1
|
Mathon L, Baletaud F, Lebourges‐Dhaussy A, Lecellier G, Menkes C, Bachelier C, Bonneville C, Dejean T, Dumas M, Fiat S, Grelet J, Habasque J, Manel S, Mannocci L, Mouillot D, Peran M, Roudaut G, Sidobre C, Varillon D, Vigliola L. Three-dimensional conservation planning of fish biodiversity metrics to achieve the deep-sea 30×30 conservation target. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2025; 39:e14368. [PMID: 39225250 PMCID: PMC11959324 DOI: 10.1111/cobi.14368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 06/05/2024] [Accepted: 06/24/2024] [Indexed: 09/04/2024]
Abstract
Accelerating rate of human impact and environmental change severely affects marine biodiversity and increases the urgency to implement the Convention on Biological Diversity (CBD) 30×30 plan for conserving 30% of sea areas by 2030. However, area-based conservation targets are complex to identify in a 3-dimensional (3D) ocean where deep-sea features such as seamounts have been seldom studied mostly due to challenging methodologies to implement at great depths. Yet, the use of emerging technologies, such as environmental DNA combined with modern modeling frameworks, could help address the problem. We collected environmental DNA, echosounder acoustic, and video data at 15 seamounts and deep island slopes across the Coral Sea. We modeled 7 fish community metrics and the abundances of 45 individual species and molecular operational taxonomic units (MOTUs) in benthic and pelagic waters (down to 600-m deep) with boosted regression trees and generalized joint attribute models to describe biodiversity on seamounts and deep slopes and identify 3D protection solutions for achieving the CBD area target in New Caledonia (1.4 million km2). We prioritized the identified conservation units in a 3D space, based on various biodiversity targets, to meet the goal of protecting at least 30% of the spatial domain, with a focus on areas with high biodiversity. The relationship between biodiversity protection targets and the spatial area protected by the solution was linear. The scenario protecting 30% of each biodiversity metric preserved almost 30% of the considered spatial domain and accounted for the 3D distribution of biodiversity. Our study paves the way for the use of combined data collection methodologies to improve biodiversity estimates in 3D structured marine environments for the selection of conservation areas and for the use of biodiversity targets to achieve area-based international targets.
Collapse
Affiliation(s)
- Laetitia Mathon
- ENTROPIE, IRD, CNRS, Ifremer, Université de la RéunionUniversité de la Nouvelle‐CalédonieNouméaNew Caledonia
- CEFE, Univ. Montpellier, CNRSEPHE‐PSL University, IRDMontpellierFrance
| | - Florian Baletaud
- ENTROPIE, IRD, CNRS, Ifremer, Université de la RéunionUniversité de la Nouvelle‐CalédonieNouméaNew Caledonia
- MARBECUniv. Montpellier, CNRS, IfremerIRDMontpellierFrance
- Soproner, groupe GINGERNouméaNew Caledonia
| | | | - Gaël Lecellier
- ENTROPIE, IRD, CNRS, Ifremer, Université de la RéunionUniversité de la Nouvelle‐CalédonieNouméaNew Caledonia
| | - Christophe Menkes
- ENTROPIE, IRD, CNRS, Ifremer, Université de la RéunionUniversité de la Nouvelle‐CalédonieNouméaNew Caledonia
| | | | - Claire Bonneville
- ENTROPIE, IRD, CNRS, Ifremer, Université de la RéunionUniversité de la Nouvelle‐CalédonieNouméaNew Caledonia
| | | | - Mahé Dumas
- ENTROPIE, IRD, CNRS, Ifremer, Université de la RéunionUniversité de la Nouvelle‐CalédonieNouméaNew Caledonia
| | - Sylvie Fiat
- ENTROPIE, IRD, CNRS, Ifremer, Université de la RéunionUniversité de la Nouvelle‐CalédonieNouméaNew Caledonia
| | | | | | - Stéphanie Manel
- CEFE, Univ. Montpellier, CNRSEPHE‐PSL University, IRDMontpellierFrance
| | - Laura Mannocci
- MARBECUniv. Montpellier, CNRS, IfremerIRDMontpellierFrance
| | - David Mouillot
- MARBECUniv. Montpellier, CNRS, IfremerIRDMontpellierFrance
| | - Maëlis Peran
- ENTROPIE, IRD, CNRS, Ifremer, Université de la RéunionUniversité de la Nouvelle‐CalédonieNouméaNew Caledonia
- LEMAR, Univ. Brest, CNRS, IRD, IfremerPlouzanéFrance
| | | | - Christine Sidobre
- ENTROPIE, IRD, CNRS, Ifremer, Université de la RéunionUniversité de la Nouvelle‐CalédonieNouméaNew Caledonia
| | | | - Laurent Vigliola
- ENTROPIE, IRD, CNRS, Ifremer, Université de la RéunionUniversité de la Nouvelle‐CalédonieNouméaNew Caledonia
| |
Collapse
|
2
|
Samoilys M, Osuka KE, Roche R, Koldewey H, Chabanet P. Effects of protection on large-bodied reef fishes in the western Indian Ocean. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2025:e14430. [PMID: 39853835 DOI: 10.1111/cobi.14430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/22/2024] [Accepted: 10/16/2024] [Indexed: 01/26/2025]
Abstract
Predatory and large-bodied coral reef fishes have fundamental roles in the functioning and biodiversity of coral reef ecosystems, but their populations are declining, largely due to overexploitation in fisheries. These fishes include sharks, groupers, Humphead wrasse (Cheilinus undulatus), and Green Humphead parrotfish (Bolbometopon muricatum). In the western Indian Ocean, this situation is exacerbated by limited population data on these fishes, including from conventional visual census methods, which limit the surface area surveyed. We developed a rapid timed scuba swim survey approach for application over large areas for estimation of the abundance of large-bodied reef fishes and assessment of the effectiveness of marine protected areas (MPAs) in maintaining these species' populations. Using this method, we sampled 7 regions in the western central Indian Ocean and Gulf of Aden, including 2 remote reference locations where fishing is prohibited. Eight families were selected for the surveys from across 3 categories: pelagic, demersal, and large-bodied single species. Sharks (Carcharhinidae) were absent in 5 of the 7 regions, observed only in Mozambique and the Chagos Archipelago. Tunas (Scombridae) and barracudas (Sphyraenidae) were rarely observed (none in Madagascar, Djibouti, and Iles Glorieuses). The Giant grouper (Epinephelus lanceolatus) was absent in all regions, Humphead wrasse was absent in Comoros and Iles Glorieuses, and Green Humphead parrotfish was observed at only one site in Tanzania. The MPAs were not effective in protecting these single large-bodied species or the 4 pelagic families, except for sharks in the highly protected reference locations. However, MPAs with medium levels of protection were effective in maintaining the abundance of some demersal families, notably large-bodied groupers. Our results support the hypothesis of local extirpation of these large-bodied fishes on many coral reefs in the western Indian Ocean.
