1
|
Wang D, Geng Y, Gu F, Zhuang Y, Lv H, He X, Yang H, Lu J. Salvianolic acid B exerts cerebroprotective effects after traumatic brain injury via Nrf2-dependent antioxidant and anti-inflammatory cascades. Exp Neurol 2025; 391:115305. [PMID: 40383364 DOI: 10.1016/j.expneurol.2025.115305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 04/21/2025] [Accepted: 05/11/2025] [Indexed: 05/20/2025]
Abstract
BACKGROUND Oxidative stress and inflammatory responses play crucial roles in the development of secondary brain injury following traumatic brain injury (TBI). Thus, this study aimed to investigate the potential cerebroprotective effects of salvianolic acid B (SalB) in mitigating oxidative stress and inflammatory responses post-TBI through the activation of Nrf2. PURPOSE This study aims to investigate the potential cerebroprotective effects of SalB in ameliorating oxidative stress and inflammatory responses following TBI by activating Nrf2, thereby laying a foundation for TBI treatment. STUDY DESIGN Controlled cortical impact and hydrogen peroxide were employed to replicate TBI in animal and cellular models, respectively.Behavioral studies predict neural function, Western Blot (WB) predicts oxidative stress, immunofluorescence and ELISA predict inflammatory response.The Nrf2 inhibitor ML385 was employed to investigate the involvement of the Nrf2 pathway in mediating the protective effects of SalB. METHODS SalB was delivered via intraperitoneal injection 1 h after TBI induction, with its neuroprotective efficacy evaluated across a range of concentrations. In the cellular assay, SalB was used to incubate cells simultaneously with H2O2. WB analysis was employed to quantify protein levels, while malondialdehyde, glutathione, superoxide intensity, and reactive oxygen radical probes were utilized to evaluate oxidative stress. Immunofluorescence and ELISA techniques were used to characterize microglia phenotype and inflammatory response. Behavioral assays were also conducted to evaluate neurological function. The Nrf2 inhibitor ML385 was employed to investigate the involvement of the Nrf2 pathway in mediating the protective effects of SalB. RESULTS Animal and cellular experiments indicate that SalB can mitigate oxidative stress through the Nrf2/Peroxiredoxin 2 pathway, and reduce inflammatory response via the Nrf2/Toll-like receptor 4/Myeloid differentiation primary response protein 88 pathway in a dose-dependent manner. Consequently, SalB demonstrates efficacy in enhancing neurological function following TBI. Conversely, the inhibitory effects of ML385 counteract the antioxidant and anti-inflammatory properties of SalB. CONCLUSIONS SalB exerts its beneficial effects post-TBI through Nrf2-dependent antioxidants and as anti-inflammatory responses.
Collapse
Affiliation(s)
- Dacheng Wang
- Department of intensive Care Unit, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yanxia Geng
- Department of intensive Care Unit, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Fengming Gu
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Drum Tower Clinical College, Nanjing University of Chinese Medicine, Nanjing, China; Department of Neurology, The Affiliated Huaian Hospital of Xuzhou Medical University and The Second People's Hospital of Huaian, No.62, Huaihai Road (S.), Huaian, 223002, China
| | - Yan Zhuang
- Department of intensive Care Unit, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Hai Lv
- Department of intensive Care Unit, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xue He
- Department of Anesthesia Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No.1, Huanghe West Road, Huaiyin District, Huaian 223300, Jiangsu, China.
| | - Haicheng Yang
- Department of Emergency,The Affiliated Huaian Hospital of Xuzhou Medical University and The Second People's Hospital of Huaian, No.62, Huaihai Road (S.), Huaian 223002, China.
| | - Jun Lu
- Department of intensive Care Unit, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
2
|
Choi J, Jang E, Jeong H, Hwang J, Cho HH, Kim BC, Jang G, Jeong HS, Jang S. Novel miRNAs, miR-937-3p, miR-4536-3p, and miR-4650-5p, can Modulate Neuronal Differentiation via the Wnt/MAPK Pathway in SH-SY5Y Cells. Mol Neurobiol 2025:10.1007/s12035-025-05002-4. [PMID: 40316877 DOI: 10.1007/s12035-025-05002-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 04/24/2025] [Indexed: 05/04/2025]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate various biological processes, including cell differentiation. Despite their potential, their role in promoting neuronal differentiation by targeting neuronal genes and modulating signaling pathways is poorly understood. In this study, we aimed to elucidate the functions of miR-937-3p-, miR-4536-3p-, and miR-4650-5p-inhibitors in the neuronal differentiation of SH-SY5Y cells. We also aimed to determine the underlying mechanisms via qPCR, luciferase assay, immunocytochemistry, and western blotting analysis. Our findings confirmed that miRNAs participated in neuronal differentiation and regulated the Wnt/MAPK signaling pathway. Specifically, we identified Netrin1 (NTN1), Drebrin1 (DBN1), and Netrin-G1 (NTNG1) as target genes of miR-937-3p, miR-4536-3p, and miR-4650-5p, respectively. The treatment with the miRNA inhibitors increased the expression levels of neuronal markers such as TUBB3, NEFH, NEFM, NEFL, and MAP2. It also enhanced the protein expression levels of Wnt and MAPK signaling. Therefore, the inhibitors of miR-937-3p, miR-4536-3p, and miR-4650-5p could promote neuronal differentiation by targeting neuronal genes and activating the Wnt/MAPK signaling pathway.
Collapse
Affiliation(s)
- Jiyun Choi
- Department of Physiology, Chonnam National University Medical School, Hwasun-Gun, Jeollanamdo, 58128, Republic of Korea
| | - Eunjae Jang
- Department of Physiology, Chonnam National University Medical School, Hwasun-Gun, Jeollanamdo, 58128, Republic of Korea
- Jeonnam Bioindustry Foundation Biopharmaceutical Research Center, Hwasun-Gun, Jeollanamdo, 58141, Republic of Korea
| | - Haewon Jeong
- Department of Physiology, Chonnam National University Medical School, Hwasun-Gun, Jeollanamdo, 58128, Republic of Korea
| | - Jinsu Hwang
- Department of Physiology, Chonnam National University Medical School, Hwasun-Gun, Jeollanamdo, 58128, Republic of Korea
| | - Hyong-Ho Cho
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Byeong C Kim
- Department of Neurology, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Geupil Jang
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Han-Seong Jeong
- Department of Physiology, Chonnam National University Medical School, Hwasun-Gun, Jeollanamdo, 58128, Republic of Korea.
| | - Sujeong Jang
- Department of Physiology, Chonnam National University Medical School, Hwasun-Gun, Jeollanamdo, 58128, Republic of Korea.
