1
|
Dudgeon D, Strayer DL. Bending the curve of global freshwater biodiversity loss: what are the prospects? Biol Rev Camb Philos Soc 2025; 100:205-226. [PMID: 39221642 PMCID: PMC11718631 DOI: 10.1111/brv.13137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Freshwater biodiversity conservation has received substantial attention in the scientific literature and is finally being recognized in policy frameworks such as the Global Biodiversity Framework and its associated targets for 2030. This is important progress. Nonetheless, freshwater species continue to be confronted with high levels of imperilment and widespread ecosystem degradation. An Emergency Recovery Plan (ERP) proposed in 2020 comprises six measures intended to "bend the curve" of freshwater biodiversity loss, if they are widely adopted and adequately supported. We review evidence suggesting that the combined intensity of persistent and emerging threats to freshwater biodiversity has become so serious that current and projected efforts to preserve, protect and restore inland-water ecosystems may be insufficient to avert substantial biodiversity losses in the coming decades. In particular, climate change, with its complex and harmful impacts, will frustrate attempts to prevent biodiversity losses from freshwater ecosystems already affected by multiple threats. Interactions among these threats will limit recovery of populations and exacerbate declines resulting in local or even global extinctions, especially among low-viability populations in degraded or fragmented ecosystems. In addition to impediments represented by climate change, we identify several other areas where the absolute scarcity of fresh water, inadequate scientific information or predictive capacity, and a widespread failure to mitigate anthropogenic stressors, are liable to set limits on the recovery of freshwater biodiversity. Implementation of the ERP rapidly and at scale through many widely dispersed local actions focused on regions of high freshwater biodiversity and intense threat, together with an intensification of ex-situ conservation efforts, will be necessary to preserve native freshwater biodiversity during an increasingly uncertain climatic future in which poorly understood, emergent and interacting threats have become more influential. But implementation of the ERP must be accompanied by measures that will improve water, energy and food security for humans - without further compromising the condition of freshwater ecosystems. Unfortunately, the inadequate political implementation of policies to arrest widely recognized environmental challenges such as climate change do not inspire confidence about the possible success of the ERP. In many parts of the world, the Anthropocene future seems certain to include extended periods with an absolute scarcity of uncontaminated surface runoff that will inevitably be appropriated by humans. Unless there is a step-change in societal awareness of - and commitment to - the conservation of freshwater biodiversity, together with necessary actions to arrest climate change, implementation of established methods for protecting freshwater biodiversity may not bend the curve enough to prevent continued ecosystem degradation and species loss.
Collapse
Affiliation(s)
- David Dudgeon
- Division of Ecology & Biodiversity, School of Biological SciencesThe University of Hong KongPokfulamHong Kong SARChina
| | - David L. Strayer
- Cary Institute of Ecosystem StudiesP.O. Box ABMillbrookNY 12545USA
| |
Collapse
|
2
|
Ter Ü, Ertürk Gürkan S, Gürkan M, Kunili IE, Aksoy E. Pathological and oxidative stress responses of Mytilus galloprovincialis to Vibrio mediterranei infection: An in vivo challenge. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109889. [PMID: 39250984 DOI: 10.1016/j.fsi.2024.109889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Since the identification of Vibrio mediterranei as a causative agent in mass mortalities of pen shells across the Mediterranean, elucidating its pathogenicity, virulence, and interactions with other bivalves has gained importance. While the cellular and immune responses of bivalves to various Vibrio species have been extensively studied, the infectious characteristics of this Vibrio species, particularly in the context of pen shell outbreaks, remain unclear for other bivalves. Therefore, to evaluate its pathogenicity, we investigated the histological and oxidative effects on the Mediterranean mussel (Mytilus galloprovincialis), a key species in aquaculture. Two distinct infection setups were established: one involving the inoculation of seawater with the bacterial isolate and another involving direct injection of the bacteria into the mussels. After a 24-h exposure period, histological evaluations were conducted on the mantle, gill, and digestive gland tissues of the mussels. Additionally, measurements of superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), and lipid peroxidation levels were performed in the gill and digestive gland tissues. Oxidative responses were significantly elevated in both infection setups compared to the control group, with the directly injected samples exhibiting the highest oxidative responses (p < 0.05). Histological findings indicated that tissue-specific responses to host-pathogen interactions were consistent under both infection conditions. Notable observations included intense hemocytic infiltration in tissues, epithelial hyperplasia, and vacuolization in the gills, as well as focal necrotic areas in the digestive gland. The findings of this study indicate that V. mediterranei, a relatively novel pathogen, can provoke significant acute immune responses and tissue-level reactions in M. galloprovincialis, a species that is both widely distributed and vital to the food chain. These insights into the potential susceptibility of mussels underscore the need for further comprehensive research and inform the development of effective management strategies.
