1
|
Zhou JP, Peng SS, Xu J, Cheng XW, Wang XH, Tao JL, Dai HW, Cao X. Exploring the therapeutic potential of urine-derived stem cell exosomes in temporomandibular joint osteoarthritis. FASEB J 2024; 38:e23852. [PMID: 39101942 DOI: 10.1096/fj.202400448rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/15/2024] [Accepted: 07/21/2024] [Indexed: 08/06/2024]
Abstract
Temporomandibular joint osteoarthritis (TMJOA) is a degenerative ailment that causes slow cartilage degeneration, aberrant bone remodeling, and persistent discomfort, leading to a considerable reduction in the patient's life quality. Current treatment options for TMJOA have limited efficacy. This investigation aimed to explore a potential strategy for halting or reversing the progression of TMJOA through the utilization of exosomes (EXOs) derived from urine-derived stem cells (USCs). The USC-EXOs were obtained through microfiltration and ultrafiltration techniques, followed by their characterization using particle size analysis, electron microscopy, and immunoblotting. Subsequently, an in vivo model of TMJOA induced by mechanical force was established. To assess the changes in the cartilage of TMJOA treated with USC-EXOs, we performed histology analysis using hematoxylin-eosin staining, immunohistochemistry, and histological scoring. Our findings indicate that the utilization of USC-EXOs yields substantial reductions in TMJOA, while concurrently enhancing the structural integrity and smoothness of the compromised condylar cartilage surface. Additionally, USC-EXOs exhibit inhibitory effects on osteoclastogenic activity within the subchondral bone layer of the condylar cartilage, as well as attenuated apoptosis in the rat TMJ in response to mechanical injury. In conclusion, USC-EXOs hold considerable promise as a potential therapeutic intervention for TMJOA.
Collapse
Affiliation(s)
- Jian-Ping Zhou
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Si-Si Peng
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jie Xu
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Xing-Wang Cheng
- Department of Orthopedic Surgery, Center for Joint Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiao-Hui Wang
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jun-Li Tao
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Hong-Wei Dai
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Xin Cao
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
2
|
Yang F, Wang P, Dong X, Dai W, Chen W, Yuan G, Bai D, Xu H. Abnormal mechanical stress induced chondrocyte senescence by YAP loss-mediated METTL3 upregulation. Oral Dis 2024; 30:3308-3320. [PMID: 37983852 DOI: 10.1111/odi.14810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/19/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023]
Abstract
OBJECTIVES Abnormal mechanical stress is the pivotal risk factor of temporomandibular joint osteoarthritis (TMJOA). This study investigated the pathogenic mechanism by which abnormal mechanical stress induced chondrocyte senescence. MATERIALS AND METHODS Cellular senescence was investigated in the rodent model of unilateral anterior crossbite and in the chondrocytes subjected to mechanical overloading in vitro. The effects of Yes-associated protein (YAP) in chondrocyte senescence and its correlation with methyltransferase-like 3 (METTL3) and N6-methyladenosine (m6A) modification were evaluated. The role of m6A modification in chondrocyte senescence was determined. The therapeutic effects of m6A inhibition in TMJOA were investigated. RESULTS Senescent chondrocytes were accumulated in the mechanically induced TMJOA lesions in rats and mechanical overloading could trigger chondrocyte senescence in vitro. This mechanical stress-induced cellular senescence was revealed to be mediated by YAP deficiency that promoted METTL3-dependent m6A modification. Moreover, inhibition of m6A modification rescued chondrocyte senescence in vitro and in vivo, and suppressed TMJOA progression in rats. CONCLUSIONS This study uncovered the underlying mechanism of mechanically induced senescence in TMJOA from the perspective of epitranscriptomics and revealed the therapeutic potential of m6A inhibition in TMJOA.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Peiqi Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaomeng Dong
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenyu Dai
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wanxi Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Gang Yuan
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Ding Bai
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hui Xu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Xu Y, Wang JY, Zou Y, Ma XW, Meng T. Role of IL-1 Family Cytokines IL-36, IL-37, IL-38 in Osteoarthritis and Rheumatoid Arthritis: A Comprehensive Review. J Inflamm Res 2024; 17:4001-4016. [PMID: 38915806 PMCID: PMC11195677 DOI: 10.2147/jir.s474879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/05/2024] [Indexed: 06/26/2024] Open
Abstract
Inflammatory cytokines, interleukin-36 (IL-36), IL-37, IL-38 belong to IL-1 family. The IL-36 subfamily obtains pro- and anti-inflammatory effects on various immune responses. Cytokine IL-37, has anti-inflammatory functions in immunity, and the recently identified IL-38 negatively associated with disease pathogenesis. To date, expression of IL-36, IL-37, IL-38 is reported dysregulated in osteoarthritis (OA) and rheumatoid arthritis (RA), and may be disease markers for arthritis-related diseases. Interestingly, expression of IL-38 was different either in OA patients or animal models, and expression of IL-36Ra in synovium was different in OA and RA patients. Moreover, functional studies have demonstrated significant role of these cytokines in OA and RA progress. These processes were related to immune cells and non-immune cells, where the cytokines IL-36, IL-37, IL-38 may regulate downstream signalings in the cells, and then involve in OA, RA development. In this review, we comprehensively discuss recent advancements in cytokines and the development of OA, RA. We hope that targeting these cytokines will become a potential treatment option for OA and RA in the future.