| |
Collapse
|
3
|
Wang J, Huang Z, Li Y, Li Q, Li X, Chen L. Electroacupuncture improves cognitive function in high-fat diet/streptozocin-induced type 2 diabetic mice by inhibiting autophagy-related ferroptosis. Exp Anim 2025; 74:197-208. [PMID: 39647901 PMCID: PMC12044350 DOI: 10.1538/expanim.24-0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/27/2024] [Indexed: 12/10/2024] Open
Abstract
At present, there lacks a definitive pharmaceutical intervention or therapeutic approach for diabetes-associated cognitive impairment. Herein, we delved into the impact of electroacupuncture on cognitive function in high-fat diet/streptozocin (HFD/STZ)-induced type 2 diabetes mellitus (T2DM) mice and underlying mechanisms. Hippocampal insulin resistance was determined by western blot analysis. Cognitive function was evaluated by Morris water maze test. The morphology of the hippocampal neurons was observed through hematoxylin & eosin staining and Nissl staining. Synaptic plasticity was assessed by western blot analysis. Immunofluorescence, immunohistochemistry, western blot and real-time PCR were employed to detect the levels of ferroptosis markers, autophagy markers, and netrin-1. Electroacupuncture treatment exhibited ameliorative outcomes on hippocampal insulin resistance, spatial learning, memory function, neuronal damage, and synaptic plasticity in T2DM mice. Furthermore, it effectively suppressed neuronal ferroptosis in the hippocampus by upregulating GPX4 and SLC7A11 expression, and reducing 4-HNE expression. Meanwhile, electroacupuncture intervention increased the levels of Beclin1 and LC3II/LC3I, as well as decreased the levels of p62 and phosphorylated-mTOR in the hippocampus of T2DM mice, suggesting that electroacupuncture facilitated autophagy activation by inhibiting mTOR activity. 3-MA-mediated autophagy inhibition undermined the beneficial effects of electroacupuncture on neuronal ferroptosis and cognitive deficits in T2DM mice. Additionally, the beneficial effects of electroacupuncture on autophagy and ferroptosis was achieved by upregulation of netrin-1 in the hippocampus. Our study revealed that electroacupuncture therapy inhibited neuronal ferroptosis via the activation of autophagy, thereby ameliorating cognitive deficits in T2DM mice.
Collapse
Affiliation(s)
- Jingzhi Wang
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, No. 16 Huangjiahu West Road, Wuhan, Hubei 430065, P.R. China
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, No. 16, Huangjiahu West Road, Wuhan, Hubei 430065, P.R. China
- Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Hubei University of Chinese Medicine, No. 16, Huangjiahu West Road, Wuhan, Hubei 430065, P.R. China
- Affiliated Hospital of Hubei University of Chinese Medicine (Hubei Provincial Hospital of Traditional Chinese Medicine), No. 4, Huayuanshan, Wuhan, Hubei 430060, P.R. China
| | - Zhongyu Huang
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, No. 16 Huangjiahu West Road, Wuhan, Hubei 430065, P.R. China
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, No. 16, Huangjiahu West Road, Wuhan, Hubei 430065, P.R. China
- Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Hubei University of Chinese Medicine, No. 16, Huangjiahu West Road, Wuhan, Hubei 430065, P.R. China
- Affiliated Hospital of Hubei University of Chinese Medicine (Hubei Provincial Hospital of Traditional Chinese Medicine), No. 4, Huayuanshan, Wuhan, Hubei 430060, P.R. China
| | - Yiwen Li
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, No. 16 Huangjiahu West Road, Wuhan, Hubei 430065, P.R. China
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, No. 16, Huangjiahu West Road, Wuhan, Hubei 430065, P.R. China
- Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Hubei University of Chinese Medicine, No. 16, Huangjiahu West Road, Wuhan, Hubei 430065, P.R. China
- Affiliated Hospital of Hubei University of Chinese Medicine (Hubei Provincial Hospital of Traditional Chinese Medicine), No. 4, Huayuanshan, Wuhan, Hubei 430060, P.R. China
| | - Qian Li
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, No. 16 Huangjiahu West Road, Wuhan, Hubei 430065, P.R. China
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, No. 16, Huangjiahu West Road, Wuhan, Hubei 430065, P.R. China
- Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Hubei University of Chinese Medicine, No. 16, Huangjiahu West Road, Wuhan, Hubei 430065, P.R. China
- Affiliated Hospital of Hubei University of Chinese Medicine (Hubei Provincial Hospital of Traditional Chinese Medicine), No. 4, Huayuanshan, Wuhan, Hubei 430060, P.R. China
| | - Xi Li
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, No. 16 Huangjiahu West Road, Wuhan, Hubei 430065, P.R. China
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, No. 16, Huangjiahu West Road, Wuhan, Hubei 430065, P.R. China
- Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Hubei University of Chinese Medicine, No. 16, Huangjiahu West Road, Wuhan, Hubei 430065, P.R. China
- Affiliated Hospital of Hubei University of Chinese Medicine (Hubei Provincial Hospital of Traditional Chinese Medicine), No. 4, Huayuanshan, Wuhan, Hubei 430060, P.R. China
| | - Li Chen
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, No. 16 Huangjiahu West Road, Wuhan, Hubei 430065, P.R. China
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, No. 16, Huangjiahu West Road, Wuhan, Hubei 430065, P.R. China
- Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Hubei University of Chinese Medicine, No. 16, Huangjiahu West Road, Wuhan, Hubei 430065, P.R. China
- Affiliated Hospital of Hubei University of Chinese Medicine (Hubei Provincial Hospital of Traditional Chinese Medicine), No. 4, Huayuanshan, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
4
|
Zhu K, Wang H, Ye K, Chen G, Zhang Z. Netrin-1 signaling pathway mechanisms in neurodegenerative diseases. Neural Regen Res 2025; 20:960-972. [PMID: 38989931 PMCID: PMC11438344 DOI: 10.4103/nrr.nrr-d-23-01573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/16/2024] [Indexed: 07/12/2024] Open
Abstract
Netrin-1 and its receptors play crucial roles in inducing axonal growth and neuronal migration during neuronal development. Their profound impacts then extend into adulthood to encompass the maintenance of neuronal survival and synaptic function. Increasing amounts of evidence highlight several key points: (1) Diminished Netrin-1 levels exacerbate pathological progression in animal models of Alzheimer's disease and Parkinson's disease, and potentially, similar alterations occur in humans. (2) Genetic mutations of Netrin-1 receptors increase an individuals' susceptibility to neurodegenerative disorders. (3) Therapeutic approaches targeting Netrin-1 and its receptors offer the benefits of enhancing memory and motor function. (4) Netrin-1 and its receptors show genetic and epigenetic alterations in a variety of cancers. These findings provide compelling evidence that Netrin-1 and its receptors are crucial targets in neurodegenerative diseases. Through a comprehensive review of Netrin-1 signaling pathways, our objective is to uncover potential therapeutic avenues for neurodegenerative disorders.