Collapse
Affiliation(s)
- Melita Samoilys
- CORDIO East Africa, Mombasa, Kenya
- Department of Biology, University of Oxford, Oxford, UK
| | - Kennedy E Osuka
- CORDIO East Africa, Mombasa, Kenya
- School of Environmental Science, University of Liverpool, Liverpool, UK
| | - Ronan Roche
- Department of Earth, Oceans and Ecological Science, University of Bangor, Bangor, UK
| | - Heather Koldewey
- Zoological Society of London, London, UK
- Centre for Ecology and Conservation, University of Exeter, Cornwall, UK
| | - Pascale Chabanet
- UMR ENTROPIE (IRD, UR, CNRS, IFREMER, UNC), CS 41096, La Reunion, France
| |
Collapse
|
3
|
Tebbett SB, Emslie MJ, Jonker MJ, Ling SD, Pratchett MS, Siqueira AC, Thompson AA, Yan HF, Bellwood DR. Epilithic algal composition and the functioning of Anthropocene coral reefs. MARINE POLLUTION BULLETIN 2025; 210:117322. [PMID: 39591677 DOI: 10.1016/j.marpolbul.2024.117322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
Epilithic algae dominate cover on coral reefs globally, forming a critical ecological interface between the benthos and reef organisms. Yet, the drivers of epilithic algal composition, and how composition relates to the distribution of key taxa, remain unclear. We develop a novel metric, the Epilithic Algal Ratio, based on turf cover relative to total epilithic algae cover, and use this metric to assess cross-scale patterns. We reveal water quality and hydrodynamics as the key environmental drivers of the Epilithic Algal Ratio across the Great Barrier Reef (GBR), and reefs globally. On the GBR, the abundance of herbivorous fishes and juvenile corals were also related to the Epilithic Algal Ratio, suggesting that reefs with long-dense turfs support fewer herbivores and corals. Ultimately, epilithic algae represent the interface through which the effects of declining water quality, which impacts a third of reefs globally, can reverberate up through coral reefs, compromising their functioning.
Collapse
Affiliation(s)
- Sterling B Tebbett
- Research Hub for Coral Reef Ecosystem Functions, James Cook University, Townsville, Queensland 4811, Australia; College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia; Institute for Marine and Antarctic Studies, University of Tasmania, Hobart 7001, Australia.
| | - Michael J Emslie
- Australian Institute of Marine Science, Townsville, Queensland 4810, Australia
| | - Michelle J Jonker
- Australian Institute of Marine Science, Townsville, Queensland 4810, Australia
| | - Scott D Ling
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart 7001, Australia
| | - Morgan S Pratchett
- College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| | - Alexandre C Siqueira
- Research Hub for Coral Reef Ecosystem Functions, James Cook University, Townsville, Queensland 4811, Australia; College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia; Centre for Marine Ecosystems Research, School of Science, Edith Cowan University, Perth, WA 6027, Australia
| | - Angus A Thompson
- Australian Institute of Marine Science, Townsville, Queensland 4810, Australia
| | - Helen F Yan
- Research Hub for Coral Reef Ecosystem Functions, James Cook University, Townsville, Queensland 4811, Australia; College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| | - David R Bellwood
- Research Hub for Coral Reef Ecosystem Functions, James Cook University, Townsville, Queensland 4811, Australia; College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
4
|
Strain EMA, Bugnot AB, Hancock B, Fulweiler RW, Ross DJ, Reeves SE. Assessing the ecological functioning and biodiversity of remnant native flat oyster (Ostrea angasi) reefs in temperate southeast Australia. MARINE ENVIRONMENTAL RESEARCH 2024; 202:106782. [PMID: 39413623 DOI: 10.1016/j.marenvres.2024.106782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/16/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
Oyster reefs are critically endangered coastal habitats which provide valuable ecosystems services. Despite their importance, there remains a significant knowledge gap in our understanding of how oyster and sediment characteristics influence the ecological functioning and biodiversity of remnant Australian flat oyster (Ostrea angasi) reefs. To inform restoration efforts, we assessed relationships between community respiration rates (CR), inorganic nitrogen fluxes, filtration rates, biodiversity, and oyster morphometrics as well as sediment conditions for three remanent flat oyster reefs (Oyster Cove, Ralphs Bay, and Quarantine Bay) in southeast Tasmania. Additionally, we explored relationships between net denitrification, and flat oyster morphometrics and sediment conditions at one of the sites (Ralphs Bay) in southeast Tasmania. We observed positive relationships between CR, inorganic nitrogen fluxes, filtration rates, and live flat oyster biomass, as well as between the richness and biomass of associated taxa and total flat oyster biomass (both tissue and shell including dead shell), across all three locations. We also found an increase in net denitrification associated with live oyster biomass at one of the oyster reefs (Ralphs Bay). The CR, inorganic nitrogen fluxes, filtration rates, diversity of taxa and biomass of bivalves and flat oyster biomass was higher at Ralphs Bay, which has the most intact reef, compared to the other two locations. In contrast to other studies, the organic and silt content of the sediment showed limited influence on CR, inorganic nitrogen fluxes, filtration rates and net denitrification. CR, and inorganic nitrogen fluxes in these flat oyster reefs were like other restored and natural oyster reefs globally, but net denitrification, filtration rate and taxonomic richness exceeded those previously observed globally. These results highlight the important role of oyster biomass in enhancing water quality and biodiversity. Burgeoning flat oyster reef restoration initiatives should prioritise the enhancement of both live oyster populations and dead shells to recover their associated ecological functions and biological diversity.
Collapse
Affiliation(s)
- Elisabeth M A Strain
- Institute for Marine and Antarctic Science, University of Tasmania, Hobart, Tasmania, Australia; Centre for Marine Socioecology, University of Tasmania, Hobart, Tasmania, Australia.
| | - Ana B Bugnot
- CSIRO Environment, St. Lucia, Queensland, Australia
| | | | | | - Donald J Ross
- Institute for Marine and Antarctic Science, University of Tasmania, Hobart, Tasmania, Australia
| | | |
Collapse
|
5
|
Navon G, Nordland O, Kaplan A, Avisar D, Shenkar N. Detection of 10 commonly used pharmaceuticals in reef-building stony corals from shallow (5-12 m) and deep (30-40 m) sites in the Red Sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124698. [PMID: 39122171 DOI: 10.1016/j.envpol.2024.124698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/07/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Although pharmaceutically-active compounds (PhACs) are increasingly being found to be present in marine environments, their presence in coral reefs, already under threat from various stressors, has remains unexplored. This study focused on PhAC presence in two stony-coral genera, collected from different depths and sites in the Red Sea. The findings reveal the presence of ten different PhACs, with elevated concentrations detected in corals from shallow sites and in areas with heavy human activity. Notably, all samples contained at least one PhAC, with the antibiotic sulfamethoxazole being the most prevalent compound, detected in 93% of the samples, at concentrations ranging from 1.5 to 2080 ng/g dry weight (dw) tissue, with an average concentration of 106 ng/g dw. These findings underscore the urgent need for conservation initiatives aimed at protecting coral-reef ecosystems from the escalating threat of anthropogenic contamination, including such potential risks as the development of antibiotic resistance in marine organisms and the disruption of critical spawning synchrony among coral populations.
Collapse
Affiliation(s)
- Gal Navon
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Olivia Nordland
- The Water Research Center, Porter School of the Environment and Earth Sciences, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Aviv Kaplan
- The Water Research Center, Porter School of the Environment and Earth Sciences, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Dror Avisar
- The Water Research Center, Porter School of the Environment and Earth Sciences, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Noa Shenkar
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel; The Steinhardt Museum of Natural History and National Research Center, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
6
|
O’Hara CC, Frazier M, Valle M, Butt N, Kaschner K, Klein C, Halpern BS. Cumulative human impacts on global marine fauna highlight risk to biological and functional diversity. PLoS One 2024; 19:e0309788. [PMID: 39292645 PMCID: PMC11410257 DOI: 10.1371/journal.pone.0309788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/19/2024] [Indexed: 09/20/2024] Open
Abstract
Anthropogenic stressors to marine ecosystems from climate change and human activities increase extinction risk of species, disrupt ecosystem integrity, and threaten important ecosystem services. Addressing these stressors requires understanding where and to what extent they are impacting marine biological and functional diversity. We model cumulative risk of human impact upon 21,159 marine animal species by combining information on species-level vulnerability and spatial exposure to a range of anthropogenic stressors. We apply this species-level assessment of human impacts to examine patterns of species-stressor interactions within taxonomic groups. We then spatially map impacts across the global ocean, identifying locations where climate-driven impacts overlap with fishing, shipping, and land-based stressors to help inform conservation needs and opportunities. Comparing species-level modeled impacts to those based on marine habitats that represent important marine ecosystems, we find that even relatively untouched habitats may still be home to species at elevated risk, and that many species-rich coastal regions may be at greater risk than indicated from habitat-based methods alone. Finally, we incorporate a trait-based metric of functional diversity to identify where impacts to functionally unique species might pose greater risk to community structure and ecosystem integrity. These complementary lenses of species, function, and habitat provide a richer understanding of threats to marine biodiversity to help inform efforts to meet conservation targets and ensure sustainability of nature's contributions to people.