Collapse
Affiliation(s)
- Yuan Xu
- College of Health Industry, Sichuan Tourism University, Chengdu, Sichuan, 610100, People’s Republic of China
| | - Jing-Yan Wang
- College of Health Industry, Sichuan Tourism University, Chengdu, Sichuan, 610100, People’s Republic of China
| | - Yang Zou
- College of Health Industry, Sichuan Tourism University, Chengdu, Sichuan, 610100, People’s Republic of China
| | - Xue-Wei Ma
- College of Health Industry, Sichuan Tourism University, Chengdu, Sichuan, 610100, People’s Republic of China
| | - Tian Meng
- College of Health Industry, Sichuan Tourism University, Chengdu, Sichuan, 610100, People’s Republic of China
| |
Collapse
|
4
|
Cao X, Peng S, Yan Y, Li J, Zhou J, Dai H, Xu J. Alleviation of temporomandibular joint osteoarthritis by targeting RIPK1-mediated inflammatory signalling. J Cell Mol Med 2024; 28:e17929. [PMID: 37643315 PMCID: PMC10902568 DOI: 10.1111/jcmm.17929] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023] Open
Abstract
Temporomandibular joint osteoarthritis (TMJOA), prevalent in adolescents and the elderly, has serious physical and psychological consequences. TMJOA is a degenerative disease of the cartilage and bone, mostly driven by inflammation, and synoviocytes are the first and most important inflammatory factor releasers. Receptor-interacting serine/threonine-protein kinase (RIPK1) promotes inflammatory response and cell death during an array of illnesses. This research aimed to explore the impacts of RIPK1 inhibitor therapy in TMJOA and the mechanism of RIPK1 in inducing inflammation during TMJOA. Herein, inhibition of RIPK1 suppressed the elevated levels of inflammatory factors, nuclear factor kappa B (NF-κB), along with markers of apoptosis and necroptosis after tumour necrosis factor (TNF)-α/cycloheximide (CHX) treatment in synoviocytes. Moreover, inflammation models were constructed in vivo through complete Freund's adjuvant (CFA) induction and disc perforation, and the findings supported that RIPK1 inhibition protected TMJ articular cartilage against progressive degradation. RIPK1 regulates NF-κB activation via cellular inhibitor of apoptosis proteins (cIAP), apoptosis via caspase-8, and necroptosis via RIPK3/mixed lineage kinase domain-like (MLKL) in synoviocytes, which in turn facilitates TMJOA inflammation progression.
Collapse
Affiliation(s)
- Xin Cao
- College of Stomatology, Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Sisi Peng
- College of Stomatology, Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Ying Yan
- College of Stomatology, Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Jun Li
- College of Stomatology, Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Jianping Zhou
- College of Stomatology, Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Hongwei Dai
- College of Stomatology, Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Jie Xu
- College of Stomatology, Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| |
Collapse
|
5
|
Hu S, Li H, Jiang H, Liu X, Ke J, Long X. Macrophage Activation in Synovitis and Osteoarthritis of Temporomandibular Joint and Its Relationship with the Progression of Synovitis and Bone Remodeling. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:296-306. [PMID: 38245251 DOI: 10.1016/j.ajpath.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/25/2023] [Accepted: 11/06/2023] [Indexed: 01/22/2024]
Abstract
This study investigates the regulatory mechanisms of synovial macrophages and their polarization in the progression of temporomandibular joint osteoarthritis (TMJOA). Macrophage depletion models were established by intra-articular injection of clodronate liposomes and unloaded liposomes. TMJOA was induced by intra-articular injection of 50 μL Complete Freund's Adjuvant and the surgery of disc perforation. The contralateral joint was used as the control group. The expression of F4/80, CD86, and CD206 in the synovium was detected by immunofluorescence staining analysis. Hematoxylin and eosin staining and TMJOA synovial score were detected to show the synovial changes in rat joints after TMJOA induction and macrophage depletion. Changes in rat cartilage after TMJOA induction and macrophage depletion were shown by safranin fast green staining. The bone-related parameters of rats' joints were evaluated by micro-computed tomography analysis. The TMJOA model induced by Complete Freund's Adjuvant injection and disc perforation aggravated synovial hyperplasia and showed a significant up-regulation of expression of F4/80-, CD86-, and CD206-positive cells. F4/80, CD86, and CD206 staining levels were significantly decreased in macrophage depletion rats, whereas the synovitis score further increased and cartilage and subchondral bone destruction was slightly aggravated. Macrophages were crucially involved in the progression of TMJOA, and macrophage depletion in TMJOA synoviocytes promoted synovitis and cartilage destruction.
