGD/R) conditions using fluorescent in situ hybridization (FISH) and quantitative real-time polymerase chain reaction (RT-qPCR) analysis. To investigate the function of lncRNA ENST00000530525, its over-expression (OE) and negative control (NC) plasmids were transfected into hCMEC/D3 cells, and cell viability was detected by a cell counting kit-8 (CCK-8) assay after OGD/R. LncRNA ENST00000530525 and ANO1 expression were investigated using RT-qPCR and immunofluorescence. For blood-brain barrier (BBB) permeability, FITC-dextran transendothelial permeability assay and tight junction (TJ) protein immunofluorescence assays were performed. There were 3352 DE lncRNAs in the blood samples of acute IS patients. The validation results were consistent with the gene chip data. The GO and KEGG results showed that these lncRNAs were mainly related to oxygen and glucose metabolism, leukocyte transendothelial migration, mitophagy and cellular senescence. Among these, lncRNA ENST00000530525 was the most highly downregulated lncRNA and it was mapped within the IS-associated gene anoctamin-1 (ANO1). We further found that lncRNA ENST00000530525 was downregulated in hCMEC/D3 cells under 4 h OGD and 20 h reoxygenation (OGD4/R20) conditions. Upregulating lncRNA ENST00000530525 by plasmid transfection decreased cell viability while increasing ANO1 expression and it contributed to BBB injury in hCMEC/D3 cells after OGD4/R20. The lncRNA ENST00000530525 might play deleterious roles in post-stroke pathogenesis. These results show that some DE lncRNAs in humans participate through characteristic roles in post-stroke pathogenesis; thus, the roles and significance of some novel lncRNAs in IS warrant further study.
Collapse
Affiliation(s)
- Wen Jiang
- Department of Second Institute of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Jie Li
- Department of Anesthesiology, Guangdong Provincial Hospital of Traditional Chinese Medicine/The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuefang Cai
- Department of Second Institute of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Wenchen Liu
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine/The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mei Chen
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine/The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoying Xu
- Department of Anatomy, Sun Yat-Sen School of Medicine, Sun Yat-Sen University, Shenzhen, China
| | - Minzhen Deng
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine/The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingbo Sun
- Department of Second Institute of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China.,Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine/The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, China
| | - Lihua Zhou
- Department of Anatomy, Sun Yat-Sen School of Medicine, Sun Yat-Sen University, Shenzhen, China
| | - Yan Huang
- Department of Second Institute of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China.,Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine/The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, China
| | - Shuang Wu
- Department of Second Institute of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Xiao Cheng
- Department of Second Institute of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China.,Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine/The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, China
| |
Collapse
|
39
|
Wang P, Ren Q, Shi M, Liu Y, Bai H, Chang YZ. Overexpression of Mitochondrial Ferritin Enhances Blood–Brain Barrier Integrity Following Ischemic Stroke in Mice by Maintaining Iron Homeostasis in Endothelial Cells. Antioxidants (Basel) 2022; 11:antiox11071257. [PMID: 35883748 PMCID: PMC9312053 DOI: 10.3390/antiox11071257] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 12/04/2022] Open
Abstract
Blood–brain barrier (BBB) breakdown, a characteristic feature of ischemic stroke, contributes to poor patient outcomes. Brain microvascular endothelial cells (BMVECs) are a key component of the BBB and dysfunction or death of these cells following cerebral ischemia reperfusion (I/R) injury can disrupt the BBB, leading to leukocyte infiltration, brain edema and intracerebral hemorrhage. We previously demonstrated that mitochondrial ferritin (FtMt) can alleviate I/R-induced neuronal ferroptosis by inhibiting inflammation-regulated iron deposition. However, whether FtMt is involved in BBB disruption during cerebral I/R is still unknown. In the present study, we found that FtMt expression in BMVECs is upregulated after I/R and overexpression of FtMt attenuates I/R-induced BBB disruption. Mechanistically, we found that FtMt prevents tight junction loss and apoptosis by inhibiting iron dysregulation and reactive oxygen species (ROS) accumulation in I/R-treated BMVECs. Chelating excess iron with deferoxamine alleviates apoptosis in the brain endothelial cell line bEnd.3 under oxygen glucose deprivation followed by reoxygenation (OGD/R) insult. In summary, our data identify a previously unexplored effect for FtMt in the BBB and provide evidence that iron-mediated oxidative stress in BMVECs is an early cause of BMVECs damage and BBB breakdown in ischemic stroke.
Collapse
Affiliation(s)
- Peina Wang
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China; (P.W.); (Q.R.); (M.S.); (Y.L.); (H.B.)
- Department of Histology and Embryology, College of Basic Medical Sciences, Hebei Medical University, Shijiazhuang 050017, China
| | - Qianqian Ren
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China; (P.W.); (Q.R.); (M.S.); (Y.L.); (H.B.)
| | - Mengtong Shi
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China; (P.W.); (Q.R.); (M.S.); (Y.L.); (H.B.)
| | - Yuanyuan Liu
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China; (P.W.); (Q.R.); (M.S.); (Y.L.); (H.B.)
| | - Huiyuan Bai
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China; (P.W.); (Q.R.); (M.S.); (Y.L.); (H.B.)
| | - Yan-Zhong Chang
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China; (P.W.); (Q.R.); (M.S.); (Y.L.); (H.B.)
