1
|
Ramoni D, Carbone F, Montecucco F. Navigating the autophagic landscape: Epigenetic modulation in gastrointestinal cancer. World J Gastroenterol 2024; 30:3628-3634. [PMID: 39192999 PMCID: PMC11346161 DOI: 10.3748/wjg.v30.i31.3628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/13/2024] Open
Abstract
This editorial comments on the manuscript by Chang et al, focusing on the still elusive interplay between epigenetic regulation and autophagy in gastrointestinal diseases, particularly cancer. Autophagy, essential for cellular homeostasis, exhibits diverse functions ranging from cell survival to death, and is particularly implicated in physiological gastrointestinal cell functions. However, its role in pathological backgrounds remains intricate and context-dependent. Studies underscore the dual nature of autophagy in cancer, where its early suppressive effects in early stages are juxtaposed with its later promotion, contributing to chemoresistance. This discrepancy is attributed to the dysregulation of autophagy-related genes and their intricate involvement in cellular processes. Epigenetic modifications and regulations of gene expression, including non-coding RNAs (ncRNAs), emerge as critical players in exerting regulatory control over autophagy flux, influencing treatment responses and tumor progression. Targeting epigenetic mechanisms and improving strategies involving the inhibition or induction of autophagy through pharmacological or genetic means present potential avenues to sensitize tumor cells to chemotherapy. Additionally, nanocarrier-based delivery of ncRNAs offers innovative therapeutic approaches. Understanding the intricate interaction between autophagy and ncRNA regulation opens avenues for the development of targeted therapies, thereby improving the prognosis of gastrointestinal malignancies with poor outcomes.
Collapse
Affiliation(s)
- Davide Ramoni
- Department of Internal Medicine, University of Genoa, Genoa 16132, Italy
| | - Federico Carbone
- Department of Internal Medicine, University of Genoa and IRCSS Policlinico San Martino, Genoa 16132, Italy
| | - Fabrizio Montecucco
- Department of Internal Medicine, University of Genoa and IRCSS Policlinico San Martino, Genoa 16132, Italy
| |
Collapse
|
2
|
Shi M, An G, Chen N, Jia J, Cui X, Zhan T, Ji D. UVRAG Promotes Tumor Progression through Regulating SP1 in Colorectal Cancer. Cancers (Basel) 2023; 15:2502. [PMID: 37173968 PMCID: PMC10177159 DOI: 10.3390/cancers15092502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common type of cancer. The ultraviolet radiation resistance-associated gene (UVRAG) plays a role in autophagy and has been implicated in tumor progression and prognosis. However, the role of UVRAG expression in CRC has remained elusive. In this study, the prognosis was analyzed via immunohistochemistry, and the genetic changes were compared between the high UVRAG expression group and the low UVRAG expression group using RNA sequencing (RNA-seq) and single-cell RNA-seq (scRNA-seq) data, and genetic changes were then identified by in vitro experiments. It was found that UVRAG could enhance tumor migration, drug resistance, and CC motif chemokine ligand 2 (CCL2) expression to recruit macrophages by upregulating SP1 expression, resulting in poor prognosis of CRC patients. In addition, UVRAG could upregulate the expression of programmed death-ligand 1 (PD-L1). In summary, the relationship between UVRAG expression and the prognosis of CRC patients as well as the potential mechanisms in CRC were explored, providing evidence for the treatment of CRC.
Collapse
Affiliation(s)
- Mengyuan Shi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Guo An
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Laboratory Animal, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Nan Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jinying Jia
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xinxin Cui
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Tiancheng Zhan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Dengbo Ji
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
3
|
Rangel M, Kong J, Bhatt V, Khayati K, Guo JY. Autophagy and tumorigenesis. FEBS J 2022; 289:7177-7198. [PMID: 34270851 PMCID: PMC8761221 DOI: 10.1111/febs.16125] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/28/2021] [Accepted: 07/15/2021] [Indexed: 01/13/2023]
Abstract
Autophagy is a catabolic process that captures cellular waste and degrades them in the lysosome. The main functions of autophagy are quality control of cytosolic proteins and organelles, and intracellular recycling of nutrients in order to maintain cellular homeostasis. Autophagy is upregulated in many cancers to promote cell survival, proliferation, and metastasis. Both cell-autonomous autophagy (also known as tumor autophagy) and non-cell-autonomous autophagy (also known as host autophagy) support tumorigenesis through different mechanisms, including inhibition of p53 activation, sustaining redox homeostasis, maintenance of essential amino acids levels in order to support energy production and biosynthesis, and inhibition of antitumor immune responses. Therefore, autophagy may serve as a tumor-specific vulnerability and targeting autophagy could be a novel strategy in cancer treatment.