Collapse
Affiliation(s)
- Shiyu Hu
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan, China; The Affiliated Stomatological Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Province Key Laboratory of Oral Biomedicine. Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, China
| | - Huimin Li
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Henghua Jiang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xin Liu
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jin Ke
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Xing Long
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
6
|
Li J, Peng S, Yan Y, Yan S, Cao X, Li Y, Zhu L, Xu J. IL-37 counteracts inflammatory injury in the temporomandibular joint via the intracellular pathway. Front Pharmacol 2023; 14:1250216. [PMID: 38053836 PMCID: PMC10694265 DOI: 10.3389/fphar.2023.1250216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/02/2023] [Indexed: 12/07/2023] Open
Abstract
Background: The temporomandibular joint is often afflicted by osteoarthritis (TMJOA), causing pain and dysfunction, which is particularly prevalent in the elderly population. IL-37 is effective in avoiding excessive inflammatory damage to the organism. This article investigates the role and mechanism of intracellular IL-37 in TMJOA. Methods: Enzyme-linked immunosorbent assay, quantitative real-time polymerase chain reaction, Western blotting, Senescence-associated β-galactosidase staining, immunofluorescence, and lentivirus were performed to elucidate the underlying mechanism. Results: The results confirmed that IL-37 in synovial cells decreased with aging. Inflammatory stimulus elevated intracellular IL-37 in synoviocytes, while lentiviral knockdown of IL-37 resulted in more inflammatory factor production. Dynamic changes of IL-37 were observed in the nucleus and supernatant. In addition, Caspease-1 inhibitor hindered intracellular IL-37 maturation, and Smad3 inhibitor caused the loss of nuclear translocation of mature IL-37. Transfection of synovial cells with IL-37-expressing lentivirus resulted in relief not only of synovitis but also of the cartilage damage and inflammation caused by synovitis. Conclusion: This study provides new insights into the intracellular anti-inflammatory mechanism of IL-37. It also confirms that IL-37 decreases with cellular senescence and that increasing intracellular IL-37 can effectively treat synovitis and synovitis-induced inflammatory damage to cartilage.
Collapse
Affiliation(s)
- Jun Li
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
- Chongqing Emergency Medical Center, Chongqing, China
- Chongqing University Central Hospital, Chongqing, China
| | - Sisi Peng
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Ying Yan
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Shan Yan
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Xin Cao
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yong Li
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Luying Zhu
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jie Xu
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
7
|
Juan Z, Xing-tong M, Xu Z, Chang-yi L. Potential pathological and molecular mechanisms of temporomandibular joint osteoarthritis. J Dent Sci 2023; 18:959-971. [PMID: 37404608 PMCID: PMC10316511 DOI: 10.1016/j.jds.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/05/2023] [Indexed: 07/06/2023] Open
Abstract
Temporomandibular joint osteoarthritis (TMJ OA) is a progressive degenerative disease of the temporomandibular joint (TMJ). The unclear etiology and mechanisms of TMJ OA bring great difficulties to early diagnosis and effective treatment, causing enormous burdens to patients' life and social economics. In this narrative review, we summarized the main pathological changes of TMJ OA, including inflammatory responses, degeneration of extracellular matrix (ECM), abnormal cell biological behaviors (apoptosis, autophagy, and differentiation) in TMJ tissue, and aberrant angiogenesis. All pathological features are closely linked to each other, forming a vicious cycle in the process of TMJ OA, which results in prolonged disease duration and makes it difficult to cure. Various molecules and signaling pathways are involved in TMJ OA pathogenesis, including nuclear factor kappa-B (NF-κB), mitogen-activated protein kinases (MAPKs), extracellular regulated protein kinases (ERKs) and transforming growth factor (TGF)-β signaling pathways et al. One molecule or pathway can contribute to several pathological changes, and the crosstalk between different molecules and pathways can further lead to a complicated condition TMJ OA. TMJ OA has miscellaneous etiology, complex clinical status, depressed treatment results, and poor prognosis. Therefore, novel in-vivo and in-vitro models, novel medicine, materials, and approaches for therapeutic procedures might be helpful for further investigation of TMJ OA. Furthermore, the role of genetic factors in TMJ OA needs to be elucidated to establish more reasonable and effective clinical strategies for diagnosing and treating TMJ OA.
Collapse
Affiliation(s)
- Zhang Juan
- Department of Prosthodontics, Hospital of Stomatology, Tianjin Medical University, Tianjin, PR China
| | - Mu Xing-tong
- Department of Prosthodontics, Hospital of Stomatology, Tianjin Medical University, Tianjin, PR China
| | - Zhang Xu
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, PR China
- Institute of Stomatology, Tianjin Medical University, Tianjin, PR China
| | - Li Chang-yi
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, PR China
| |
Collapse
|
8
|
Zhang JA, Wang JJ, Zhang WT, Zhang L, Zheng BY, Liu GB, Liang J, Lu YB, Wu XJ, Yao SY, Chen GY, Xie YQ, Wu JY, Shi JH, Pi J, Li SP, Xu JF. Elevated Interleukin-37 Associated with Dengue Viral Load in Patients with Dengue Fever. Curr Microbiol 2023; 80:171. [PMID: 37024713 PMCID: PMC10079153 DOI: 10.1007/s00284-023-03239-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/22/2023] [Indexed: 04/08/2023]
Abstract
Dengue remains a public health issue worldwide. Similar to chronic infectious diseases, stimulation of cytokine production is not enough to drive immune effector cells for effective virus clearance. One possible mechanism is the virus induces a large number of negative stimulatory cytokines inhibiting immune response. Interleukin 37 (IL-37) plays a crucial regulatory role in infection and immunity, inhibits innate and adaptive immunity as an anti-inflammatory cytokine by inhibiting proinflammatory mediators and pathways. To date, there are few studies reporting correlations between dengue fever (DF) and IL-37. In this study we found that the serum IL-37b and IL-37b-producing monocytes in patients were significantly increased in DF patients. A majority of the IL-37b produced by DF patients was produced by monocytes, not lymphocytes. Increased levels of IL-6, IL-10, and IFN-α were also found in DF patients. However, we failed to detect IL-1β, IL-17A and TNF-α in plasma, because of off-target. In our study, there was no relation between IL-6, IL-10, and IFN-α expressions and IL-37b in serum (P > 0.05). The IL-37b-producing monocytes were negatively correlated with the level of IFN-α in serum and platelet count, and positively correlated with lymphocytes percentage (P < 0.05, respectively). Additionally, serum DENV nonstructural protein 1 levels were positively correlated with monocytes percentages (P < 0.05). Our data represents findings for IL-37b expression and its potential mechanisms in DF patients' immune response.