Collapse
Affiliation(s)
- Kedong Zhu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Hualong Wang
- Department of Neurology, The First Hospital of Hebei Medical University; Brain Aging and Cognitive Neuroscience Laboratory of Heibei Province, Shijiazhuang, Hebei Province, China
| | - Keqiang Ye
- Faculty of Life and Health Sciences, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| | - Guiqin Chen
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
5
|
Xu A, Yuan K, Xue S, Lu W, Wu X, Liu W, Xue Q, Liu L, Hu J, Guo L, Zhang Y, Hu X, Chun Wong GT, Lu L, Huang C. Laminin-dystroglycan mediated ferroptosis in hemorrhagic shock and reperfusion induced-cognitive impairment through AMPK/Nrf2. Free Radic Biol Med 2025; 230:1-16. [PMID: 39864758 DOI: 10.1016/j.freeradbiomed.2025.01.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/01/2025] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
Hemorrhagic shock and reperfusion (HSR) is the main cause of death following trauma. Cognitive impairment may persist after successful resuscitation from hemorrhagic shock, but the mechanisms remain elusive. This study demonstrated the presence of ferroptosis in an in vitro model of oxygen-glucose deprivation and reoxygenation (OGD/R) in HT22 neurons, and also in a murine model of HSR using 3-month-old C57BL/6 mice. The ferroptosis induced by OGD/R was characterized by transmission electron microscopy, the localization of FTH1 and TFR1 in HT22 cells. However, neuronal ferroptosis was prevented by suppressing AMPK through siRNA transfection or AMPK inhibitor pretreatment (compound C) in vitro. There was a consistent increase in Nrf2 with ROS accumulation, iron deposition, and lipid peroxidation in the hippocampal neurons and tissues. Nrf2 knockdown or overexpression significantly modulated OGD/R induced-ferroptosis. Activating ferroptosis by erastin (a ferroptosis inducer) or inhibiting it by ferrostatin-1 (a ferroptosis inhibitor) respectively enhanced or mitigated cognitive deficits as well as the ferroptosis-related changes induced by HSR. In addition to the improved cognition, single-nucleus transcriptome analysis of ipsilateral hippocampi from Nrf2-/- mice demonstrated the broad decrease of ferroptosis in neuronal cell clusters. LAMA2 and DAG1 were dominantly elevated and co-localized in the hippocampal CA3 region of Nrf2-/- mice by fluorescence in situ hybridization. The activation of astrocytes was significantly attenuated after Nrf2 knockout, associated with the increases of laminin-dystroglycan during astrocyte-neuron crosstalk. Thus, data from this study proposes a novel explanation, namely laminin-dystroglycan interactions during astrocytes-neurons crosstalk stimulating AMPK and Nrf2 induced neuronal ferroptosis, for the development of cognitive impairment after HSR.
Collapse
Affiliation(s)
- Aoxue Xu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei City, Anhui Province, China
| | - Kai Yuan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), China; National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Song Xue
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei City, Anhui Province, China
| | - Wenping Lu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei City, Anhui Province, China
| | - Xiaoli Wu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei City, Anhui Province, China
| | - Wei Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China
| | - Qi Xue
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei City, Anhui Province, China
| | - Lulu Liu
- Department of Anesthesiology, Tongzhou Maternal and Child Health Hospital of Beijing, Beijing, China
| | - Jia Hu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei City, Anhui Province, China
| | - Liyuan Guo
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ye Zhang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei City, Anhui Province, China
| | - Xianwen Hu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei City, Anhui Province, China
| | - Gordon Tin Chun Wong
- Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region of China.
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), China; National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China; National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China.
| | - Chunxia Huang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei City, Anhui Province, China; Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
6
|
Bano N, Khan S, Ahamad S, Dar NJ, Alanazi HH, Nazir A, Bhat SA. Microglial Autophagic Dysregulation in Traumatic Brain Injury: Molecular Insights and Therapeutic Avenues. ACS Chem Neurosci 2025; 16:543-562. [PMID: 39920904 DOI: 10.1021/acschemneuro.4c00617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2025] Open
Abstract
Traumatic brain injury (TBI) is a complex and multifaceted condition that can result in cognitive and behavioral impairments. One aspect of TBI that has received increasing attention in recent years is the role of microglia, the brain-resident immune cells, in the pathophysiology of the injury. Specifically, increasing evidence suggests that dysfunction in microglial autophagy, the process by which cells degrade and recycle their own damaged components, may contribute to the development and progression of TBI-related impairments. Here, we unravel the pathways by which microglia autophagic dysregulation predisposes the brain to secondary damage and neurological deficits following TBI. An overview of the role of autophagic dysregulation in perpetuation and worsening of the inflammatory response, neuroinflammation, and neuronal cell death in TBI follows. Further, we have evaluated several signaling pathways and processes that contribute to autophagy dysfunction-mediated inflammation, neurodegeneration, and poor outcome in TBI. Additionally, a discussion on the small molecule therapeutics employed to modulate these pathways and mechanisms to treat TBI have been presented. However, additional research is required to fully understand the processes behind these underlying pathways and uncover potential therapeutic targets for restoring microglial autophagic failure in TBI.
Collapse
Affiliation(s)
- Nargis Bano
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Sameera Khan
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Nawab John Dar
- CNB, SALK Institute of Biological Sciences, La Jolla, California 92037, United States
| | - Hamad H Alanazi
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Al Jouf University, Sakaka 77455, Saudi Arabia
| | - Aamir Nazir
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research, New Delhi 201002, India
| | | |
Collapse
|
7
|
Zou P, Li T, Cao Z, Yang E, Bao M, Zhang H, Zhang Z, Liu D, Zhang M, Gao X, Ge J, Jiang X, Tian Z, Luo P. High-altitude hypoxia aggravated neurological deficits in mice induced by traumatic brain injury via BACH1 mediating astrocytic ferroptosis. Cell Death Discov 2025; 11:46. [PMID: 39905004 PMCID: PMC11794473 DOI: 10.1038/s41420-025-02337-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/10/2025] [Accepted: 01/28/2025] [Indexed: 02/06/2025] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of disability and mortality, which was classified as low-altitude TBI and high-altitude TBI. A large amount of literature shows that high-altitude TBI is associated with more severe neurological impairments and higher mortality rates compared to low-altitude TBI, due to the special environment of high-altitude hypoxia. However, the role of high-altitude hypoxia in the pathogenesis of TBI remains unclear. In order to deeply investigate this scientific issue, we constructed a high-altitude hypoxic TBI model at different altitudes and used animal behavioral assessments (Modified neurological severity score, rotarod test, elevated plus maze test) as well as histopathological analyses (brain gross specimens, brain water content, Evans blue content, hypoxia inducible factor-1α, Hematoxylin-Eosin staining and ROS detection) to reveal its underlying principles and characteristics. We found that with higher altitude, TBI-induced neurological deficits were more severe and the associated histopathological changes were more significant. Single-nuclear RNA sequencing was subsequently employed to further reveal differential gene expression profiles in high-altitude TBI. We found a significant increase in ferroptosis of astrocytes in cases of high-altitude TBI compared to those at low-altitude TBI. Analyzing transcription factors in depth, we found that Bach1 plays a crucial role in regulating key molecules that induce ferroptosis in astrocytes following high-altitude TBI. Down-regulation of Bach1 can effectively alleviate high-altitude TBI-induced neurological deficits and histopathological changes in mice. In conclusion, high-altitude hypoxia may significantly enhance the ferroptosis of astrocytes and aggravate TBI by up-regulating Bach1 expression. Our study provides a theoretical foundation for further understanding of the mechanism of high-altitude hypoxic TBI and targeted intervention therapy.