Collapse
Affiliation(s)
- Casey C. O’Hara
- National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, Santa Barbara, California, United States of America
| | - Melanie Frazier
- National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, Santa Barbara, California, United States of America
| | - Mireia Valle
- National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, Santa Barbara, California, United States of America
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Sukarrieta, Spain
- Basque Centre for Climate Change (BC3), Scientific Campus of the University of the Basque Country (UPV-EHU), Leioa, Spain
| | - Nathalie Butt
- The Nature Conservancy, South Brisbane, Queensland, Australia
- Centre for Biodiversity and Conservation Science, School of the Environment, The University of Queensland, Brisbane, Queensland, Australia
| | - Kristin Kaschner
- Department of Biometry and Environmental System Analysis, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Carissa Klein
- Centre for Biodiversity and Conservation Science, School of the Environment, The University of Queensland, Brisbane, Queensland, Australia
| | - Benjamin S. Halpern
- National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, Santa Barbara, California, United States of America
- Bren School of Environmental Science & Management, University of California, Santa Barbara, Santa Barbara, California, United States of America
| |
Collapse
|
7
|
McClanahan TR, Friedlander AM, Wickel J, Graham NAJ, Bruggemann JH, Guillaume MMM, Chabanet P, Porter S, Schleyer MH, Azali MK, Muthiga NA. Testing for concordance between predicted species richness, past prioritization, and marine protected area designations in the western Indian Ocean. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14256. [PMID: 38545935 DOI: 10.1111/cobi.14256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/29/2023] [Accepted: 01/15/2024] [Indexed: 07/24/2024]
Abstract
Scientific advances in environmental data coverage and machine learning algorithms have improved the ability to make large-scale predictions where data are missing. These advances allowed us to develop a spatially resolved proxy for predicting numbers of tropical nearshore marine taxa. A diverse marine environmental spatial database was used to model numbers of taxa from ∼1000 field sites, and the predictions were applied to all 7039 6.25-km2 reef cells in 9 ecoregions and 11 nations of the western Indian Ocean. Our proxy for total numbers of taxa was based on the positive correlation (r2 = 0.24) of numbers of taxa of hard corals and 5 highly diverse reef fish families. Environmental relationships indicated that the number of fish species was largely influenced by biomass, nearness to people, governance, connectivity, and productivity and that coral taxa were influenced mostly by physicochemical environmental variability. At spatial delineations of province, ecoregion, nation, and strength of spatial clustering, we compared areas of conservation priority based on our total species proxy with those identified in 3 previous priority-setting reports and with the protected area database. Our method identified 119 locations that fit 3 numbers of taxa (hard coral, fish, and their combination) and 4 spatial delineations (nation, ecoregion, province, and reef clustering) criteria. Previous publications on priority setting identified 91 priority locations of which 6 were identified by all reports. We identified 12 locations that fit our 12 criteria and corresponded with 3 previously identified locations, 65 that aligned with at least 1 past report, and 28 that were new locations. Only 34% of the 208 marine protected areas in this province overlapped with identified locations with high numbers of predicted taxa. Differences occurred because past priorities were frequently based on unquantified perceptions of remoteness and preselected priority taxa. Our environment-species proxy and modeling approach can be considered among other important criteria for making conservation decisions.
Collapse
Affiliation(s)
- Tim R McClanahan
- Global Marine Programs, Wildlife Conservation Society, Bronx, New York, USA
| | - Alan M Friedlander
- Pristine Seas, National Geographic Society, Washington, DC, USA
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kāne'ohe, Hawaii, USA
| | | | | | - J Henrich Bruggemann
- UMR 9220 ENTROPIE, Université de La Réunion - IRD - CNRS - IFREMER - UNC, Saint Denis, France
- Laboratoire d'Excellence CORAIL, Perpignan, France
| | - Mireille M M Guillaume
- Laboratoire d'Excellence CORAIL, Perpignan, France
- UMR BOREA, Muséum National d'Histoire Naturelle - Sorbonne U - CNRS - IRD - UCN - UA, Paris, France
| | - P Chabanet
- UMR 9220 ENTROPIE, Université de La Réunion - IRD - CNRS - IFREMER - UNC, Saint Denis, France
- Laboratoire d'Excellence CORAIL, Perpignan, France
| | - Sean Porter
- Oceanographic Research Institute, Durban, South Africa
| | | | - M Kodia Azali
- Global Marine Programs, Wildlife Conservation Society, Bronx, New York, USA
| | - N A Muthiga
- Kenya Marine Program, Wildlife Conservation Society, Mombasa, Kenya
| |
Collapse
|
8
|
Brown CJ, Campbell MD, Collier CJ, Turschwell MP, Saunders MI, Connolly RM. Speeding up the recovery of coastal habitats through management interventions that address constraints on dispersal and recruitment. Proc Biol Sci 2024; 291:20241065. [PMID: 39043234 PMCID: PMC11391320 DOI: 10.1098/rspb.2024.1065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/25/2024] Open
Abstract
Plans for habitat restoration will benefit from predictions of timescales for recovery. Theoretical models have been a powerful tool for informing practical guidelines in planning marine protected areas, suggesting restoration planning could also benefit from a theoretical framework. We developed a model that can predict recovery times following restoration action, under dispersal, recruitment and connectivity constraints. We apply the model to a case study of seagrass restoration and find recovery times following restoration action can vary greatly, from <1 to >20 years. The model also shows how recovery can be accelerated when restoration actions are matched to the constraints on recovery. For example, spreading of propagules can be used when connectivity is the critical restriction. The recovery constraints we articulated mathematically also apply to the restoration of coral reefs, mangroves, saltmarsh, shellfish reefs and macroalgal forests, so our model provides a general framework for choosing restoration actions that accelerate coastal habitat recovery.
Collapse
Affiliation(s)
- Christopher J Brown
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001, Australia
- Coastal and Marine Research Centre, School of Environment and Science, Australian Rivers Institute, Griffith University, Gold Coast, Queensland, Australia
| | - Max D Campbell
- Coastal and Marine Research Centre, School of Environment and Science, Australian Rivers Institute, Griffith University, Gold Coast, Queensland, Australia
| | - Catherine J Collier
- Centre for Tropical Water and Aquatic Ecosystem Research, James Cook University, Cairns, Queensland 4870, Australia
| | - Mischa P Turschwell
- Coastal and Marine Research Centre, School of Environment and Science, Australian Rivers Institute, Griffith University, Gold Coast, Queensland, Australia
| | | | - Rod M Connolly
- Coastal and Marine Research Centre, School of Environment and Science, Australian Rivers Institute, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
9
|
Lin YV, Château PA, Nozawa Y, Wei CL, Wunderlich RF, Denis V. Drivers of coastal benthic communities in a complex environmental setting. MARINE POLLUTION BULLETIN 2024; 203:116462. [PMID: 38749153 DOI: 10.1016/j.marpolbul.2024.116462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 06/06/2024]
Abstract
Analyzing the environmental factors affecting benthic communities in coastal areas is crucial for uncovering key factors that require conservation action. Here, we collected benthic and environmental (physical-chemical-historical and land-based) data for 433 transects in Taiwan. Using a k-means approach, five communities dominated by crustose coralline algae, turfs, stony corals, digitate, or bushy octocorals were first delineated. Conditional random forest models then identified physical, chemical, and land-based factors (e.g., light intensity, nitrite, and population density) relevant to community delineation and occurrence. Historical factors, including typhoons and temperature anomalies, had only little effect. The prevalent turf community correlated positively with chemical and land-based drivers, which suggests that anthropogenic impacts are causing a benthic homogenization. This mechanism may mask the effects of climate disturbances and regional differentiation of benthic assemblages. Consequently, management of nutrient enrichment and terrestrial runoff is urgently needed to improve community resilience in Taiwan amidst increasing challenges of climate change.