Collapse
Affiliation(s)
- Jun-Ai Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Jia-Jun Wang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Wen-Ting Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Li Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Bi-Ying Zheng
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Gan-Bin Liu
- Department of Respiration, Dongguan 6th Hospital, Dongguan, China
| | - Jing Liang
- Department of Respiration, Dongguan 6th Hospital, Dongguan, China
| | - Yuan-Bin Lu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Xian-Jin Wu
- Department of Clinical Laboratory, Huizhou Central People's Hospital, Huizhou, China
| | - Shu-Ying Yao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Guo-Ying Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Yun-Qi Xie
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Jun-Yi Wu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Jia-Hua Shi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Si-Ping Li
- Dongguan Eighth People's Hospital, Dongguan, China.
| | - Jun-Fa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China.
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
9
|
Ren C, Chen J, Che Q, Jia Q, Lu H, Qi X, Zhang X, Shu Q. IL-37 alleviates TNF-α-induced pyroptosis of rheumatoid arthritis fibroblast-like synoviocytes by inhibiting the NF-κB/GSDMD signaling pathway. Immunobiology 2023; 228:152382. [PMID: 37075579 DOI: 10.1016/j.imbio.2023.152382] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/09/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023]
Abstract
OBJECTIVE Pyroptosis is crucial to rheumatoid arthritis (RA) by inducing and aggravating inflammation. TNF-α is abundant in fibroblast-like synoviocytes of RA (RA-FLSs) and plays a key role in pyroptosis by inducing nuclear factor (NF)-κB activation. Additionally, interleukin (IL)-37 is involved in autoimmune diseases as an anti-inflammatory cytokine and innate and acquired immune response inhibitor. However, the effect of IL-37 on pyroptosis in RA-FLSs remains unclear. Therefore, this study investigated the effects and mechanism of IL-37 on RA-FLS pyroptosis induced by TNF-α. METHODS In this study, the serum cytokines in patients with RA and healthy controls were detected using ELISA. The RA-FLSs were then cultured with TNF-α, with or without various IL-37 concentrations, to test the cytokine levels in the cell supernatant. 5-Ethynyl-2'-Deoxyuridine (EdU) assay assessed the effects of IL-37 on RA FLS proliferation. RA-FLS apoptosis was assessed using flow cytometry and mitochondrial membrane potential (MMP) measurement. In addition, transmission electron microscopy (TEM) was used to examine cell pyroptosis. We selected the optimal concentration for the following experiments and detected the signal pathway of IL-37 on pyroptosis of RA FLSs by quantitative reverse-transcription polymerase chain reaction (qRT-PCR) and Western blotting. Finally, we validated the therapeutic effects of IL-37 on CIA rat model in vivo. RESULTS IL-37 inhibited inflammation in vitro and in vivo and reduced pyroptosis-related protein expression in RA FLSs. Furthermore, we determined that nuclear factor κB (NF-κB) signaling is required for GSDMD-mediated pyroptosis in RA FLSs. CONCLUSION IL-37 alleviates TNF-α-induced pyroptosis of RA FLSs by inhibiting NF-κB/GSDMD signaling. Additionally, our data revealed a novel mechanism for IL-37 in RA FLSs, suggesting a new potential therapy for IL-37 to treat RA.
Collapse
|
10
|
Chung MK, Wang S, Alshanqiti I, Hu J, Ro JY. The degeneration-pain relationship in the temporomandibular joint: Current understandings and rodent models. FRONTIERS IN PAIN RESEARCH 2023; 4:1038808. [PMID: 36846071 PMCID: PMC9947567 DOI: 10.3389/fpain.2023.1038808] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/18/2023] [Indexed: 02/11/2023] Open
Abstract
Temporomandibular disorders (TMD) represent a group of musculoskeletal conditions involving the temporomandibular joints (TMJ), the masticatory muscles and associated structures. Painful TMD are highly prevalent and conditions afflict 4% of US adults annually. TMD include heterogenous musculoskeletal pain conditions, such as myalgia, arthralgia, and myofascial pain. A subpopulations of TMD patients show structural changes in TMJ, including disc displacement or degenerative joint diseases (DJD). DJD is a slowly progressing, degenerative disease of the TMJ characterized by cartilage degradation and subchondral bone remodeling. Patients with DJD often develop pain (TMJ osteoarthritis; TMJ OA), but do not always have pain (TMJ osteoarthrosis). Therefore, pain symptoms are not always associated with altered TMJ structures, which suggests that a causal relationship between TMJ degeneration and pain is unclear. Multiple animal models have been developed for determining altered joint structure and pain phenotypes in response to various TMJ injuries. Rodent models of TMJOA and pain include injections to induce inflammation or cartilage destruction, sustained opening of the oral cavity, surgical resection of the articular disc, transgenic approaches to knockout or overexpress key genes, and an integrative approach with superimposed emotional stress or comorbidities. In rodents, TMJ pain and degeneration occur during partially overlapping time periods in these models, which suggests that common biological factors may mediate TMJ pain and degeneration over different time courses. While substances such as intra-articular pro-inflammatory cytokines commonly cause pain and joint degeneration, it remains unclear whether pain or nociceptive activities are causally associated with structural degeneration of TMJ and whether structural degeneration of TMJ is necessary for producing persistent pain. A thorough understanding of the determining factors of pain-structure relationships of TMJ during the onset, progression, and chronification by adopting novel approaches and models should improve the ability to simultaneously treat TMJ pain and TMJ degeneration.