Collapse
Affiliation(s)
- Peng Zou
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Tianjing Li
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
- College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Zixuan Cao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Erwan Yang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Mingdong Bao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Haofuzi Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhuoyuan Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Dan Liu
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
- College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Min Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiangyu Gao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
- Department of Neurosurgery, Fuzhou 900th Hospital, Fuzhou, 350001, China
| | - Junmiao Ge
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiaofan Jiang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Zhicheng Tian
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Peng Luo
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
8
|
Lai L, Tan M, Hu M, Yue X, Tao L, Zhai Y, Li Y. Important molecular mechanisms in ferroptosis. Mol Cell Biochem 2025; 480:639-658. [PMID: 38668809 DOI: 10.1007/s11010-024-05009-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/07/2024] [Indexed: 02/19/2025]
Abstract
Ferroptosis is a type of cell death that is caused by the oxidation of lipids and is dependent on the presence of iron. It was first characterized by Brent R. Stockwell in 2012, and since then, research in the field of ferroptosis has rapidly expanded. The process of ferroptosis-induced cell death is genetically, biochemically, and morphologically distinct from other forms of cellular death, such as apoptosis, necroptosis, and non-programmed cell death. Extensive research has been devoted to comprehending the intricate process of ferroptosis and the various factors that contribute to it. While the majority of these studies have focused on examining the effects of lipid metabolism and mitochondria on ferroptosis, recent findings have highlighted the significant involvement of signaling pathways and associated proteins, including Nrf2, P53, and YAP/TAZ, in this process. This review provides a concise summary of the crucial signaling pathways associated with ferroptosis based on relevant studies. It also elaborates on the drugs that have been employed in recent years to treat ferroptosis-related diseases by targeting the relevant signaling pathways. The established and potential therapeutic targets for ferroptosis-related diseases, such as cancer and ischemic heart disease, are systematically addressed.
Collapse
Affiliation(s)
- Lunmeng Lai
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Menglei Tan
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Mingming Hu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Xiyue Yue
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Lulu Tao
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Yanru Zhai
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Yunsen Li
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China.
| |
Collapse
|
9
|
Zhai Z, Huang Z, Huang K, Zhong Y, You H, Tao E, Yang Y. The regulatory role of the Netrin-1/UNC5H3 pathway in neuronal pyroptosis after stroke. Int Immunopharmacol 2025; 146:113939. [PMID: 39740525 DOI: 10.1016/j.intimp.2024.113939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/15/2024] [Accepted: 12/22/2024] [Indexed: 01/02/2025]
Abstract
Currently, stroke is a disease with high disability and mortality risks and no effective treatment. The pathogenesis and molecular mechanisms of neuronal damage in stroke are highly complex. Pyroptosis participates in neuronal death after stroke. Thus, inhibiting pyroptosis could be a potential therapeutic method to improve the poor prognosis of stroke patients. However, the regulated mechanisms of pyroptosis remain unclear. Furthermore, although the role of Netrin-1 and its receptors in ischemic apoptosis is well-known, their specific functions in ischemia-induced pyroptosis are still unknown. The current study aimed to explore whether Netrin-1 and its receptor UNC5H3 could regulate pyroptosis after ischemic stroke. PC12 cells decreased Netrin-1 expression and increased UNC5H3 expression after OGD/R injury, subsequently leading to the dissociation of Netrin-1 from UNC5H3, accompanied by increased pyroptotic activity. UNC5H3 inhibition in the absence of Netrin-1 could inhibit OGD/R injury-induced cell pyroptosis. Furthermore, a decreased Netrin-1/UNC5H3 interaction could mitigate Netrin-1-elicited protective role against OGD/R injury. Additionally, Netrin-1 provided a neuroprotective effect against MCAO injury in vivo. Therefore, the Netrin-1/UNC5H3 pathway plays a regulatory role in neuronal pyroptosis after ischemic stroke, representing a novel therapeutic target and strategy for stroke therapy.
Collapse
Affiliation(s)
- Zhihao Zhai
- Department of Neurosurgery, the Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518000, China; Department of Physiology, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518000, China; Neurobiology Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518000, China
| | - Zuoyu Huang
- Department of Neurosurgery, the Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518000, China; Neurobiology Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518000, China
| | - Kaixun Huang
- Neurobiology Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518000, China; Department of Neurology, the Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518000, China
| | - Yuanqiang Zhong
- Department of Neurosurgery, the Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518000, China; Neurobiology Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518000, China
| | - Hengxing You
- Department of Neurosurgery, the Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518000, China; Neurobiology Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518000, China
| | - Enxiang Tao
- Neurobiology Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518000, China; Department of Neurology, the Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518000, China
| | - Yunfeng Yang
- Department of Neurosurgery, the Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518000, China; Neurobiology Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518000, China.