Collapse
Affiliation(s)
- Yuting Vicky Lin
- Institute of Oceanography, National Taiwan University, Taipei 10617, Taiwan
| | - Pierre-Alexandre Château
- Department of Marine Environment and Engineering, National Sun Yat-Sen University, Kaohsiung 80420, Taiwan
| | - Yoko Nozawa
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa 905-0227, Japan; Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan; Department of Marine Science, Faculty of Fisheries and Marine Science, Universitas Diponegoro, Semarang 50275, Indonesia
| | - Chih-Lin Wei
- Institute of Oceanography, National Taiwan University, Taipei 10617, Taiwan
| | - Rainer Ferdinand Wunderlich
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 10617, Taiwan; INRAE, UR EABX, 33612 Cestas, France
| | - Vianney Denis
- Institute of Oceanography, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
10
|
Selmoni O, Bay LK, Exposito-Alonso M, Cleves PA. Finding genes and pathways that underlie coral adaptation. Trends Genet 2024; 40:213-227. [PMID: 38320882 DOI: 10.1016/j.tig.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/08/2024]
Abstract
Mass coral bleaching is one of the clearest threats of climate change to the persistence of marine biodiversity. Despite the negative impacts of bleaching on coral health and survival, some corals may be able to rapidly adapt to warming ocean temperatures. Thus, a significant focus in coral research is identifying the genes and pathways underlying coral heat adaptation. Here, we review state-of-the-art methods that may enable the discovery of heat-adaptive loci in corals and identify four main knowledge gaps. To fill these gaps, we describe an experimental approach combining seascape genomics with CRISPR/Cas9 gene editing to discover and validate heat-adaptive loci. Finally, we discuss how information on adaptive genotypes could be used in coral reef conservation and management strategies.
Collapse
Affiliation(s)
- Oliver Selmoni
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA; Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA.
| | - Line K Bay
- Reef Recovery, Adaptation, and Restoration, Australian Institute of Marine Science; Townsville, QLD 4810, Australia
| | - Moises Exposito-Alonso
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA; Department of Global Ecology, Carnegie Institution for Science, Stanford, CA 94305, USA.
| | - Phillip A Cleves
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA; Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
11
|
McClanahan TR, Darling ES, Beger M, Fox HE, Grantham HS, Jupiter SD, Logan CA, Mcleod E, McManus LC, Oddenyo RM, Surya GS, Wenger AS, Zinke J, Maina JM. Diversification of refugia types needed to secure the future of coral reefs subject to climate change. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14108. [PMID: 37144480 DOI: 10.1111/cobi.14108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 04/10/2023] [Accepted: 04/17/2023] [Indexed: 05/06/2023]
Abstract
Identifying locations of refugia from the thermal stresses of climate change for coral reefs and better managing them is one of the key recommendations for climate change adaptation. We review and summarize approximately 30 years of applied research focused on identifying climate refugia to prioritize the conservation actions for coral reefs under rapid climate change. We found that currently proposed climate refugia and the locations predicted to avoid future coral losses are highly reliant on excess heat metrics, such as degree heating weeks. However, many existing alternative environmental, ecological, and life-history variables could be used to identify other types of refugia that lead to the desired diversified portfolio for coral reef conservation. To improve conservation priorities for coral reefs, there is a need to evaluate and validate the predictions of climate refugia with long-term field data on coral abundance, diversity, and functioning. There is also the need to identify and safeguard locations displaying resistance toprolonged exposure to heat waves and the ability to recover quickly after thermal exposure. We recommend using more metrics to identify a portfolio of potential refugia sites for coral reefs that can avoid, resist, and recover from exposure to high ocean temperatures and the consequences of climate change, thereby shifting past efforts focused on avoidance to a diversified risk-spreading portfolio that can be used to improve strategic coral reef conservation in a rapidly warming climate.
Collapse
Affiliation(s)
- Tim R McClanahan
- Global Marine Programs, Wildlife Conservation Society, Bronx, New York, USA
| | - Emily S Darling
- Global Marine Programs, Wildlife Conservation Society, Bronx, New York, USA
| | - Maria Beger
- School of Biology, University of Leeds, Leeds, UK
- Centre for Biodiversity and Conservation Science, School of Biological Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Helen E Fox
- Coral Reef Alliance, Oakland, California, USA
| | - Hedley S Grantham
- Forests and Climate Change, Wildlife Conservation Society, Bronx, New York, USA
| | - Stacy D Jupiter
- Melanesia Program, Wildlife Conservation Society, Suva, Fiji
| | - Cheryl A Logan
- Department of Marine Science, California State University, Monterey Bay, Seaside, California, USA
| | - Elizabeth Mcleod
- Global Reefs Program, The Nature Conservancy, Arlington, Virginia, USA
| | - Lisa C McManus
- Hawai'i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Kāne'ohe, Hawai'i, USA
| | - Remy M Oddenyo
- Kenya Marine Program, Wildlife Conservation Society, Mombasa, Kenya
| | - Gautam S Surya
- Forests and Climate Change, Wildlife Conservation Society, Bronx, New York, USA
| | - Amelia S Wenger
- Global Marine Programs, Wildlife Conservation Society, Bronx, New York, USA
- Centre for Biodiversity and Conservation Science, University of Queensland, St. Lucia, Queensland, Australia
| | - Jens Zinke
- School of Geography, Geology and the Environment, University of Leicester, Leicester, UK
| | - Joseph M Maina
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
12
|
Kuempel CD, Thomas J, Wenger AS, Jupiter SD, Suárez-Castro AF, Nasim N, Klein CJ, Hoegh-Guldberg O. A spatial framework for improved sanitation to support coral reef conservation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123003. [PMID: 38040183 DOI: 10.1016/j.envpol.2023.123003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/30/2023] [Accepted: 11/17/2023] [Indexed: 12/03/2023]
Abstract
Coral reefs are one of the most valuable yet threatened ecosystems in the world. Improving human wastewater treatment could reduce land-based impacts on coral reefs. However, information on the quantity and spatial distribution of human wastewater pollution is lacking. Here, we develop a spatial model linking residential human wastewater pollution (nitrogen and phosphorus/year) and conservation sectors [coral reefs] to better understand the relative differences in the distribution and efficacy of different sanitation services and their potential implications for conservation monitoring and management. We apply our model to Fiji, where ongoing initiatives and investments in wastewater treatment for human health could be leveraged to cost-effectively improve coral reef condition. We estimate that wastewater treatment plants account for nearly 80% of human wastewater nutrients released into surface waters. Wasterwater nutrient pollution is widespread, affecting 95% of reefs, but is concentrated across a few watersheds. Our spatially explicit approach can be used to better understand potential benefits and trade-offs between sanitation service improvements and coral reef health, helping to bridge the sanitation and conservation sectors as well as inform and prioritize on the ground action.