Collapse
Affiliation(s)
- Man-Kyo Chung
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD, United States
| | | | | | | | | |
Collapse
|
11
|
Li S, Pan X, Wu Y, Tu Y, Hong W, Ren J, Miao J, Wang T, Xia W, Lu J, Chen J, Hu X, Lin Y, Zhang X, Wang X. IL-37 alleviates intervertebral disc degeneration via the IL-1R8/NF-κB pathway. Osteoarthritis Cartilage 2023; 31:588-599. [PMID: 36693558 DOI: 10.1016/j.joca.2023.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 01/04/2023] [Accepted: 01/12/2023] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Intervertebral disc degeneration (IDD) has been reported to be a major cause of low back pain (LBP). Interleukin (IL)-37 is an anti-inflammatory cytokine of the interleukin-1 family, which exerts salutary physiological effects. In this study, we assessed the protective effect of IL-37 on IDD progression and its underlying mechanisms. METHODS Immunofluorescence (IF) was conducted to measure IL-37 expression in nucleus pulposus tissues. CCK-8 assay and Edu staining were used to examine the vitality of IL-37-treated nucleus pulposus cells (NPCs). Western blot, qPCR, ELISA as well as immunohistochemistry were used to assess senescence associated secreted phenotype (SASP) factors expression; and NF-κB pathway was evaluated by western blot and IF; while IL-1R8 knock-down by siRNAs was performed to ascertain its significance in the senescence phenotype modulated by IL-37. The therapeutic effect of IL-37 on IDD were evaluated in puncture-induced rat model using X-ray, Hematoxylin-Eosin, Safranin O-Fast Green (SO), and alcian blue staining. RESULTS We found IL-37 expression decreased in the IDD process. In vitro, IL-37 suppressed SASP factors level and senescence phenotype in IL-1β treated NPCs. In vivo, IL-37 alleviated the IDD progression in the puncture-induced rat model. Mechanistic studies demonstrated that IL-37 inhibited IDD progression by downregulating NF-κB pathway activation in NPCs by activating IL-1R8. CONCLUSION The present study suggests that IL-37 delays the IDD development through the IL-1R8/NF-κB pathway, which suggests IL-37 as a promising novel target for IDD therapy.
Collapse
Affiliation(s)
- S Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - X Pan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Y Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Y Tu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - W Hong
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - J Ren
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - J Miao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - T Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - W Xia
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - J Lu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - J Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - X Hu
- Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang Province, China
| | - Y Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - X Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - X Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
12
|
Almeida LE, Doetzer A, Beck ML. Immunohistochemical Markers of Temporomandibular Disorders: A Review of the Literature. J Clin Med 2023; 12:jcm12030789. [PMID: 36769438 PMCID: PMC9917491 DOI: 10.3390/jcm12030789] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
Temporomandibular disorders (TMD) are a group of internal derangements encompassing dysfunction, displacement, degeneration of the temporomandibular joints and surroundings muscles of mastication, often accompanied by pain. Relationships between TMD and various chemical biomarkers have been examined throughout the years. This paper aims to gather evidence from the literature regarding other biomarkers and presenting them as one systematic review to investigate the potential links between TMD and different biochemical activity. To identify relevant papers, a comprehensive literature search was carried out in MEDLINE/PubMED, EMBASE, Web of Science and a manual search was performed in the International Journal of Oral and Maxillofacial Surgery, Journal of Oral and Maxillofacial surgery, and Journal of Cranio-Maxillo-Facial Surgery. The literature review produced extensive results relating to the biochemical and immunohistochemical markers of TMD. Many enzymes, inflammatory markers, proteoglycans, and hormones were identified and organized in tables, along with a brief description, study design, and conclusion of each study. Through this review, recurring evidence provides confidence in suggesting involvement of certain biomarkers that may be involved in this complex pathogenesis, in addition to pointing to differences in gender prevalence of TMD. However, more organized research on large human samples needs to be conducted to delve deeper into the understanding of how this disease develops and progresses.