Collapse
Affiliation(s)
- Michael Rangel
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, 08903, USA
| | - Jerry Kong
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, 08903, USA
| | - Vrushank Bhatt
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, 08903, USA
| | - Khoosheh Khayati
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, 08903, USA
| | - Jessie Yanxiang Guo
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, 08903, USA,Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA,Department of Chemical Biology, Rutgers Ernest Mario School of Pharmacy, Piscataway, NJ, USA
| |
Collapse
|
4
|
Li Y, Gao S, Du X, Ji J, Xi Y, Zhai G. Advances in autophagy as a target in the treatment of tumours. J Drug Target 2021; 30:166-187. [PMID: 34319838 DOI: 10.1080/1061186x.2021.1961792] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Autophagy is a multi-step lysosomal degradation process, which regulates energy and material metabolism and has been used to maintain homeostasis. Autophagy has been shown to be involved in the regulation of health and disease. But at present, there is no consensus on the relationship between autophagy and tumour, and we consider that it plays a dual role in the occurrence and development of tumour. That is to say, under certain conditions, it can inhibit the occurrence of tumour, but it can also promote the process of tumour. Therefore, autophagy could be used as a target for tumour treatment. The regulation of autophagy plays a synergistic role in the radiotherapy, chemotherapy, phototherapy and immunotherapy of tumour, and nano drug delivery system provides a promising strategy for improving the efficacy of autophagy regulation. This review summarised the progress in the regulatory pathways and factors of autophagy as well as nanoformulations as carriers for the delivery of autophagy modulators.
Collapse
Affiliation(s)
- Yingying Li
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Shan Gao
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Xiyou Du
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Jianbo Ji
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Yanwei Xi
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| |
Collapse
|
5
|
Zeng T, Xu M, Zhang W, Gu X, Zhao F, Liu X, Zhang X. Autophagy inhibition and microRNA‑199a‑5p upregulation in paclitaxel‑resistant A549/T lung cancer cells. Oncol Rep 2021; 46:149. [PMID: 34080652 PMCID: PMC8185510 DOI: 10.3892/or.2021.8100] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/27/2021] [Indexed: 12/15/2022] Open
Abstract
Multidrug resistance (MDR) is one of the major reasons for the clinical failure of cancer chemotherapy. Autophagy activation serves a crucial role in MDR. However, the specific molecular mechanism linking autophagy with MDR remains unknown. The results of the present study demonstrated that autophagy was inhibited and microRNA (miR)-199a-5p levels were upregulated in MDR model lung cancer cells (A549/T and H1299/T) compared with those in the parental cell lines. Paclitaxel (PTX) treatment increased the expression levels of miR-199a-5p in parental lung cancer cells compared with those in PTX-untreated cells, and these expression levels were negatively correlated with PTX sensitivity of the cells. miR-199a-5p knockdown in A549/T cells induced autophagy and resensitized cells to multiple chemotherapeutic drugs including PTX, taxotere, topotecan, SN38, oxaliplatin and vinorelbine. By contrast, miR-199a-5p overexpression in A549 cells suppressed autophagy and desensitized cells to these chemotherapeutic drugs. Mechanistically, the results of the present study demonstrated that miR-199a-5p blocked autophagy by activating the PI3K/Akt/mTOR signaling pathway and inhibiting the protein expression of autophagy-related 5. Furthermore, p62 protein was identified as a direct target of miR-199a-5p; miR-199a-5p bound to p62 mRNA to decrease its mRNA and protein expression levels. In conclusion, the results of the present study suggested that miR-199a-5p may contribute to MDR development in lung cancer cells by inhibiting autophagy and targeting p62. The regulatory effect of miR-199a-5p on autophagy may provide novel insights for future multidrug-resistant lung cancer chemotherapy.