Collapse
Affiliation(s)
- Ümmügülsüm Ter
- Çanakkale Onsekiz Mart University, Faculty of Science, Department of Biology, Çanakkale, Turkey
| | - Selin Ertürk Gürkan
- Çanakkale Onsekiz Mart University, Faculty of Science, Department of Biology, Çanakkale, Turkey.
| | - Mert Gürkan
- Çanakkale Onsekiz Mart University, Faculty of Science, Department of Biology, Çanakkale, Turkey
| | - Ibrahim Ender Kunili
- Çanakkale Onsekiz Mart University, Faculty of Marine Science and Technology, Department of Fishing and Processing Technology, Çanakkale, Turkey
| | - Emircan Aksoy
- Çanakkale Onsekiz Mart University, Faculty of Science, Department of Biology, Çanakkale, Turkey
| |
Collapse
|
3
|
Ożgo M, Urbańska M, Biereżnoj-Bazille U, Marczakiewicz P, Tarka K, Kamocki A. Reintroduction of freshwater mussels (Bivalvia, Unionida) directly after channel dredging can serve as an effective measure in mitigation conservation. Sci Rep 2024; 14:16967. [PMID: 39043878 PMCID: PMC11266403 DOI: 10.1038/s41598-024-67836-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/16/2024] [Indexed: 07/25/2024] Open
Abstract
This study is based on a natural experiment carried out in the Biebrza National Park, Poland. The study site was a channel inhabited by Anodonta anatina, A. cygnea, Unio pictorum and U. tumidus. The deepening of the channel to restore ecosystem connectivity provided an opportunity to conduct this study. Mussels were collected before dredging, held in captivity for 48 h, measured, individually tagged and released post-dredging to the same 5-m channel sections they originated from. They were subsequently monitored for three consecutive years. Mussel survival remained high throughout the study, and no increased mortality in the year following reintroduction was observed. There was no growth retardation. Mussel mobility was low, with most individuals remaining in the same channel section in which they were released. Recolonisation patterns were consistent with the composition of mussel communities in adjacent unaffected habitats. Although dredging drastically changes mussel habitat, some characteristics: microclimate, water chemistry, nutrient availability and host fish can remain adequate. Our study shows that reintroducing mussels to the same site can serve as an effective mitigation conservation measure and can be preferable to translocation, particularly when carried out under time pressure with limited possibilities of assigning appropriate destination sites.
Collapse
Affiliation(s)
- Małgorzata Ożgo
- Department of Evolutionary Biology, Kazimierz Wielki University, Bydgoszcz, Poland.