Collapse
Affiliation(s)
- Caitlin D Kuempel
- Coastal and Marine Research Centre, Australian Rivers Institute, School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia.
| | - Jacqueline Thomas
- School of Civil Engineering, The University of Sydney, NSW, 2008, Australia
| | - Amelia S Wenger
- Wildlife Conservation Society, Marine Program, Bronx, NY, USA; School of the Environment, Centre for Biodiversity and Conservation Science, University of Queensland, 4072, Australia
| | - Stacy D Jupiter
- Wildlife Conservation Society, Melanesia Program, 11 Ma'afu Street, Suva, Fiji
| | - Andrés F Suárez-Castro
- Australian Rivers Institute, School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
| | - Nabeela Nasim
- School of Civil Engineering, The University of Sydney, NSW, 2008, Australia
| | - Carissa J Klein
- School of the Environment, Centre for Biodiversity and Conservation Science, University of Queensland, 4072, Australia
| | - Ove Hoegh-Guldberg
- School of Biological Sciences, University of Queensland, St Lucia, 4072, QLD, Australia
| |
Collapse
|
13
|
Tebbett SB, Schlaefer JA, Bowden CL, Collins WP, Hemingson CR, Ling SD, Morais J, Morais RA, Siqueira AC, Streit RP, Swan S, Bellwood DR. Bio-physical determinants of sediment accumulation on an offshore coral reef: A snapshot study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165188. [PMID: 37385494 DOI: 10.1016/j.scitotenv.2023.165188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Sediments are found on all coral reefs around the globe. However, the amount of sediment in different reservoirs, and the rates at which sediments move between reservoirs, can shape the biological functioning of coral reefs. Unfortunately, relatively few studies have examined reef sediment dynamics, and associated bio-physical drivers, simultaneously over matching spatial and temporal scales. This has led to a partial understanding of how sediments and living reef systems are connected, especially on clear-water offshore reefs. To address this problem, four sediment reservoirs/sedimentary processes and three bio-physical drivers were quantified across seven different reef habitats/depths at Lizard Island, an exposed mid-shelf reef on the Great Barrier Reef. Even in this clear-water reef location a substantial load of suspended sediment passed over the reef; a load theoretically capable of replacing the entire standing stock of on-reef turf sediments in just 8 h. However, quantification of actual sediment deposition suggested that just 2 % of this passing sediment settled on the reef. The data also revealed marked spatial incongruence in sediment deposition (sediment trap data) and accumulation (TurfPod data) across the reef profile, with the flat and back reef emerging as key areas of both deposition and accumulation. By contrast, the shallow windward reef crest was an area of deposition but had a limited capacity for sediment accumulation. These cross-reef patterns related to wave energy and reef geomorphology, with low sediment accumulation on the ecologically important reef crest aligning with substantial wave energy. These findings reveal a disconnect between patterns of sediment deposition and accumulation on the benthos, with the 'post-settlement' fate of sediments dependent on local hydrodynamic conditions. From an ecological perspective, the data suggests key contextual constraints (wave energy and reef geomorphology) may predispose some reefs or reef areas to high-load turf sediment regimes.
Collapse
Affiliation(s)
- Sterling B Tebbett
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia.
| | - Jodie A Schlaefer
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO), Environment, Townsville, Queensland, 4811, Australia
| | - Casey L Bowden
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| | - William P Collins
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| | - Christopher R Hemingson
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia; Department of Marine Science, The University of Texas at Austin, Marine Science Institute, Port Aransas, TX, USA
| | - Scott D Ling
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart 7001, Australia
| | - Juliano Morais
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| | - Renato A Morais
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia; Paris Sciences et Lettres Université, École Pratique des Hautes Études, EPHE-UPVD-CNRS, USR 3278 CRIOBE, University of Perpignan, Perpignan, France
| | - Alexandre C Siqueira
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| | - Robert P Streit
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| | - Sam Swan
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| | - David R Bellwood
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
14
|
Gove JM, Williams GJ, Lecky J, Brown E, Conklin E, Counsell C, Davis G, Donovan MK, Falinski K, Kramer L, Kozar K, Li N, Maynard JA, McCutcheon A, McKenna SA, Neilson BJ, Safaie A, Teague C, Whittier R, Asner GP. Coral reefs benefit from reduced land-sea impacts under ocean warming. Nature 2023; 621:536-542. [PMID: 37558870 PMCID: PMC10511326 DOI: 10.1038/s41586-023-06394-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 06/30/2023] [Indexed: 08/11/2023]
Abstract
Coral reef ecosystems are being fundamentally restructured by local human impacts and climate-driven marine heatwaves that trigger mass coral bleaching and mortality1. Reducing local impacts can increase reef resistance to and recovery from bleaching2. However, resource managers lack clear advice on targeted actions that best support coral reefs under climate change3 and sector-based governance means most land- and sea-based management efforts remain siloed4. Here we combine surveys of reef change with a unique 20-year time series of land-sea human impacts that encompassed an unprecedented marine heatwave in Hawai'i. Reefs with increased herbivorous fish populations and reduced land-based impacts, such as wastewater pollution and urban runoff, had positive coral cover trajectories predisturbance. These reefs also experienced a modest reduction in coral mortality following severe heat stress compared to reefs with reduced fish populations and enhanced land-based impacts. Scenario modelling indicated that simultaneously reducing land-sea human impacts results in a three- to sixfold greater probability of a reef having high reef-builder cover four years postdisturbance than if either occurred in isolation. International efforts to protect 30% of Earth's land and ocean ecosystems by 2030 are underway5. Our results reveal that integrated land-sea management could help achieve coastal ocean conservation goals and provide coral reefs with the best opportunity to persist in our changing climate.
Collapse
Affiliation(s)
- Jamison M Gove
- Pacific Islands Fisheries Science Center, National Oceanic and Atmospheric Administration (NOAA), Honolulu, HI, USA.
| | - Gareth J Williams
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, UK.
| | - Joey Lecky
- Pacific Islands Regional Office, National Oceanic and Atmospheric Administration, Honolulu, HI, USA
| | - Eric Brown
- National Park of American Samoa, Pago Pago, American Samoa, USA
| | | | - Chelsie Counsell
- Cooperative Institute for Marine and Atmospheric Research, Honolulu, HI, USA
| | - Gerald Davis
- Pacific Islands Regional Office, National Oceanic and Atmospheric Administration, Honolulu, HI, USA
| | - Mary K Donovan
- Center for Global Discovery and Conservation Science, Arizona State University, Hilo, HI, USA
- School of Geographical Sciences and Urban Planning, Arizona State University, Tempe, AZ, USA
| | | | | | - Kelly Kozar
- National Park Service, Pacific Island Network Inventory and Monitoring, Hawai'i National Park, HI, USA
| | - Ning Li
- Department of Ocean and Resources Engineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | | | - Amanda McCutcheon
- National Park Service, Pacific Island Network Inventory and Monitoring, Hawai'i National Park, HI, USA
| | - Sheila A McKenna
- National Park Service, Pacific Island Network Inventory and Monitoring, Hawai'i National Park, HI, USA
| | | | - Aryan Safaie
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA
| | | | | | - Gregory P Asner
- Center for Global Discovery and Conservation Science, Arizona State University, Hilo, HI, USA
- School of Ocean Futures, Arizona State University, Hilo, HI, USA
| |
Collapse
|
15
|
Page CE, Ainsworth TD, Leggat W, Egan S, Gupta AS, Raoult V, Gaston TF. Localising terrestrially derived pollution inputs to threatened near-shore coral reefs through stable isotope, water quality and oceanographic analysis. MARINE POLLUTION BULLETIN 2023; 193:115193. [PMID: 37399735 DOI: 10.1016/j.marpolbul.2023.115193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/10/2023] [Accepted: 06/15/2023] [Indexed: 07/05/2023]
Abstract
Near-shore coral reefs are at high-risk of exposure to pollution from terrestrial activities. Pollution impacts can vary with site-specific factors that span sources, rainfall and oceanographic characteristics. To effectively manage pollution, we need to understand how these factors interact. In this study, we detect terrestrially derived nutrient inputs on near-shore reefs at Norfolk Island, South Pacific by analysis of dissolved inorganic nitrogen (DIN) and stable isotopes. When compared to a reef site with predominantly oceanic inputs, we found that both the lagoon and a small reef adjacent to a catchment have signatures of human-derived DIN shown through depleted δ15N signatures in macroalgae. We find pollution exposure of reef sites is associated with known and unknown sources, rainfall and mixing of water with the open ocean. In characterising exposure of reef sites we highlight the role of site-specific context in influencing pollution exposure for benthic communities even in remote island systems.