Collapse
Affiliation(s)
- Tianjiao Zeng
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Mingshi Xu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Wanli Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Xiaofan Gu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Fangqing Zhao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Xuan Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Xiongwen Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| |
Collapse
|
6
|
Luo Y, Han Y, Hu X, Yin M, Wu C, Li Q, Chen N, Zhao Y. Live-cell imaging of octaarginine-modified polymer dots via single particle tracking. Cell Prolif 2019; 52:e12556. [PMID: 30710394 PMCID: PMC6496536 DOI: 10.1111/cpr.12556] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES Nanocarriers can greatly enhance the cellular uptake of therapeutic agents to regulate cell proliferation and metabolism. Nevertheless, further application of nanocarriers is often limited by insufficient understanding of the mechanisms of their uptake and intracellular behaviour. MATERIALS AND METHODS Fluorescent polymer dots (Pdots) are coated with synthetic octaarginine peptides (R8) and are analysed for cellular uptake and intracellular transportation in HeLa cervical cancer cells via single particle tracking. RESULTS Surface modification with the R8 peptide efficiently improves both cellular uptake and endosomal escape of Pdots. With single particle tracking, we capture the dynamic process of internalization and intracellular trafficking of R8-Pdots, providing new insights into the mechanism of R8 in facilitating nanostructure-based cellular delivery. Furthermore, our results reveal R8-Pdots as a novel type of autophagy inducer. CONCLUSIONS This study provides new insights into R8-mediated cellular uptake and endosomal escape of nanocarriers. It potentiates biological applications of Pdots in targeted cell imaging, drug delivery and gene regulation.
Collapse
Affiliation(s)
- Yao Luo
- College of Life SciencesSichuan UniversityChengduChina
- Division of Physical Biology and Bioimaging Center, Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiChina
| | - Yuping Han
- Division of Physical Biology and Bioimaging Center, Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiChina
- Development and Regeneration Key Lab of Sichuan Province, Department of Anatomy and Histology and EmbryologyChengdu Medical CollegeChengduChina
| | - Xingjie Hu
- Division of Physical Biology and Bioimaging Center, Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiChina
- School of Public HealthGuangzhou Medical UniversityGuangdongChina
| | - Min Yin
- Division of Physical Biology and Bioimaging Center, Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiChina
- Department of ChemistryShanghai Normal UniversityShanghaiChina
| | - Changfeng Wu
- Department of Biomedical EngineeringSouthern University of Science and TechnologyShenzhenChina
| | - Qian Li
- Division of Physical Biology and Bioimaging Center, Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiChina
| | - Nan Chen
- Division of Physical Biology and Bioimaging Center, Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiChina
- Department of ChemistryShanghai Normal UniversityShanghaiChina
| | - Yun Zhao
- College of Life SciencesSichuan UniversityChengduChina
| |
Collapse
|
7
|
Zhang L, Fu L, Zhang S, Zhang J, Zhao Y, Zheng Y, He G, Yang S, Ouyang L, Liu B. Discovery of a small molecule targeting ULK1-modulated cell death of triple negative breast cancer in vitro and in vivo. Chem Sci 2017; 8:2687-2701. [PMID: 28553505 PMCID: PMC5433508 DOI: 10.1039/c6sc05368h] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 01/04/2017] [Indexed: 02/05/2023] Open
Abstract
ULK1 is identified as a target in TNBC; thus a small-molecule agonist is discovered by targeting ULK1-modulated cell death, associated with autophagy and apoptosis.
UNC-51-like kinase 1 (ULK1) is well-known to initiate autophagy, and the downregulation of ULK1 has been found in most breast cancer tissues. Thus, the activation of ULK1-modulated autophagy could be a promising strategy for breast cancer therapy. In this study, we found that ULK1 was remarkably downregulated in breast cancer tissue samples by The Cancer Genome Atlas (TCGA) analysis and tissue microarray (TMA) analysis, especially in triple negative breast cancer (TNBC). To design a ULK1 agonist, we integrated in silico screening and chemical synthesis to acquire a series of small molecule candidates. After rounds of kinase and anti-proliferative activity screening, we discovered the small molecule, LYN-1604, to be the best candidate for a ULK1 agonist. Additionally, we identified that three amino acid residues (LYS50, LEU53, and TYR89) were key to the activation site of LYN-1604 and ULK1 by site-directed mutagenesis and biochemical assays. Subsequently, we demonstrated that LYN-1604 could induce cell death, associated with autophagy by the ULK complex (ULK1-mATG13-FIP200-ATG101) in MDA-MB-231 cells. To further explore LYN-1604-induced autophagic mechanisms, we found some potential ULK1 interactors, such as ATF3, RAD21, and caspase3, by performing comparative microarray analysis. Intriguingly, we found that LYN-1604 induced cell death involved in ATF3, RAD21, and caspase3, accompanied by autophagy and apoptosis. Moreover, we demonstrated that LYN-1604 has potential for good therapeutic effects on TNBC by targeting ULK1-modulated cell death in vivo; thus making this ULK1 agonist a novel potential small-molecule drug candidate for future TNBC therapy.
