1
|
Ausprey IJ, Newell FL, Robinson SK. Functional Response Traits and Altered Ecological Niches Drive the Disassembly of Cloud Forest Bird Communities in Tropical Montane Countrysides. J Anim Ecol 2022; 91:2314-2328. [PMID: 36161275 DOI: 10.1111/1365-2656.13816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/12/2022] [Indexed: 11/28/2022]
Abstract
Anthropogenic disturbance contributes to global change by reshaping the ecological niche space available to biological communities. Quantifying the range of functional response traits required for species persistence is central towards understanding the mechanisms underlying community disassembly in disturbed landscapes. We used intensive field surveys of cloud forest bird communities across seven replicate landscapes undergoing agricultural conversion in the Peruvian Andes to examine how a suite of 16 functional response traits related to morphology, diet, foraging behavior, and environmental niche breadth predict (1) species-specific abundance changes in countryside habitats compared to forest and (2) differential changes to the ecological niche space occupied by communities. Our analyses relied on (1) hierarchical distance sampling models to examine the functional predictors of abundance change across the agricultural land use gradient while accounting for imperfect detection and (2) n-dimensional hypervolumes to quantify the expansion and contraction of ecological niche space in countryside habitats. Key traits related to increased abundance in early successional and mixed-intensity agricultural areas included (1) morphological adaptations to dense understory habitats, (2) plant-based diets (flowers, fruit, and seeds), and (3) broad elevational range limits and habitat breadth. Species occupying mixed and high-intensity agricultural land use regimes had mean elevational range limits 20-60% wider than species found within forests. Collectively, ecological niche space expanded within agricultural habitats for traits related to diet and environmental niche breadth, while contracting for foraging and dispersal traits. Such changes were driven by species with unique functional trait combinations. Our results reveal the dynamic changes to ecological niche space that underly community structure in disturbed landscapes and highlight how increased niche breadth can ameliorate disturbance sensitivity for generalist species. We emphasize that functional traits can be used to predict changes in community structure across disturbance gradients, allowing insights into specific mechanisms underlying community disassembly beyond emergent patterns of functional diversity. By identifying key functional trait groups that align with different countryside habitats, we demonstrate how conservation practitioners can contribute to the retention of avian functional diversity in agricultural landscapes throughout the world.
Collapse
Affiliation(s)
- Ian J Ausprey
- Florida Museum of Natural History and Department of Biology, University of Florida, Gainesville, FL, USA.,Division of Conservation Biology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Felicity L Newell
- Florida Museum of Natural History and Department of Biology, University of Florida, Gainesville, FL, USA
| | - Scott K Robinson
- Florida Museum of Natural History and Department of Biology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
2
|
Luther DA, Cooper WJ, Jirinec V, Wolfe JD, Rutt CL, Bierregaard Jr RO, Lovejoy TE, Stouffer PC. Long-term changes in avian biomass and functional diversity within disturbed and undisturbed Amazonian rainforest. Proc Biol Sci 2022; 289:20221123. [PMID: 35975441 PMCID: PMC9382209 DOI: 10.1098/rspb.2022.1123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/22/2022] [Indexed: 12/14/2022] Open
Abstract
Recent long-term studies in protected areas have revealed the loss of biodiversity, yet the ramifications for ecosystem health and resilience remain unknown. Here, we investigate how the loss of understory birds, in the lowest stratum of the forest, affects avian biomass and functional diversity in the Amazon rainforest. Across approximately 30 years in the Biological Dynamics of Forest Fragments Project, we used a historical baseline of avian communities to contrast the avian communities in today's primary forest with those in modern disturbed habitat. We found that in primary rainforest, the reduced abundance of insectivorous species led to reduced functional diversity, but no reduction of biomass, indicating that species with similar functional traits are less likely to coexist in modern primary forests. Because today's forests contain fewer functionally redundant species-those with similar traits-we argue that avian communities in modern primary Amazonian rainforests are less resilient, which may ultimately disrupt the ecosystem in dynamic and unforeseen ways.
Collapse
Affiliation(s)
- David A. Luther
- Biology Department, George Mason University, 4400 University Drive, Fairfax, VA 22030, USA
- Biological Dynamics of Forest Fragments Project, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, AM, Brazil
| | - W. Justin Cooper
- Biology Department, George Mason University, 4400 University Drive, Fairfax, VA 22030, USA
| | - Vitek Jirinec
- Biological Dynamics of Forest Fragments Project, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, AM, Brazil
- Integral Ecology Research Center, 239 Railroad Avenue, Blue Lake, CA 95525, USA
- School of Renewable Natural Resources, Louisiana State University AgCenter and Louisiana State University, Baton Rouge, LA 70803, USA
| | - Jared D. Wolfe
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, USA
| | - Cameron L. Rutt
- Biology Department, George Mason University, 4400 University Drive, Fairfax, VA 22030, USA
- Biological Dynamics of Forest Fragments Project, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, AM, Brazil
- American Bird Conservancy, The Plains, VA 20198, USA
| | | | - Thomas E. Lovejoy
- Environmental Science and Policy Department, George Mason University, 4400 University Drive, Fairfax, VA 22030, USA
- Biological Dynamics of Forest Fragments Project, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, AM, Brazil
| | - Philip C Stouffer
- Biological Dynamics of Forest Fragments Project, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, AM, Brazil
- School of Renewable Natural Resources, Louisiana State University AgCenter and Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|