Collapse
Affiliation(s)
- Luis Eduardo Almeida
- Surgical Sciences Department, School of Dentistry, Marquette University, Milwaukee, WI 53233, USA
- Correspondence:
| | - Andrea Doetzer
- Faculdade de Odontologia, Pontificia Universidade Catolica do Parana, Curitiba 80215-901, Brazil
| | - Matthew L. Beck
- Surgical Sciences Department, School of Dentistry, Marquette University, Milwaukee, WI 53233, USA
| |
Collapse
|
13
|
Mélou C, Pellen-Mussi P, Jeanne S, Novella A, Tricot-Doleux S, Chauvel-Lebret D. Osteoarthritis of the Temporomandibular Joint: A Narrative Overview. MEDICINA (KAUNAS, LITHUANIA) 2022; 59:medicina59010008. [PMID: 36676632 PMCID: PMC9866170 DOI: 10.3390/medicina59010008] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Background and Objectives: This study reviewed the literature to summarize the current and recent knowledge of temporomandibular joint osteoarthritis (TMJOA). Methods: Through a literature review, this work summarizes many concepts related to TMJOA. Results: Although many signaling pathways have been investigated, the etiopathogenesis of TMJOA remains unclear. Some clinical signs are suggestive of TMJOA; however, diagnosis is mainly based on radiological findings. Treatment options include noninvasive, minimally invasive, and surgical techniques. Several study models have been used in TMJOA studies because there is no gold standard model. Conclusion: More research is needed to develop curative treatments for TMJOA, which could be tested with reliable in vitro models, and to explore tissue engineering to regenerate damaged temporomandibular joints.
Collapse
Affiliation(s)
- Caroline Mélou
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes), University Rennes, UMR 6226, 35000 Rennes, France
- CHU Rennes, Pôle d’Odontologie, 35033 Rennes, France
- UFR Odontologie, 35043 Rennes, France
| | - Pascal Pellen-Mussi
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes), University Rennes, UMR 6226, 35000 Rennes, France
| | - Sylvie Jeanne
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes), University Rennes, UMR 6226, 35000 Rennes, France
- CHU Rennes, Pôle d’Odontologie, 35033 Rennes, France
- UFR Odontologie, 35043 Rennes, France
| | - Agnès Novella
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes), University Rennes, UMR 6226, 35000 Rennes, France
| | - Sylvie Tricot-Doleux
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes), University Rennes, UMR 6226, 35000 Rennes, France
| | - Dominique Chauvel-Lebret
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes), University Rennes, UMR 6226, 35000 Rennes, France
- CHU Rennes, Pôle d’Odontologie, 35033 Rennes, France
- UFR Odontologie, 35043 Rennes, France
- Correspondence: ; Tel.: +33-2-23-23-43-64; Fax: +33-2-23-23-43-93
| |
Collapse
|
14
|
Qin YF, Ren SH, Shao B, Qin H, Wang HD, Li GM, Zhu YL, Sun CL, Li C, Zhang JY, Wang H. The intellectual base and research fronts of IL-37: A bibliometric review of the literature from WoSCC. Front Immunol 2022; 13:931783. [PMID: 35935954 PMCID: PMC9354626 DOI: 10.3389/fimmu.2022.931783] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/28/2022] [Indexed: 01/09/2023] Open
Abstract
Background IL-37 is a recently identified cytokine with potent immunosuppressive functions. The research fronts of IL-37 are worth investigating, and there is no bibliometric analysis in this field. The purpose of this study is to construct the intellectual base and predict research hotspots of IL-37 research both quantitatively and qualitatively according to bibliometric analysis. Methods The articles were downloaded from the Web of Science Core Collection (WoSCC) database from the inception of the database to 1 April 2022. CiteSpace 5.8.R3 (64-bit, Drexel University, Philadelphia, PA, USA) and Online Analysis Platform of Literature Metrology (https://bibliometric.com/) were used to perform bibliometric and knowledge-map analyses. Results A total of 534 papers were included in 200 academic journals by 2,783 authors in 279 institutions from 50 countries/regions. The journal Cytokine published the most papers on IL-37, while Nature Immunology was the most co-cited journal. The publications belonged mainly to two categories of Immunology and Cell Biology. USA and China were the most productive countries. Meanwhile, the University of Colorado Denver in USA produced the highest number of publications followed by Radboud University Nijmegen in the Netherlands and Monash University in Australia. Charles A. Dinarello published the most papers, while Marcel F. Nold had the most co-citations. Top 10 co-citations on reviews, mechanisms, and diseases were regarded as the knowledge base. The keyword co-occurrence and co-citations of references revealed that the mechanisms and immune-related disorders were the main aspects of IL-37 research. Notably, the involvement of IL-37 in various disorders and the additional immunomodulatory mechanisms were two emerging hotspots in IL-37 research. Conclusions The research on IL-37 was thoroughly reviewed using bibliometrics and knowledge-map analyses. The present study is a benefit for academics to master the dynamic evolution of IL-37 and point out the direction for future research.