Collapse
Affiliation(s)
- Lan Zhang
- State Key Laboratory of Biotherapy and Cancer Center , West China Hospital , Sichuan University , Collaborative Innovation Center of Biotherapy , Chengdu 610041 , China . ; ; ; Tel: +86-28-85164063
| | - Leilei Fu
- State Key Laboratory of Biotherapy and Cancer Center , West China Hospital , Sichuan University , Collaborative Innovation Center of Biotherapy , Chengdu 610041 , China . ; ; ; Tel: +86-28-85164063
| | - Shouyue Zhang
- State Key Laboratory of Biotherapy and Cancer Center , West China Hospital , Sichuan University , Collaborative Innovation Center of Biotherapy , Chengdu 610041 , China . ; ; ; Tel: +86-28-85164063
| | - Jin Zhang
- State Key Laboratory of Biotherapy and Cancer Center , West China Hospital , Sichuan University , Collaborative Innovation Center of Biotherapy , Chengdu 610041 , China . ; ; ; Tel: +86-28-85164063
| | - Yuqian Zhao
- State Key Laboratory of Biotherapy and Cancer Center , West China Hospital , Sichuan University , Collaborative Innovation Center of Biotherapy , Chengdu 610041 , China . ; ; ; Tel: +86-28-85164063
| | - Yaxin Zheng
- State Key Laboratory of Biotherapy and Cancer Center , West China Hospital , Sichuan University , Collaborative Innovation Center of Biotherapy , Chengdu 610041 , China . ; ; ; Tel: +86-28-85164063
| | - Gu He
- State Key Laboratory of Biotherapy and Cancer Center , West China Hospital , Sichuan University , Collaborative Innovation Center of Biotherapy , Chengdu 610041 , China . ; ; ; Tel: +86-28-85164063
| | - Shengyong Yang
- State Key Laboratory of Biotherapy and Cancer Center , West China Hospital , Sichuan University , Collaborative Innovation Center of Biotherapy , Chengdu 610041 , China . ; ; ; Tel: +86-28-85164063
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center , West China Hospital , Sichuan University , Collaborative Innovation Center of Biotherapy , Chengdu 610041 , China . ; ; ; Tel: +86-28-85164063
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center , West China Hospital , Sichuan University , Collaborative Innovation Center of Biotherapy , Chengdu 610041 , China . ; ; ; Tel: +86-28-85164063
| |
Collapse
|
8
|
Bif-1 promotes tumor cell migration and metastasis via Cdc42 expression and activity. Clin Exp Metastasis 2016; 34:11-23. [PMID: 27730394 DOI: 10.1007/s10585-016-9825-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 09/30/2016] [Indexed: 12/13/2022]
Abstract
Tumor metastasis is the process by which tumor cells disseminate from tumors and enter nearby and distant microenvironments for new colonization. Bif-1 (BAX-interacting factor 1), which has a BAR domain and an SH3 domain, has been reported to be involved in cell growth, apoptosis and autophagy. However, the influence of Bif-1 on metastasis has been less studied. To understand the role of Bif-1 in metastasis, we studied the expression levels of Bif-1 in human HCC specimens using immunohistochemistry, a tissue microarray and quantitative PCR. The function of Bif-1 was assessed in migration and translocation assays and the pulmonary metastatic animal model. The relationship between Bif-1 and the Rho family was determined using immunoblot analyses and chromatin immunoprecipitation. The results showed that the expression of Bif-1 was higher in hepatocellular carcinoma (HCC) than matched adjacent non-tumor liver tissues. Increased Bif-1 expression was associated with tumor size and the intercellular spread and metastasis of HCC. Analysis of the relationship between Bif-1 expression and patients' clinical characteristics revealed that patients with higher levels of Bif-1 had shorter disease-free and overall survival rates. Knockdown of Bif-1 with RNAi suppressed the migration of HCC cells and pulmonary metastasis and decreased the expression of Cdc42, a member of the Rho family. Bif-1 localized to the cytosol and nucleus and interacted with the promoter transcription region of Cdc42, which may regulate Cdc42 expression. Our results demonstrate a novel role of Bif-1 in HCC, in which Bif-1 promotes cell metastasis by regulating Cdc42 expression and activity.
Collapse
|