Collapse
Affiliation(s)
- C E Page
- School of Biological, Earth and Environmental Sciences (BEES), UNSW, Kensington, NSW 2033, Australia.
| | - T D Ainsworth
- School of Biological, Earth and Environmental Sciences (BEES), UNSW, Kensington, NSW 2033, Australia
| | - W Leggat
- University of Newcastle, School of Environmental and Life Sciences, University Dr, Callaghan, NSW 2308, Australia
| | - S Egan
- School of Biological, Earth and Environmental Sciences (BEES), UNSW, Kensington, NSW 2033, Australia
| | - A Sen Gupta
- School of Biological, Earth and Environmental Sciences (BEES), UNSW, Kensington, NSW 2033, Australia
| | - V Raoult
- University of Newcastle, School of Environmental and Life Sciences, University Dr, Callaghan, NSW 2308, Australia; Marine Ecology Group, School of Natural Sciences, Macquarie University, North Ryde, NSW 2113, Australia
| | - T F Gaston
- University of Newcastle, School of Environmental and Life Sciences, University Dr, Callaghan, NSW 2308, Australia
| |
Collapse
|
16
|
Chan YKS, Affendi YA, Ang PO, Baria-Rodriguez MV, Chen CA, Chui APY, Giyanto, Glue M, Huang H, Kuo CY, Kim SW, Lam VYY, Lane DJW, Lian JS, Lin SMNN, Lunn Z, Nañola CL, Nguyen VL, Park HS, Suharsono, Sutthacheep M, Vo ST, Vibol O, Waheed Z, Yamano H, Yeemin T, Yong E, Kimura T, Tun K, Chou LM, Huang D. Decadal stability in coral cover could mask hidden changes on reefs in the East Asian Seas. Commun Biol 2023; 6:630. [PMID: 37301948 PMCID: PMC10257672 DOI: 10.1038/s42003-023-05000-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Coral reefs in the Central Indo-Pacific region comprise some of the most diverse and yet threatened marine habitats. While reef monitoring has grown throughout the region in recent years, studies of coral reef benthic cover remain limited in spatial and temporal scales. Here, we analysed 24,365 reef surveys performed over 37 years at 1972 sites throughout East Asia by the Global Coral Reef Monitoring Network using Bayesian approaches. Our results show that overall coral cover at surveyed reefs has not declined as suggested in previous studies and compared to reef regions like the Caribbean. Concurrently, macroalgal cover has not increased, with no indications of phase shifts from coral to macroalgal dominance on reefs. Yet, models incorporating socio-economic and environmental variables reveal negative associations of coral cover with coastal urbanisation and sea surface temperature. The diversity of reef assemblages may have mitigated cover declines thus far, but climate change could threaten reef resilience. We recommend prioritisation of regionally coordinated, locally collaborative long-term studies for better contextualisation of monitoring data and analyses, which are essential for achieving reef conservation goals.
Collapse
Affiliation(s)
- Y K S Chan
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| | - Y A Affendi
- Institute of Ocean and Earth Sciences, Universiti Malaya, Kuala Lumpur, Malaysia
| | - P O Ang
- Institute of Space and Earth Information Science, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - M V Baria-Rodriguez
- Marine Science Institute, University of the Philippines Diliman, Quezon, Philippines
| | - C A Chen
- Biodiversity Research Centre, Academia Sinica, Taipei, Taiwan
| | - A P Y Chui
- Institute of Space and Earth Information Science, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Giyanto
- Research Center for Oceanography, National Research and Innovation Agency (BRIN), Jakarta, Indonesia
| | - M Glue
- Fauna & Flora International, Phnom Penh, Cambodia
| | - H Huang
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - C-Y Kuo
- Biodiversity Research Centre, Academia Sinica, Taipei, Taiwan
| | - S W Kim
- School of Biological Sciences, The University of Queensland, Brisbane, Australia
| | - V Y Y Lam
- Global Coral Reef Monitoring Network, International Union for the Conservation of Nature, Washington D.C., USA
- Marine Spatial Ecology Lab, School of Biological Sciences, The University of Queensland, Brisbane, Australia
| | - D J W Lane
- Lee Kong Chian Natural History Museum, National University of Singapore, Singapore, Singapore
- Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei Darussalam
| | - J S Lian
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - S M N N Lin
- Fauna & Flora International, Yangon, Myanmar
| | - Z Lunn
- Fauna & Flora International, Yangon, Myanmar
| | - C L Nañola
- University of the Philippines Mindanao, Davao, Philippines
| | - V L Nguyen
- Institute of Oceanography, Vietnam Academy of Science and Technology, Nha Trang, Vietnam
| | - H S Park
- Korean Institute of Ocean Science and Technology, Seoul, South Korea
| | - Suharsono
- Research Center for Oceanography, National Research and Innovation Agency (BRIN), Jakarta, Indonesia
| | - M Sutthacheep
- Department of Biological Sciences, Ramkhamhaeng University, Bangkok, Thailand
| | - S T Vo
- Institute of Oceanography, Vietnam Academy of Science and Technology, Nha Trang, Vietnam
| | - O Vibol
- Department of Fisheries Conservation, Ministry of Agriculture, Phnom Penh, Cambodia
| | - Z Waheed
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - H Yamano
- National Institute for Environmental Studies, Tsukaba, Japan
| | - T Yeemin
- Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - E Yong
- Reef Check Brunei, Bandar Seri Begawan, Brunei Darussalam
| | - T Kimura
- Global Coral Reef Monitoring Network East Asia Region, Tokyo, Japan
- Palau International Coral Reef Center, Koror, Palau
| | - K Tun
- Global Coral Reef Monitoring Network East Asia Region, Tokyo, Japan
- National Biodiversity Centre, National Parks Board, Singapore, Singapore
| | - L M Chou
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Tropical Marine Science Institute, National University of Singapore, Singapore, Singapore
| | - D Huang
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Lee Kong Chian Natural History Museum, National University of Singapore, Singapore, Singapore
- Tropical Marine Science Institute, National University of Singapore, Singapore, Singapore
- Centre for Nature-based Climate Solutions, National University of Singapore, Singapore, Singapore
| |
Collapse
|
17
|
Cannon SE, Donner SD, Liu A, González Espinosa PC, Baird AH, Baum JK, Bauman AG, Beger M, Benkwitt CE, Birt MJ, Chancerelle Y, Cinner JE, Crane NL, Denis V, Depczynski M, Fadli N, Fenner D, Fulton CJ, Golbuu Y, Graham NAJ, Guest J, Harrison HB, Hobbs JPA, Hoey AS, Holmes TH, Houk P, Januchowski-Hartley FA, Jompa J, Kuo CY, Limmon GV, Lin YV, McClanahan TR, Muenzel D, Paddack MJ, Planes S, Pratchett MS, Radford B, Reimer JD, Richards ZT, Ross CL, Rulmal J, Sommer B, Williams GJ, Wilson SK. Macroalgae exhibit diverse responses to human disturbances on coral reefs. GLOBAL CHANGE BIOLOGY 2023; 29:3318-3330. [PMID: 37020174 DOI: 10.1111/gcb.16694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 05/16/2023]
Abstract
Scientists and managers rely on indicator taxa such as coral and macroalgal cover to evaluate the effects of human disturbance on coral reefs, often assuming a universally positive relationship between local human disturbance and macroalgae. Despite evidence that macroalgae respond to local stressors in diverse ways, there have been few efforts to evaluate relationships between specific macroalgae taxa and local human-driven disturbance. Using genus-level monitoring data from 1205 sites in the Indian and Pacific Oceans, we assess whether macroalgae percent cover correlates with local human disturbance while accounting for factors that could obscure or confound relationships. Assessing macroalgae at genus level revealed that no genera were positively correlated with all human disturbance metrics. Instead, we found relationships between the division or genera of algae and specific human disturbances that were not detectable when pooling taxa into a single functional category, which is common to many analyses. The convention to use percent cover of macroalgae as an indication of local human disturbance therefore likely obscures signatures of local anthropogenic threats to reefs. Our limited understanding of relationships between human disturbance, macroalgae taxa, and their responses to human disturbances impedes the ability to diagnose and respond appropriately to these threats.