Collapse
Affiliation(s)
- Ya-fei Qin
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Shao-hua Ren
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Bo Shao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hong Qin
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hong-da Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Guang-ming Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yang-lin Zhu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Cheng-lu Sun
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Chuan Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing-yi Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hao Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Hao Wang, ;
| |
Collapse
|
15
|
Liu X, Zhao J, Jiang H, Li H, Feng Y, Ke J, Long X. ALPK1 Aggravates TMJOA Cartilage Degradation via NF-κB and ERK1/2 Signaling. J Dent Res 2022; 101:1499-1509. [PMID: 35689396 DOI: 10.1177/00220345221100179] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Temporomandibular joint osteoarthritis (TMJOA) is a common degenerative joint disease without effective intervention strategies. Previous research implied that alpha-kinase 1 (ALPK1) is involved in the inflammatory responses of gout, a chronic arthritis. Herein, we found the main distribution of ALPK1 in a proliferative layer of condylar cartilage and marrow cavity of subchondral bone, as well as a lining layer of synovial tissues in human temporomandibular joint. Moreover, the expression of ALPK1 was augmented in degraded condylar cartilage of monosodium iodoacetate (MIA)-induced TMJOA mice. After MIA induction, ALPK1 knockout mice exhibited attenuated damage of cartilage and subchondral bone, as well as synovitis, as compared with wide type mice. In contrast, intra-articular administration of recombinant human ALPK1 aggravated the pathology of MIA-induced TMJOA. Furthermore, ex vivo study demonstrated that ALPK1 exacerbated chondrocyte catabolism by upregulating matrix metalloproteinase 13 and cyclooxygenase 2 by activating NF-κB (nuclear factor-kappaB) signaling and suppressed anabolism by downregulating aggrecan by inhibiting ERK1/2 (extracellular signal-regulated kinase 1/2) in articular chondrocytes. Taken together, ALPK1 exacerbates the degradation of condylar cartilage during TMJOA through the NF-κB and ERK1/2 signaling pathway. This study provides a new insight regarding the role of ALPK1 during TMJOA pathology.
Collapse
Affiliation(s)
- X Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - J Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - H Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - H Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Y Feng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - J Ke
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - X Long
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
16
|
Zeng H, Zhou K, Ye Z. Biology of interleukin‑37 and its role in autoimmune diseases (Review). Exp Ther Med 2022; 24:495. [PMID: 35837057 PMCID: PMC9257848 DOI: 10.3892/etm.2022.11422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 05/10/2022] [Indexed: 11/06/2022] Open
Abstract
Autoimmune diseases (AIDs) are characterized by dysfunction and tissue destruction, and recent studies have shown that interleukin (IL)-37 expression is dysregulated in AIDs. Among cytokines of the IL-1 family, most are pro-inflammatory agents, and as an anti-inflammatory cytokine, IL-37 may have the potential to alleviate excessive inflammation and can be used as a ligand or transcription factor that is involved in regulating innate and adaptive immunity. IL-37 plays important roles in the development of AIDs. This review summarizes the biological characteristics and functions of IL-37 and discusses the potential of IL-37 as a therapeutic target for effective cytokine therapy and as a biomarker in AIDs.
Collapse
Affiliation(s)
- Huiqiong Zeng
- Department of Rheumatology, Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, Guangdong 518040, P.R. China
| | - Kaixia Zhou
- School of Biomedical Sciences, CUHK‑GIBH CAS Joint Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, P.R. China
| | - Zhizhong Ye
- Department of Rheumatology, Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, Guangdong 518040, P.R. China
| |
Collapse
|
17
|
Xiao M, Hu ZH, Jiang HH, Fang W, Long X. Role of osteoclast differentiation in the occurrence of osteoarthritis of temporomandibular joint. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2021; 39:398-404. [PMID: 34409794 DOI: 10.7518/hxkq.2021.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OBJECTIVES This study aimed to explore the role of osteoclast differentiation in the occurrence of temporomandibular joint osteoarthritis (TMJOA). METHODS A mouse TMJOA model was constructed. Micro-CT was used to observe the changes in condylar bone during the development of TMJOA. Hematoxylin-eosin (HE) staining was used to observe the histological structure changes of the condyle of TMJOA mice. Tartrate resistant acid phosphatase (TRAP) staining was used to observe the presence of osteoclasts in TMJOA joint tissue. The synovial fluid of patients with TMJ-OA was collected to determine the effect on osteoclast differentiation. RESULTS Micro-CT revealed that the condyle of the TMJOA group had the most obvious damage in the second and third weeks, and the shape of the condyles also changed in a beak-like manner. HE staining showed that the condyle cartilage and subchondral bone structure of TMJOA mice were disordered in the second week. TRAP tissue staining showed that the number of osteoclasts of the TMJOA group obviously increased in the second week. Results of cell experiments showed that the number of osteoclast differentiation significantly increased after stimulation of synovial fluid from TMJOA patients, and the cell volume increased. CONCLUSIONS TMJOA animal models and TMJOA patient synovial cell experiments could induce osteoclast differentiation, indicating that osteoclast differentiation plays an important role in TMJOA occurrence.