| | - Maria Urbańska
- Institute of Zoology, Poznań University of Life Sciences, Poznań, Poland
| | | | | | | | - Andrzej Kamocki
- Faculty of Civil Engineering and Environmental Sciences, Białystok University of Technology, Białystok, Poland
| |
Collapse
|
4
|
Brian JI, Aldridge DC. Factors at multiple scales drive parasite community structure. J Anim Ecol 2023; 92:377-390. [PMID: 36421047 PMCID: PMC10098736 DOI: 10.1111/1365-2656.13853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022]
Abstract
Understanding how ecological communities are assembled remains a key goal of ecosystem ecology. Because communities are hierarchical, factors acting at multiple scales can contribute to patterns of community structure. Parasites provide a natural system to explore this idea, as they exist as discrete communities within host individuals, which are themselves part of a community and metacommunity. We aimed to understand the relative contribution of multi-scale drivers in parasite community assembly and assess how patterns at one level may mask those occurring at another. Specifically, we wanted to disentangle patterns caused by passive sampling from those determined by ecological drivers, and how these vary with scale. We applied a Markov Random Fields model and assessed measures of β-diversity and nestedness for 420 replicate parasite infracommunities (parasite assemblages in host individuals) across two freshwater mussel host species, three sites and two time periods, comparing our results to simulations from four different ecologically relevant null models. We showed that β-diversity between sites (explaining 25% of variation in parasite distribution) and host species (41%) is greater than expected, and β-diversity between individual hosts is smaller than expected, even after accounting for parasite prevalence and characteristics of host individuals. Furthermore, parasite communities were significantly less nested than expected once parasite prevalence and host characteristics were both accounted for, but more nested than expected otherwise, suggesting a degree of modularity at the within-host level that is masked if underlying host and parasite characteristics are not taken into account. The Markov Random Fields model provided evidence for possible competitive within-host parasite interactions, providing a mechanism for the observed infracommunity modularity. An integrative approach that examines factors at multiple scales is necessary to understand the composition of ecological communities. Furthermore, patterns at one level can alter the interpretation of ecologically important drivers at another if variation at higher scales is not accounted for.
Collapse
Affiliation(s)
- Joshua I Brian
- Aquatic Ecology Group, The David Attenborough Building, Department of Zoology, University of Cambridge, Cambridge, UK.,Department of Geography, Bush House NE, King's College London, London, UK
| | - David C Aldridge
- Aquatic Ecology Group, The David Attenborough Building, Department of Zoology, University of Cambridge, Cambridge, UK
| |
Collapse
|
5
|
Aldridge DC, Ollard IS, Bespalaya YV, Bolotov IN, Douda K, Geist J, Haag WR, Klunzinger MW, Lopes‐Lima M, Mlambo MC, Riccardi N, Sousa R, Strayer DL, Torres SH, Vaughn CC, Zając T, Zieritz A. Freshwater mussel conservation: A global horizon scan of emerging threats and opportunities. GLOBAL CHANGE BIOLOGY 2023; 29:575-589. [PMID: 36444494 PMCID: PMC10100069 DOI: 10.1111/gcb.16510] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/27/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
We identified 14 emerging and poorly understood threats and opportunities for addressing the global conservation of freshwater mussels over the next decade. A panel of 17 researchers and stakeholders from six continents submitted a total of 56 topics that were ranked and prioritized using a consensus-building Delphi technique. Our 14 priority topics fell into five broad themes (autecology, population dynamics, global stressors, global diversity, and ecosystem services) and included understanding diets throughout mussel life history; identifying the drivers of population declines; defining metrics for quantifying mussel health; assessing the role of predators, parasites, and disease; informed guidance on the risks and opportunities for captive breeding and translocations; the loss of mussel-fish co-evolutionary relationships; assessing the effects of increasing surface water changes; understanding the effects of sand and aggregate mining; understanding the effects of drug pollution and other emerging contaminants such as nanomaterials; appreciating the threats and opportunities arising from river restoration; conserving understudied hotspots by building local capacity through the principles of decolonization; identifying appropriate taxonomic units for conservation; improved quantification of the ecosystem services provided by mussels; and understanding how many mussels are enough to provide these services. Solutions for addressing the topics ranged from ecological studies to technological advances and socio-political engagement. Prioritization of our topics can help to drive a proactive approach to the conservation of this declining group which provides a multitude of important ecosystem services.