| |
Collapse
|
10
|
Li Z, Xing J. Nuclear factor erythroid 2-related factor-mediated signaling alleviates ferroptosis during cerebral ischemia-reperfusion injury. Biomed Pharmacother 2024; 180:117513. [PMID: 39341075 DOI: 10.1016/j.biopha.2024.117513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 09/30/2024] Open
Abstract
Cardiac arrest (CA) is a significant challenge for emergency physicians worldwide and leads to increased morbidity and mortality rates. The poor prognosis of CA primarily stems from the complexity and irreversibility of cerebral ischemia-reperfusion injury (CIRI). Ferroptosis, a form of programmed cell death characterized by iron overload and lipid peroxidation, plays a crucial role in the progression and treatment of CIRI. In this review, we highlight the mechanisms of ferroptosis within the context of CIRI, focusing on its role as a key contributor to neuronal damage and dysfunction post-CA. We explore the crucial involvement of the nuclear factor erythroid 2-related factor (Nrf2)-mediated signaling pathway in modulating ferroptosis-associated processes during CIRI. Through comprehensive analysis of the regulatory role of Nrf2 in the cellular responses to oxidative stress, we highlight its potential as a therapeutic target for mitigating ferroptotic cell death and improving the neurological prognosis of patients experiencing CA. Furthermore, we discuss interventions targeting the Kelch-like ECH-associated protein 1/Nrf2/antioxidant response element pathway, including the use of traditional Chinese medicine and Western medicine, which demonstrate potential for attenuating ferroptosis and preserving neuronal function in CIRI. Owing to the limitations in the safety, specificity, and effectiveness of Nrf2-targeted drugs, as well as the technical difficulties and ethical constraints in obtaining the results related to the brain pathological examination of patients, most of the studies focusing on Nrf2-related regulation of ferroptosis in CIRI are still in the basic research stage. Overall, this review aims to provide a comprehensive understanding of the mechanisms underlying ferroptosis in CIRI, offering insights into novel therapeutics aimed at enhancing the clinical outcomes of patients with CA.
Collapse
Affiliation(s)
- Zheng Li
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| | - Jihong Xing
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
11
|
Ru Q, Li Y, Chen L, Wu Y, Min J, Wang F. Iron homeostasis and ferroptosis in human diseases: mechanisms and therapeutic prospects. Signal Transduct Target Ther 2024; 9:271. [PMID: 39396974 PMCID: PMC11486532 DOI: 10.1038/s41392-024-01969-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/08/2024] [Accepted: 09/02/2024] [Indexed: 10/15/2024] Open
Abstract
Iron, an essential mineral in the body, is involved in numerous physiological processes, making the maintenance of iron homeostasis crucial for overall health. Both iron overload and deficiency can cause various disorders and human diseases. Ferroptosis, a form of cell death dependent on iron, is characterized by the extensive peroxidation of lipids. Unlike other kinds of classical unprogrammed cell death, ferroptosis is primarily linked to disruptions in iron metabolism, lipid peroxidation, and antioxidant system imbalance. Ferroptosis is regulated through transcription, translation, and post-translational modifications, which affect cellular sensitivity to ferroptosis. Over the past decade or so, numerous diseases have been linked to ferroptosis as part of their etiology, including cancers, metabolic disorders, autoimmune diseases, central nervous system diseases, cardiovascular diseases, and musculoskeletal diseases. Ferroptosis-related proteins have become attractive targets for many major human diseases that are currently incurable, and some ferroptosis regulators have shown therapeutic effects in clinical trials although further validation of their clinical potential is needed. Therefore, in-depth analysis of ferroptosis and its potential molecular mechanisms in human diseases may offer additional strategies for clinical prevention and treatment. In this review, we discuss the physiological significance of iron homeostasis in the body, the potential contribution of ferroptosis to the etiology and development of human diseases, along with the evidence supporting targeting ferroptosis as a therapeutic approach. Importantly, we evaluate recent potential therapeutic targets and promising interventions, providing guidance for future targeted treatment therapies against human diseases.
Collapse
Affiliation(s)
- Qin Ru
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Chen
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yuxiang Wu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China.
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
12
|
Zhong YJ, Liu LL, Zhao Y, Feng Z, Liu Y. Elucidating the molecular mechanisms behind the therapeutic impact of median nerve stimulation on cognitive dysfunction post-traumatic brain injury. Exp Gerontol 2024; 194:112500. [PMID: 38901771 DOI: 10.1016/j.exger.2024.112500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/22/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
OBJECTIVE Ferroptosis represents a form of regulated cellular death dependent upon iron and lipid peroxidation derivatives, holding considerable implications for cerebral and neurologic pathologies. In the present study, we endeavored to elucidate the molecular mechanisms governing ferroptosis and appraise the therapeutic value of electrical stimulation of median nerve in addressing cognitive impairments following traumatic brain injury (TBI), employing a rodent model. METHODS In this study, we established a rat model to investigate the cognitive impairments resulting from TBI, followed by the application of median nerve stimulation (MNS). Initially, rats received an intraperitoneal injection of Erastin (2 mg/kg) prior to undergoing MNS. After 24 h of MNS treatment, the rats were subjected to an open field test to evaluate their cognitive and motor functions. Subsequently, we conducted biochemical assays to measure the serum levels of GSH, MDA and SOD. The structural integrity and cellular morphology of hippocampal tissue were examined through H&E staining, Nissl staining and transmission electron microscopy. Additionally, we assessed the expression levels of proteins crucial for neuronal health and function in the hippocampus, including VEGF, SLC7A11, GPX4, Nrf2, α-syn, NEUN and PSD95. RESULTS Compared to the control group, rats in the stimulation group demonstrated enhanced mobility, reduced levels of tissue damage, a decrease in MDA concentration, and increased levels of GSH and SOD. Additionally, there was a significant upregulation in the expression of proteins critical for cellular defense and neuronal health, including GPX4, SLC7A11, Nrf2, VEGF, α-syn, NEUN, and PSD95 proteins. Conversely, rats in the Erastin group demonstrated decreased mobility, exacerbated pathological tissue damage, elevated MDA concentration, and decreased levels of GSH and SOD. There was also a notable decrease in the expression of GPX4, SLC7CA11, Nrf2, and VEGF proteins. The expression levels of α-syn, NEUN, and PSD95 were similarly diminished in the Erastin group. Each of these findings was statistically significant, indicating that MNS exerts neuroprotective effect in the hippocampal tissue of rats with TBI by inhibiting the ferroptosis pathway. CONCLUSION (1) MNS may enhance the cognitive and behavioral performance of rats after TBI; (2) MNS can play a neuroprotective role by promoting the expression of nerve injury-related proteins, alleviating oxidative stress and ferroptosis process; (3) MNS may inhibit ferroptosis of neuronal cells by activating Nrf2/ GPX4 signaling pathway, thereby improving cognitive impairment in TBI rats.