- Correspondence: ; Tel./Fax: +86-311-80787539
| |
Collapse
|
40
|
Wang X, Sun H, Cui L, Wang X, Ren C, Tong Z, Ji X. Acute high-altitude hypoxia exposure causes neurological deficits via formaldehyde accumulation. CNS Neurosci Ther 2022; 28:1183-1194. [PMID: 35582960 PMCID: PMC9253739 DOI: 10.1111/cns.13849] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 04/03/2022] [Accepted: 04/06/2022] [Indexed: 11/03/2022] Open
Abstract
INTRODUCTION Acute high-altitude hypoxia exposure causes multiple adverse neurological consequences. However, the exact mechanisms are still unclear, and there is no targeted treatment with few side effects. Excessive cerebral formaldehyde (FA) impairs numerous functions, and can be eliminated by nano-packed coenzyme Q10 (CoQ10). AIMS In this study, we aimed to investigate whether cerebral FA was accumulated after hypobaric hypoxia exposure, and further explored the preventative effect of CoQ10 through FA elimination. RESULTS Accumulated cerebral FA was found in C57BL/6 mice after acute high-altitude hypoxia exposure, which resulted in FA metabolic disturbance with the elevation of semicarbazide-sensitive amine oxidase, and declination of aldehyde dehydrogenase-2. Excessive FA was also found to induce neuronal ferroptosis in vivo. Excitingly, administration with CoQ10 for 3 days before acute hypobaric hypoxia reduced cerebral FA accumulation, alleviated subsequent neuronal ferroptosis, and preserved neurological functions. CONCLUSION Cerebral FA accumulation mediates neurological deficits under acute hypobaric hypoxia, and CoQ10 supplementation may be a promising preventative strategy for visitors and sojourners at plateau.
Collapse
Affiliation(s)
- Xiaoyin Wang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Capital Medical University, Beijing, China.,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Haochen Sun
- Department of Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Lili Cui
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Xian Wang
- Capital Medical University, Beijing, China.,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Changhong Ren
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhiqian Tong
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Xunming Ji
- Capital Medical University, Beijing, China.,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China.,Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
41
|
Bian HJ, Xu SY, Li HQ, Jia JQ, Ye L, Shu S, Xia SN, Gu Y, Zhu X, Xu Y, Cao X. JLX001 ameliorates cerebral ischemia injury by modulating microglial polarization and compromising NLRP3 inflammasome activation via the NF-κB signaling pathway. Int Immunopharmacol 2021; 101:108325. [PMID: 34740080 DOI: 10.1016/j.intimp.2021.108325] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/15/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023]
Abstract
Ischemic stroke is a devastating disease with high morbidity and mortality rates, and the proinflammatory microglia-mediated inflammatory response directly affects stroke outcome. Previous studies have reported that JLX001, a novel compound with a structure similar to that of cyclovirobuxine D (CVB-D), exerts antiapoptotic, anti-inflammatory and antioxidative effects on ischemia-induced brain injury. However, the role of JLX001 in microglial polarization and nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome regulation after ischemic stroke has not been fully investigated. In this study, we used the middle cerebral artery occlusion (MCAO) method to establish a focal cerebral ischemia model and found that JLX001 attenuated the brain infarct size and improved cerebral damage. Moreover, the expression levels of proinflammatory cytokines (interleukin [IL]-1β and tumor necrosis factor [TNF]-α) were significantly reduced while those of the anti-inflammatory cytokine IL-10 were increased in the JLX001-treated group. Immunofluorescence staining and flow cytometry revealed an increased number of anti-inflammatory phenotypic microglia and a reduced number of proinflammatory phenotypic microglia in JLX001-treated MCAO mice. Western blotting analysis showed that JLX001 inhibited the expression of NLRP3 and proteins related to the NLRP3 inflammasome axis in vivo. Furthermore, JLX001 reduced the number of NLRP3/Iba1 cells in ischemic penumbra tissues. Finally, mechanistic analysis revealed that JLX001 significantly inhibited the expression of proteins related to the NF-κB signaling pathway. Additionally, pyrrolidine dithiocarbamate (PDTC), an NF-κB inhibitor, ameliorated cerebral ischemia-reperfusion injury by suppressing microglial polarization towards the proinflammatory phenotype and NLRP3 activation in vivo, further suggesting that these protective effects of JLX001 were mediated by inhibition of the NF-κB signaling pathway. These results suggest that JLX001 is a promising therapeutic approach for ischemic stroke.
Collapse
Affiliation(s)
- Hui-Jie Bian
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Si-Yi Xu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing 210008, China
| | - Hui-Qin Li
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing 210008, China
| | - Jun-Qiu Jia
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing 210008, China
| | - Lei Ye
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing 210008, China
| | - Shu Shu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing 210008, China
| | - Sheng-Nan Xia
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing 210008, China
| | - Yue Gu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing 210008, China
| | - Xiong Zhu
- Jiangsu Jinglixin Pharmaceutical Technology Company Limited, Nanjing 211100, China
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China.
| | - Xiang Cao
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China.
| |
Collapse
|