Collapse
Affiliation(s)
- David C. Aldridge
- Aquatic Ecology Group, Department of ZoologyUniversity of CambridgeCambridgeUK
| | - Isobel S. Ollard
- Aquatic Ecology Group, Department of ZoologyUniversity of CambridgeCambridgeUK
| | - Yulia V. Bespalaya
- N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of SciencesArkhangelskRussia
| | - Ivan N. Bolotov
- N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of SciencesArkhangelskRussia
- Northern Arctic Federal UniversityArkhangelskRussia
| | - Karel Douda
- Department of Zoology and FisheriesCzech University of Life Sciences PraguePragueCzech Republic
| | - Juergen Geist
- Aquatic Systems Biology UnitTechnical University of MunichFreisingGermany
| | - Wendell R. Haag
- Southern Research Station, Center for Bottomland Hardwoods ResearchU.S. Forest ServiceFrankfortKentuckyUSA
| | - Michael W. Klunzinger
- Australian Rivers InstituteGriffith UniversityNathanQueenslandAustralia
- Department of Aquatic ZoologyWestern Australian MuseumWelshpoolWestern AustralianAustralia
| | - Manuel Lopes‐Lima
- CIBIO/InBIO/BIOPOLIS—Research Center in Biodiversity and Genetic ResourcesUniversity of PortoVairãoPortugal
| | - Musa C. Mlambo
- Department of Freshwater InvertebratesAlbany MuseumMakhandaSouth Africa
- Department of Zoology and EntomologyRhodes UniversityMakhandaSouth Africa
| | | | - Ronaldo Sousa
- CBMA—Centre of Molecular and Environmental Biology, Department of BiologyUniversity of MinhoBragaPortugal
| | - David L. Strayer
- Cary Institute of Ecosystem StudiesMillbrookNew YorkUSA
- Graham Sustainability InstituteUniversity of MichiganAnn ArborMichiganUSA
| | - Santiago H. Torres
- Centro de Investigaciones y Transferencia Santa Cruz (CONICET, UNPA, UTN), Unidad Académica San JuliánUniversidad Nacional de la Patagonia AustralSanta CruzArgentina
| | - Caryn C. Vaughn
- Oklahoma Biological Survey and Department of BiologyUniversity of OklahomaNormanOklahomaUSA
| | - Tadeusz Zając
- Institute of Nature ConservationPolish Academy of SciencesKrakówPoland
| | | |
Collapse
|
6
|
Brian JI, Aldridge DC. Mussel parasite richness and risk of extinction. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2022; 36:e13979. [PMID: 35929586 PMCID: PMC10087751 DOI: 10.1111/cobi.13979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/22/2022] [Accepted: 06/15/2022] [Indexed: 04/13/2023]
Abstract
Parasite conservation is important for the maintenance of ecosystem diversity and function. Conserving parasites relies first on understanding parasite biodiversity and second on estimating the extinction risk to that biodiversity. Although steps have been taken independently in both these areas, previous studies have overwhelmingly focused on helminths in vertebrate hosts over broad scales, providing low resolution and excluding a large proportion of possible host and parasite diversity. We estimated both total obligate parasite richness and parasite extinction risk in freshwater mussels (Unionidae and Margaritiferidae) from Europe and the United States to provide a case study for considering parasite conservation in a severely understudied system. We used currently reported host-parasite relationships to extrapolate parasite diversity to all possible mussel hosts and then used the threat levels of those hosts to estimate the extinction risk for both described and undescribed parasites. An estimated 67% of parasite richness in freshwater mussels is undescribed and over 80% of the most host-specific groups (digenean trematodes and ciliates) are undescribed. We estimated that 21% of this total parasite fauna is at immediate risk of extinction, corresponding to 60 unique species, many of which will likely go extinct before being described. Given the important roles parasites play in community structure and function and the strong ecosystem engineering capacities of freshwater mussels, such extinctions are likely to severely affect freshwater ecosystems. Our detailed study of mussel parasites provides compelling evidence for the hidden conservation threat to parasites through extinction cascades and shows parasites are deserving of immediate attention.
Collapse
Affiliation(s)
- Joshua I Brian
- Department of Zoology, University of Cambridge, Cambridge, UK
- Department of Geography, King's College London, London, UK
| | - David C Aldridge
- Department of Zoology, University of Cambridge, Cambridge, UK
- BioRISC, St Catharine's College, Cambridge, UK
| |
Collapse
|