Collapse
Affiliation(s)
- Sara E Cannon
- Department of Geography, University of British Columbia, British Columbia, Vancouver, Canada
| | - Simon D Donner
- Department of Geography, University of British Columbia, British Columbia, Vancouver, Canada
| | - Angela Liu
- Department of Geography, University of British Columbia, British Columbia, Vancouver, Canada
- School of Geography and the Environment, University of Oxford, Oxford, UK
| | - Pedro C González Espinosa
- Department of Geography, University of British Columbia, British Columbia, Vancouver, Canada
- Institute for the Oceans and Fisheries, University of British Columbia, British Columbia, Vancouver, Canada
| | - Andrew H Baird
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Queensland, Townsville, Australia
| | - Julia K Baum
- Department of Biology, University of Victoria, British Columbia, Victoria, Canada
| | - Andrew G Bauman
- Department of Marine and Environmental Science, Nova Southeastern University, Florida, Dania Beach, USA
| | - Maria Beger
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Department of Aquatic Resources Management, Faculty of Fisheries and Marine Science, Pattimura University, Ambon, Indonesia
- Centre for Biodiversity and Conservation Science, University of Queensland, Queensland, St Lucia, Australia
| | | | - Matthew J Birt
- Australian Institute of Marine Science, Western Australia, Perth, Australia
| | - Yannick Chancerelle
- CRIOBE, UAR 3278 CNRS-EPHE-UPVD, Moorea French Polynesia and the French Center for Excellence for Coral Reefs (LabEx Corail), PSL Research University, Paris, France
| | - Joshua E Cinner
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Queensland, Townsville, Australia
| | - Nicole L Crane
- One People One Reef, California, Santa Cruz, USA
- Department of Biology, Cabrillo College, California, Aptos, USA
| | - Vianney Denis
- Institute of Oceanography, National Taiwan University, Taipei, Taiwan
| | - Martial Depczynski
- Australian Institute of Marine Science, Western Australia, Perth, Australia
| | - Nur Fadli
- Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | | | | | | | | | - James Guest
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Hugo B Harrison
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Queensland, Townsville, Australia
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Jean-Paul A Hobbs
- School of Biological Sciences, The University of Queensland, Queensland, Brisbane, Australia
| | - Andrew S Hoey
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Queensland, Townsville, Australia
| | - Thomas H Holmes
- Marine Science Program, Biodiversity and Conservation Science, Department of Biodiversity Conservation and Attractions, Western Australia, Kensington, Australia
| | - Peter Houk
- University of Guam Marine Laboratory, UOG Station, Mangilao, Guam
| | | | - Jamaluddin Jompa
- Department of Marine Science and Fisheries, Hasanuddin University, South Sulawesi, Makassar, Indonesia
| | - Chao-Yang Kuo
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Queensland, Townsville, Australia
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Gino Valentino Limmon
- Department of Marine Biology, Pattimura University, Ambon, Indonesia
- Maritime and Marine Science Centre of Excellence, Pattimura University, Ambon, Indonesia
| | - Yuting V Lin
- Institute of Oceanography, National Taiwan University, Taipei, Taiwan
| | | | - Dominic Muenzel
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Michelle J Paddack
- One People One Reef, California, Santa Cruz, USA
- Santa Barbara City College, California, Santa Barbara, USA
| | - Serge Planes
- CRIOBE, UAR 3278 CNRS-EPHE-UPVD, Moorea French Polynesia and the French Center for Excellence for Coral Reefs (LabEx Corail), PSL Research University, Paris, France
| | - Morgan S Pratchett
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Queensland, Townsville, Australia
| | - Ben Radford
- Australian Institute of Marine Science, Western Australia, Perth, Australia
- Oceans Institute, University of Western Australia, Western Australia, Perth, Australia
| | - James Davis Reimer
- Department of Marine Science, Chemistry and Biology, Faculty of Science, University of the Ryukyus, Okinawa, Japan
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Zoe T Richards
- Coral Conservation and Research Group, School of Molecular and Life Sciences, Curtin University, Western Australia, Bently, Australia
- Collections and Research, Western Australian Museum, Western Australia, Perth, Australia
| | - Claire L Ross
- Marine Science Program, Biodiversity and Conservation Science, Department of Biodiversity Conservation and Attractions, Western Australia, Kensington, Australia
- Oceans Institute, University of Western Australia, Western Australia, Perth, Australia
| | - John Rulmal
- One People One Reef, California, Santa Cruz, USA
- Ulithi Falalop Community Action Program, Yap, Micronesia
| | - Brigitte Sommer
- School of Life and Environmental Sciences, The University of Sydney, New South Wales, Sydney, Australia
- School of Life Sciences, University of Technology Sydney, 2007, New South Wales, Sydney, Australia
| | | | - Shaun K Wilson
- Marine Science Program, Biodiversity and Conservation Science, Department of Biodiversity Conservation and Attractions, Western Australia, Kensington, Australia
- Oceans Institute, University of Western Australia, Western Australia, Perth, Australia
| |
Collapse
|
18
|
Shlesinger T, van Woesik R. Oceanic differences in coral-bleaching responses to marine heatwaves. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162113. [PMID: 36773903 DOI: 10.1016/j.scitotenv.2023.162113] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Anomalously high ocean temperatures have increased in frequency, intensity, and duration over the last several decades because of greenhouse gas emissions that cause global warming and marine heatwaves. Reef-building corals are sensitive to such temperature anomalies that commonly lead to coral bleaching, mortality, and changes in community structure. Yet, despite these overarching effects, there are geographical differences in thermal regimes, evolutionary histories, and past disturbances that may lead to different bleaching responses of corals within and among oceans. Here we examined the overall bleaching responses of corals in the Atlantic, Indian, and Pacific Oceans, using both a spatially explicit Bayesian mixed-effects model and a deep-learning neural-network model. We used a 40-year global dataset encompassing 23,288 coral-reef surveys at 11,058 sites in 88 countries, from 1980 to 2020. Focusing on ocean-wide differences we assessed the relationships between the percentage of bleached corals and different temperature-related metrics alongside a suite of environmental variables. We found that while high sea-surface temperatures were consistently, and strongly, related to coral bleaching within all oceans, there were clear geographical differences in the relationships between coral bleaching and most environmental variables. For instance, there was an increase in coral bleaching with depth in the Atlantic Ocean whereas the opposite was observed in the Indian Ocean, and no clear trend could be seen in the Pacific Ocean. The standard deviation of thermal-stress anomalies was negatively related to coral bleaching in the Atlantic and Pacific Oceans, but not in the Indian Ocean. Globally, coral bleaching has progressively occurred at higher temperatures over the last four decades within the Atlantic, Indian, and Pacific Oceans, although, again, there were differences among the three oceans. Together, such patterns highlight that historical circumstances and geographical differences in oceanographic conditions play a central role in contemporary coral-bleaching responses.