Collapse
Affiliation(s)
- Ying-Jun Zhong
- Department of Rehabilitation Medicine, The 1(st) Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, China
| | - Ling-Ling Liu
- Department of Rehabilitation Medicine, The 1(st) Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, China
| | - Yue Zhao
- Department of Rehabilitation Medicine, The 1(st) Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, China
| | - Zhen Feng
- Department of Rehabilitation Medicine, The 1(st) Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, China.
| | - Yuan Liu
- Department of Orthopedics, The 1(st) Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, China.
| |
Collapse
|
13
|
Chen Q, Wu B, Shi Z, Wang Y, Yuan Y, Chen X, Wang Y, Hu J, Mao L, Gao Y, Wu G. LncRNA H19 knockdown promotes neuropathologic and functional recovery via the Nrf2/HO-1 axis after traumatic brain injury. CNS Neurosci Ther 2024; 30:e14870. [PMID: 39049714 PMCID: PMC11269889 DOI: 10.1111/cns.14870] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
AIMS Traumatic brain injury (TBI) stands as a significant concern in public health, frequently leading to enduring neurological deficits. Long non-coding RNA H19 (lncRNA H19) exerts a potential regulator role in the pathology of brain injury. This study investigates the effects of lncRNA H19 knockdown (H19-KD) on the pathophysiology of TBI and its potential neuroprotective mechanisms. METHODS Controlled cortical impact was employed to establish a stable TBI mouse model. The expression levels of various genes in perilesional cortex and striatum tissue after TBI was detected by RT-qPCR. AAV9-shRNA-H19 was injected into the lateral ventricle of mice to knockdown the expression of lncRNA H19. Various behavioral tests were performed to evaluate sensorimotor and cognitive functions after TBI. Immunofluorescence and Nissl staining were performed to assess brain tissue damage and neuroinflammation. The Nrf2 and HO-1 expression was performed by Western blot. RESULTS After TBI, the expression of lncRNA H19 was elevated in perilesional tissue and gradually reverted to baseline. Behavioral tests demonstrated that H19-KD significantly promoted the recovery of sensorimotor and cognitive functions after TBI. Besides, H19-KD reduced brain tissue loss, preserved neuronal integrity, and ameliorated white matter damage at the histological level. In addition, H19-KD restrained the pro-inflammatory and facilitated anti-inflammatory phenotypes of microglia/macrophages, attenuating the neuroinflammatory response after TBI. Furthermore, H19-KD promoted activation of the Nrf2/HO-1 axis after TBI, while suppression of Nrf2 partially abolished the neuroprotective effect. CONCLUSION H19-KD exerts neuroprotective effects after TBI in mice, partially mediated by the activation of the Nrf2/HO-1 axis.
Collapse
Affiliation(s)
- Qiankang Chen
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain Science, Fudan UniversityShanghaiChina
| | - Biwu Wu
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain Science, Fudan UniversityShanghaiChina
| | - Ziyu Shi
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain Science, Fudan UniversityShanghaiChina
| | - Yana Wang
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain Science, Fudan UniversityShanghaiChina
| | - Yiwen Yuan
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain Science, Fudan UniversityShanghaiChina
| | - Xingdong Chen
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain Science, Fudan UniversityShanghaiChina
| | - Yuqing Wang
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain Science, Fudan UniversityShanghaiChina
| | - Jin Hu
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain Science, Fudan UniversityShanghaiChina
| | - Leilei Mao
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain Science, Fudan UniversityShanghaiChina
| | - Yanqin Gao
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain Science, Fudan UniversityShanghaiChina
| | - Gang Wu
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain Science, Fudan UniversityShanghaiChina
| |
Collapse
|
14
|
Tiwari S, Basnet N, Choi JW. Lysophosphatidic Acid Receptor 1 Plays a Pathogenic Role in Permanent Brain Ischemic Stroke by Modulating Neuroinflammatory Responses. Biomol Ther (Seoul) 2024; 32:319-328. [PMID: 38627097 PMCID: PMC11063482 DOI: 10.4062/biomolther.2024.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 05/01/2024] Open
Abstract
Lysophosphatidic acid receptor 1 (LPA1) plays a critical role in brain injury following a transient brain ischemic stroke. However, its role in permanent brain ischemic stroke remains unknown. To address this, we investigated whether LPA1 could contribute to brain injury of mice challenged by permanent middle cerebral artery occlusion (pMCAO). A selective LPA1 antagonist (AM152) was used as a pharmacological tool for this investigation. When AM152 was given to pMCAO-challenged mice one hour after occlusion, pMCAO-induced brain damage such as brain infarction, functional neurological deficits, apoptosis, and blood-brain barrier disruption was significantly attenuated. Histological analyses demonstrated that AM152 administration attenuated microglial activation and proliferation in injured brain after pMCAO challenge. AM152 administration also attenuated abnormal neuroinflammatory responses by decreasing expression levels of pro-inflammatory cytokines while increasing expression levels of anti-inflammatory cytokines in the injured brain. As underlying effector pathways, NF-κB, MAPKs (ERK1/2, p38, and JNKs), and PI3K/Akt were found to be involved in LPA1-dependent pathogenesis. Collectively, these results demonstrate that LPA1 can contribute to brain injury by permanent ischemic stroke, along with relevant pathogenic events in an injured brain.
Collapse
Affiliation(s)
- Supriya Tiwari
- Laboratory of Neuropharmacology, College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Republic of Korea
| | - Nikita Basnet
- Laboratory of Neuropharmacology, College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Republic of Korea
| | - Ji Woong Choi
- Laboratory of Neuropharmacology, College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Republic of Korea
| |
Collapse
|
15
|
Xu Y, Jia B, Li J, Li Q, Luo C. The Interplay between Ferroptosis and Neuroinflammation in Central Neurological Disorders. Antioxidants (Basel) 2024; 13:395. [PMID: 38671843 PMCID: PMC11047682 DOI: 10.3390/antiox13040395] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Central neurological disorders are significant contributors to morbidity, mortality, and long-term disability globally in modern society. These encompass neurodegenerative diseases, ischemic brain diseases, traumatic brain injury, epilepsy, depression, and more. The involved pathogenesis is notably intricate and diverse. Ferroptosis and neuroinflammation play pivotal roles in elucidating the causes of cognitive impairment stemming from these diseases. Given the concurrent occurrence of ferroptosis and neuroinflammation due to metabolic shifts such as iron and ROS, as well as their critical roles in central nervous disorders, the investigation into the co-regulatory mechanism of ferroptosis and neuroinflammation has emerged as a prominent area of research. This paper delves into the mechanisms of ferroptosis and neuroinflammation in central nervous disorders, along with their interrelationship. It specifically emphasizes the core molecules within the shared pathways governing ferroptosis and neuroinflammation, including SIRT1, Nrf2, NF-κB, Cox-2, iNOS/NO·, and how different immune cells and structures contribute to cognitive dysfunction through these mechanisms. Researchers' findings suggest that ferroptosis and neuroinflammation mutually promote each other and may represent key factors in the progression of central neurological disorders. A deeper comprehension of the common pathway between cellular ferroptosis and neuroinflammation holds promise for improving symptoms and prognosis related to central neurological disorders.