Collapse
Affiliation(s)
- Tom Shlesinger
- Institute for Global Ecology, Florida Institute of Technology, Melbourne 32901, FL, USA
| | - Robert van Woesik
- Institute for Global Ecology, Florida Institute of Technology, Melbourne 32901, FL, USA.
| |
Collapse
|
19
|
Sing Wong A, Vrontos S, Taylor ML. An assessment of people living by coral reefs over space and time. GLOBAL CHANGE BIOLOGY 2022; 28:7139-7153. [PMID: 36168958 PMCID: PMC9827914 DOI: 10.1111/gcb.16391] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/28/2022] [Accepted: 07/31/2022] [Indexed: 05/17/2023]
Abstract
Human populations near ecosystems are used as both a proxy for dependency on ecosystems, and conversely to estimate threats. Consequently, the number of people living near coral reefs is often used in regional coral reef management, evaluation of risk at regional and global scales, and even considerations of funding needs. Human populations and their statistics, are ever-changing and data relating to coral reefs have not been updated regularly. Here, we present an up-to-date analysis of the abundance, and density of people living within 5-100 km of coral reef ecosystems along with population proportion, using freely available data sets and replicable methods. We present trends of changes in human populations living near coral reefs over a 20-year time period (2000-2020), divided by region and country, along with socio-economic denominations such as country income category and Small Island Developing States (SIDS). We find that across 117 coral reef countries there are currently close to a billion people living within 100 km of a coral reef (~13% of the global population) compared with 762 million people in 2000. Population growth by coral reefs is higher than global averages. The Indian Ocean saw a 33% increase in populations within 100 km of a coral reef and 71% at 5 km. There are 60 countries with 100% of their population within 100 km of coral reefs. In SIDS, the proportion of the total population within 100 km of a coral reef is extremely high: 94% in 2020. Population density 5-10 km from coral reefs is 4× the global average. From 5 to 100 km, more people from lower-middle-income countries live by coral reefs than any other income category. Our findings provide the most up-to-date and extensive statistics on the regional and nation-level differences in population trends that play a large role in coral reef health and survival.
Collapse
Affiliation(s)
- Amy Sing Wong
- School of Life SciencesUniversity of EssexColchesterUK
| | - Spyridon Vrontos
- Department of Mathematical SciencesUniversity of EssexColchesterUK
| | | |
Collapse
|
20
|
Satterthwaite EV, Komyakova V, Erazo NG, Gammage L, Juma GA, Kelly R, Kleinman D, Lobelle D, James RS, Zanuri NBM. Five actionable pillars to engage the next generation of leaders in the co-design of transformative ocean solutions. PLoS Biol 2022; 20:e3001832. [PMID: 36251638 PMCID: PMC9576046 DOI: 10.1371/journal.pbio.3001832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Solutions to complex and unprecedented global challenges are urgently needed. Overcoming these challenges requires input and innovative solutions from all experts, including Early Career Ocean Professionals (ECOPs). To achieve diverse inclusion from ECOPs, fundamental changes must occur at all levels—from individuals to organizations. Drawing on insights from across the globe, we propose 5 actionable pillars that support the engagement of ECOPs in co-design processes that address ocean sustainability: sharing knowledge through networks and mentorship, providing cross-boundary training and opportunities, incentivizing and celebrating knowledge co-design, creating inclusive and participatory governance structures, and catalyzing culture change for inclusivity. Foundational to all actions are the cross-cutting principles of justice, equity, diversity, and inclusivity. In addition, the pillars are cross-boundary in nature, including collaboration and innovation across sectors, disciplines, regions, generations, and backgrounds. Together, these recommendations provide an actionable and iterative path toward inclusive engagement and intergenerational exchange that can develop ocean solutions for a sustainable future. Early Career Ocean Professionals (ECOPs) need to engage in co-design processes that address ocean sustainability. This Consensus View proposes five pillars to provide an actionable and iterative path toward inclusive engagement and intergenerational exchange that can develop ocean solutions for a sustainable future.
Collapse
Affiliation(s)
- Erin V. Satterthwaite
- California Sea Grant, Scripps Institution of Oceanography, University of California, San Diego, California, United States of America
- * E-mail:
| | - Valeriya Komyakova
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
- Centre for Marine Socioecology, University of Tasmania, Hobart, Tasmania, Australia
| | - Natalia G. Erazo
- Scripps Institution of Oceanography, University of California, San Diego, California, United States of America
| | - Louise Gammage
- Department of Biological Sciences and Marine & Antarctic Research for Innovation & Sustainability (MARIS), University of Cape Town, Cape Town, South Africa
| | - Gabriel A. Juma
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Biologische Anstalt Helgoland, Helgoland, Germany
| | - Rachel Kelly
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
- Centre for Marine Socioecology, University of Tasmania, Hobart, Tasmania, Australia
| | - Daniel Kleinman
- Seaworthy Collective, Miami, Florida, United States of America
| | - Delphine Lobelle
- Institute of Marine and Atmospheric Research, Utrecht University, Utrecht, Netherlands
| | - Rachel Sapery James
- Blue Pacific Programs Manager, WWF-Australia, Gubbi Gubbi Country, Sunshine Coast
| | - Norlaila Binti Mohd Zanuri
- Centre for Marine and Coastal Studies (CEMACS), Universiti Sains Malaysia, Gelugor, Pulau Pinang, Malaysia
| |
Collapse
|
21
|
Tebbett SB, Sgarlatta MP, Pessarrodona A, Vergés A, Wernberg T, Bellwood DR. How to quantify algal turf sediments and particulates on tropical and temperate reefs: An overview. MARINE ENVIRONMENTAL RESEARCH 2022; 179:105673. [PMID: 35688019 DOI: 10.1016/j.marenvres.2022.105673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Algal turfs are the most abundant benthic covering on reefs in many shallow-water marine ecosystems. The particulates and sediments bound within algal turfs can influence a multitude of functions within these ecosystems. Despite the global abundance and importance of algal turfs, comparison of algal turf-bound sediments is problematic due to a lack of standardisation across collection methods. Here we provide an overview of three methods (vacuum sampling, airlift sampling, and TurfPods), and the necessary equipment (including construction suggestions), commonly employed to quantify sediments from algal turfs. We review the purposes of these methods (e.g. quantification of standing stock versus net accumulation) and how methods can vary depending on the research question or monitoring protocol. By providing these details in a readily accessible format we hope to encourage a standardised set of approaches for marine benthic ecologists, geologists and managers, that facilitates further quantification and global comparisons of algal turf sediments.
Collapse
Affiliation(s)
- Sterling B Tebbett
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering and ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia.
| | - M Paula Sgarlatta
- Centre for Marine Science & Innovation and Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Australia, Sydney, New South Wales, Australia
| | - Albert Pessarrodona
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Adriana Vergés
- Centre for Marine Science & Innovation and Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Australia, Sydney, New South Wales, Australia; Sydney Institute of Marine Science, Mosman, New South Wales, Australia
| | - Thomas Wernberg
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, Western Australia, 6009, Australia; Norwegian Institute of Marine Research, His, Norway
| | - David R Bellwood
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering and ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
| |
Collapse
|