Collapse
Affiliation(s)
- Yejia Xu
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
- Hebei Key Laboratory of Forensic Medicine, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Bowen Jia
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Jing Li
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Qianqian Li
- NHC Key Laboratory of Drug Addiction Medicine, Department of Forensic Medicine, School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
- School of Forensic Medicine, Wannan Medical College, Wuhu 241002, China
| | - Chengliang Luo
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
- Hebei Key Laboratory of Forensic Medicine, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- NHC Key Laboratory of Drug Addiction Medicine, Department of Forensic Medicine, School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
| |
Collapse
|
16
|
Wei L, Li B, Long J, Fu Y, Feng B. circ_UTRN inhibits ferroptosis of ARJ21 cells to attenuate acute pancreatitis progression by regulating the miR-760-3p/FOXO1/GPX4 axis. 3 Biotech 2024; 14:84. [PMID: 38379665 PMCID: PMC10874922 DOI: 10.1007/s13205-023-03886-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/09/2023] [Indexed: 02/22/2024] Open
Abstract
Aim To explore the function of circ_UTRN in acute pancreatitis (AP). Methods After exposing AR42J cells to caerulein, the levels of circ_UTRN, miR-760-3p, and glutathione peroxidase 4 (GPX4) were determined by quantitative polymerase chain reaction. Additionally, GPX4 and forkhead box O1 (FOXO1) protein levels were assessed by western blot. The levels of oxidative stress and ferroptosis in the supernatant of the treated AR42J cells were also assessed using commercial kits. Results circ_UTRN inhibited caerulein-induced oxidative stress and ferroptosis by binding with miR-760-3p. Additionally, miR-760-3p directly targeted FOXO1, thereby regulating GPX4 levels. Furthermore, GPX4 knockdown abolished the effect of miR-760-3p downregulation in AP. Conclusion circ_UTRN inhibited oxidative stress and ferroptosis by regulating the miR-760-3p/FOXO1/GPX4 axis. This is a potential new treatment strategy for AP.
Collapse
Affiliation(s)
- Lanlan Wei
- Department of Respiratory and Critical Care Medicine, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412000 Hunan Province People’s Republic of China
| | - Bowen Li
- Jishou University School of Medicine, Jishou, 416000 Hunan Province People’s Republic of China
| | - Jing Long
- Department of Ultrasonography, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412000 Hunan Province People’s Republic of China
| | - Yanping Fu
- Emergency Department, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, No. 116, Changjiang South Road, Tianyuan District, Zhuzhou, 412000 Hunan Province People’s Republic of China
| | - Bin Feng
- Department of Hepatobiliary Surgery, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Tianyuan District, No. 116, Changjiang South Road, Zhuzhou, 412007 Hunan Province People’s Republic of China
| |
Collapse
|
17
|
Silvestro S, Raffaele I, Quartarone A, Mazzon E. Innovative Insights into Traumatic Brain Injuries: Biomarkers and New Pharmacological Targets. Int J Mol Sci 2024; 25:2372. [PMID: 38397046 PMCID: PMC10889179 DOI: 10.3390/ijms25042372] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
A traumatic brain injury (TBI) is a major health issue affecting many people across the world, causing significant morbidity and mortality. TBIs often have long-lasting effects, disrupting daily life and functionality. They cause two types of damage to the brain: primary and secondary. Secondary damage is particularly critical as it involves complex processes unfolding after the initial injury. These processes can lead to cell damage and death in the brain. Understanding how these processes damage the brain is crucial for finding new treatments. This review examines a wide range of literature from 2021 to 2023, focusing on biomarkers and molecular mechanisms in TBIs to pinpoint therapeutic advancements. Baseline levels of biomarkers, including neurofilament light chain (NF-L), ubiquitin carboxy-terminal hydrolase-L1 (UCH-L1), Tau, and glial fibrillary acidic protein (GFAP) in TBI, have demonstrated prognostic value for cognitive outcomes, laying the groundwork for personalized treatment strategies. In terms of pharmacological progress, the most promising approaches currently target neuroinflammation, oxidative stress, and apoptotic mechanisms. Agents that can modulate these pathways offer the potential to reduce a TBI's impact and aid in neurological rehabilitation. Future research is poised to refine these therapeutic approaches, potentially revolutionizing TBI treatment.
Collapse
Affiliation(s)
| | | | | | - Emanuela Mazzon
- IRCCS Centro Neurolesi Bonino Pulejo, Via Provinciale Palermo, SS 113, Contrada Casazza, 98124 Messina, Italy; (S.S.); (I.R.); (A.Q.)
| |
Collapse
|
18
|
Huang X, Yan X, Chen G, Feng Y, Bai Y, Yan P, Lai J, Wei S. Insufficient autophagy enables the nuclear factor erythroid 2-related factor 2 (NRF2) to promote ferroptosis in morphine-treated SH-SY5Y cells. Psychopharmacology (Berl) 2024; 241:291-304. [PMID: 38049617 DOI: 10.1007/s00213-023-06485-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 10/09/2023] [Indexed: 12/06/2023]
Abstract
RATIONALE While morphine has important therapeutic value it is also one of the most widely abused drugs in the world. As a newly discovered style of cell death, ferroptosis is involved in the occurrence and development of many diseases, however, the current understanding of the relationship between ferroptosis and morphine is still limited. OBJECTIVE To clarify the role of opioid receptors in morphine-induced ferroptosis and to investigate the role of NRF2 in morphine-induced ferroptosis. METHODS We first used different doses of morphine (0, 0.5, 1, and 1.5 mM) to investigate morphine-induced ferroptosis in SH-SY5Y cells, and we choose 1.5 mM morphine for subsequent experiments. We next inhibited opioid receptors and NRF2 separately and examined their influence on morphine-induced ferroptosis. Finally, we tested morphine-induced insufficient autophagy. RESULTS Morphine triggered ferroptosis in a dose-dependent manner, which could be significantly rescued by the ferroptosis-specific inhibitor DFO. Moreover, GPX4 rather than xCT antiporter might be involved in morphine-induced ferroptosis. We also found naloxone could inhibit morphine-induced ferroptosis. Interestingly, our results demonstrated that NRF2 could promote rather than defend morphine-induced ferroptosis; this may be due to the increased p62-related insufficient autophagy. CONCLUSION Morphine-induced ferroptosis is regulated by the opioid receptor and GPX4 rather than the xCT antiporter. NRF2-mediated ferroptosis in morphine-exposed cells may stem from increased p62-related insufficient autophagy.
Collapse
Affiliation(s)
- Xin Huang
- College of Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Xinyue Yan
- College of Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Gang Chen
- Department of Forensic Medicine, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People's Republic of China
| | - Yue Feng
- College of Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Yuying Bai
- College of Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Peng Yan
- College of Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Jianghua Lai
- College of Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Shuguang Wei
- College of Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China.
| |
Collapse
|
19
|
Wei Z, Yu H, Zhao H, Wei M, Xing H, Pei J, Yang Y, Ren K. Broadening horizons: ferroptosis as a new target for traumatic brain injury. BURNS & TRAUMA 2024; 12:tkad051. [PMID: 38250705 PMCID: PMC10799763 DOI: 10.1093/burnst/tkad051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/24/2023] [Accepted: 10/15/2023] [Indexed: 01/23/2024]
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability worldwide, with ~50 million people experiencing TBI each year. Ferroptosis, a form of regulated cell death triggered by iron ion-catalyzed and reactive oxygen species-induced lipid peroxidation, has been identified as a potential contributor to traumatic central nervous system conditions, suggesting its involvement in the pathogenesis of TBI. Alterations in iron metabolism play a crucial role in secondary injury following TBI. This study aimed to explore the role of ferroptosis in TBI, focusing on iron metabolism disorders, lipid metabolism disorders and the regulatory axis of system Xc-/glutathione/glutathione peroxidase 4 in TBI. Additionally, we examined the involvement of ferroptosis in the chronic TBI stage. Based on these findings, we discuss potential therapeutic interventions targeting ferroptosis after TBI. In conclusion, this review provides novel insights into the pathology of TBI and proposes potential therapeutic targets.
Collapse
Affiliation(s)
- Ziqing Wei
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou, China
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, No. 1, Longhu Middle Ring Road, Jinshui District, Zhengzhou, China
| | - Haihan Yu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou, China
| | - Huijuan Zhao
- Henan International Joint Laboratory of Thrombosis and Hemostasis, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, No. 1, Longhu Middle Ring Road, Jinshui District, Luoyang, China
| | - Mingze Wei
- The Second Clinical Medical College, Harbin Medical University, No. 263, Kaiyuan Avenue, Luolong District, Harbin, China
| | - Han Xing
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, No. 246, Xuefu Road, Nangang District, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou 450052, China
| | - Jinyan Pei
- Quality Management Department, Henan No.3 Provincial People’s Hospital, No. 198, Funiu Road, Zhongyuan District, Henan province, Zhengzhou 450052, China
| | - Yang Yang
- Clinical Systems Biology Research Laboratories, Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, No. 198, Funiu Road, Zhongyuan District, Zhengzhou 450052, China
| | - Kaidi Ren
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, No. 246, Xuefu Road, Nangang District, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou 450052, China
| |
Collapse
|
20
|
Zhang L, Hu Z, Bai W, Peng Y, Lin Y, Cong Z. Fucoxanthin ameliorates traumatic brain injury by suppressing the blood-brain barrier disruption. iScience 2023; 26:108270. [PMID: 37965135 PMCID: PMC10641514 DOI: 10.1016/j.isci.2023.108270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/12/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023] Open
Abstract
Fucoxanthin is the most abundant marine carotenoid extracted from seaweed. Our previous study has shown that fucoxanthin inhibited oxidative stress after traumatic brain injury (TBI). However, the effects of fucoxanthin on TBI-induced blood-brain barrier (BBB) destruction have not been well understood. In the present study, we found that fucoxanthin improved neurological dysfunction, reduced brain edema, attenuated cortical lesion volume, and decreased dendrites loss after TBI in vivo. Moreover, fucoxanthin suppressed BBB leakage, preserved tight junction (TJ) and adherens junction (AJ) proteins, and inhibited MMP-9 expression. Furthermore, fucoxanthin alleviated apoptosis and ferroptosis, and activated mitophagy in endothelial cells (ECs) after TBI. However, the protection of fucoxanthin on BBB was attenuated when mitophagy was inhibited. Importantly, fucoxanthin also provided protective effects in bEnd.3 cells after TBI. Taken together, our results suggested that fucoxanthin played a key role in the protection of BBB after TBI through mitophagy.
Collapse
Affiliation(s)
- Li Zhang
- Department of Neurosurgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, P.R.China
| | - Zhigang Hu
- Department of Neurosurgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, P.R.China
| | - Wanshan Bai
- Department of Neurosurgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, P.R.China
| | - Yaonan Peng
- Department of Neurosurgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, P.R.China
| | - Yixing Lin
- Department of Neurosurgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, P.R.China
| | - Zixiang Cong
- Department of Neurosurgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, P.R.China
| |
Collapse
|
21
|
Fang J, Yuan Q, Du Z, Zhang Q, Yang L, Wang M, Yang W, Yuan C, Yu J, Wu G, Hu J. Overexpression of GPX4 attenuates cognitive dysfunction through inhibiting hippocampus ferroptosis and neuroinflammation after traumatic brain injury. Free Radic Biol Med 2023; 204:68-81. [PMID: 37105419 DOI: 10.1016/j.freeradbiomed.2023.04.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/27/2023] [Accepted: 04/24/2023] [Indexed: 04/29/2023]
Abstract
Ferroptosis is a newly discovered form of regulated cell death that is triggered primarily by lipid peroxidation. A growing body of evidence has implicated ferroptosis in the pathophysiology of traumatic brain injury (TBI). However, none of these studies focused its role on TBI-induced hippocampal injury. Here, we demonstrated that the distinct ferroptotic signature was detected in the injured hippocampus at the early stage of TBI. Besides, a prominent pro-ferroptosis environment was detected in the ipsilateral hippocampus after TBI, including elevated levels of arachidonic acid (AA), ACLS4, and ALXO15, and deficiency of GPX4. Subsequently, we used AAV-mediated Gpx4 overexpression to counteract ferroptosis in the hippocampus, and found that TBI-induced cognitive deficits were significantly alleviated after Gpx4 overexpression. Biochemical results also confirmed that TBI-induced hippocampal ferroptosis and synaptic damage were partially reversed by Gpx4 overexpression. In addition, Gpx4 overexpression inhibited TBI-induced neuroinflammation and peripheral macrophage infiltration. Interestingly, the results of transwell migration assay showed that ferroptotic neurons increased CCL2 expression and promoted iBMDM cell migration. However, this effect was inhibited by CCL2 antagonist, RS102895. These data suggested that inhibition of ferroptosis may be as a potential strategy to ameliorate TBI-induced cognitive deficits through blockade of hippocampal ferroptosis and neuroinflammation.
Collapse
Affiliation(s)
- Jiang Fang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China; Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, China
| | - Qiang Yuan
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China; Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, China
| | - Zhuoying Du
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China; Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, China
| | - Quan Zhang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China; Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, China
| | - Lei Yang
- Department of Neurosurgery & Neurocritical Care, Huashan Hospital, Fudan University, Shanghai, China
| | - Meihua Wang
- Department of Neurosurgery & Neurocritical Care, Huashan Hospital, Fudan University, Shanghai, China
| | - Weijian Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China; Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, China
| | - Cong Yuan
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China; Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, China
| | - Jian Yu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China; Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, China
| | - Gang Wu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China; Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, China
| | - Jin Hu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China; Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, China.
| |
Collapse
|