Collapse
Affiliation(s)
- Mian Xiao
- Dept. of Oral and Maxillofacial Trauma and Temporomandibular Joint Surgery, School and Hospital of Stomatology, Wuhan University, State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan 430000, China
| | - Zhi-Hui Hu
- Dept. of Oral and Maxillofacial Trauma and Temporomandibular Joint Surgery, School and Hospital of Stomatology, Wuhan University, State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan 430000, China
| | - Heng-Hua Jiang
- Dept. of Oral and Maxillofacial Trauma and Temporomandibular Joint Surgery, School and Hospital of Stomatology, Wuhan University, State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan 430000, China
| | - Wei Fang
- Dept. of Oral and Maxillofacial Trauma and Temporomandibular Joint Surgery, School and Hospital of Stomatology, Wuhan University, State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan 430000, China
| | - Xing Long
- Dept. of Oral and Maxillofacial Trauma and Temporomandibular Joint Surgery, School and Hospital of Stomatology, Wuhan University, State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan 430000, China
| |
Collapse
|
18
|
Yi Y, Zhou X, Xiong X, Wang J. Neuroimmune interactions in painful TMD: Mechanisms and treatment implications. J Leukoc Biol 2021; 110:553-563. [PMID: 34322892 DOI: 10.1002/jlb.3mr0621-731rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 06/28/2021] [Accepted: 07/08/2021] [Indexed: 02/05/2023] Open
Abstract
The underlying mechanisms and treatment of painful temporomandibular disorders (TMDs) are important but understudied topics in craniofacial research. As a group of musculoskeletal diseases, the onset of painful TMD is proved to be a result of disturbance of multiple systems. Recently, emerging evidence has revealed the involvement of neuroimmune interactions in painful TMD. Inflammatory factors play an important role in peripheral sensitization of temporomandibular joint (TMJ), and neurogenic inflammation in turn enhances TMJs dysfunction in TMD. Furthermore, centralized neuroimmune communications contribute to neuron excitability amplification, leading to pain sensitization, and is also responsible for chronic TMD pain and other CNS symptoms. Therapeutics targeting neuroimmune interactions may shed light on new approaches for treating TMD. In this review, we will discuss the role of neuroimmune interactions in the onset of painful TMD from the peripheral and centralized perspectives, and how understanding this mechanism could provide new treatment options. Insights into the neuroimmune interactions within TMJs and painful TMD would broaden the knowledge of mechanisms and treatments of this multifactorial disease.
Collapse
Affiliation(s)
- Yating Yi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No. 14 Section 3, Renmin South Road, Chengdu, 610041, China
| | - Xueman Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No. 14 Section 3, Renmin South Road, Chengdu, 610041, China
| | - Xin Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No. 14 Section 3, Renmin South Road, Chengdu, 610041, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No. 14 Section 3, Renmin South Road, Chengdu, 610041, China
| |
Collapse
|
19
|
Su Z, Tao X. Current Understanding of IL-37 in Human Health and Disease. Front Immunol 2021; 12:696605. [PMID: 34248996 PMCID: PMC8267878 DOI: 10.3389/fimmu.2021.696605] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/14/2021] [Indexed: 12/15/2022] Open
Abstract
IL-37 is a recently discovered cytokine in the IL-1 family exerting broad protective effects on inflammatory diseases, autoimmune diseases, and cancer. Immune and non-immune cells produce the IL-37 precursor upon pro-inflammatory stimuli. Intracellularly, caspase-1 cleaves and activates IL-37, and its mature form binds to Smad3; this complex translocates into the nucleus where it suppresses cytokine production, consequently reducing inflammation. Extracellularly, IL-37 forms a complex with IL-18Rα and IL-1R8 (formerly TIR8 or SIGIRR) that transduces anti-inflammatory signals by the suppression of NF-κB and MAPK and the activation of Mer-PTEN-DOK pathways. During inflammation, IL-37 suppresses the expression of several pro-inflammatory cytokine in favor to the expression of the anti-inflammatory ones by the regulation of macrophage polarization, lipid metabolism, inflammasome function, TSLP synthesis and miRNAs function. Moreover, IL-37 not only regulates the innate and acquired immunity, but also improves aging-associated immunosenescence. Furthermore, IL-37 exerts an inhibitory effect on tumor angiogenesis and metastasis, and progression. Finally, IL-37 may have a potential ability to reduce excessive inflammation since it is aberrantly expressed in patients with inflammatory diseases, autoimmune diseases, and cancer, thus, it may be used as a marker for different types of diseases. Therefore, this review provides an updated view of the role of IL-37 in human health and disease, and discusses the potential of IL-37 as a therapeutic target and biomarker in inflammatory diseases, autoimmune diseases, and cancer.
Collapse
Affiliation(s)
- Zhangci Su
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xiaoan Tao
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
20
|
Wu P, Zhou J, Wu Y, Zhao L. The emerging role of Interleukin 37 in bone homeostasis and inflammatory bone diseases. Int Immunopharmacol 2021; 98:107803. [PMID: 34091255 DOI: 10.1016/j.intimp.2021.107803] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 02/05/2023]
Abstract
Interleukin 37 (IL-37) is a newly identified cytokine that belongs to the IL-1 family. Unlike other members of the IL-1 family, it has been demonstrated that IL-37 possesses anti-inflammatory characteristics in both innate and acquired immune responses. Recently, significant progress has been made in understanding the role of IL-37 in inflammatory signaling pathways. Meanwhile, IL-37 has also attracted more and more attention in bone homeostasis and inflammatory bone diseases. The latest studies have revealed that IL-37 palys an essential role in the regulation of osteoclastogenesis and osteoblastogenesis. The levels of IL-37 are abnormal in patients with inflammatory bone diseases such as rheumatoid arthritis (RA), osteoarthritis (OA), ankylosing spondylitis (AS), and periodontitis. In addition, in vivo studies have further confirmed that recombinant IL-37 treatment displayed therapeutic potential in these diseases. The present review article aims to provide an overview describing the biological functions of IL-37 in bone homeostasis and inflammatory bone diseases, thus shedding new light on a novel therapeutic strategy in the future.
Collapse
Affiliation(s)
- Peiyao Wu
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jieyu Zhou
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yafei Wu
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Lei Zhao
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
21
|
Jia C, Zhuge Y, Zhang S, Ni C, Wang L, Wu R, Niu C, Wen Z, Rong X, Qiu H, Chu M. IL-37b alleviates endothelial cell apoptosis and inflammation in Kawasaki disease through IL-1R8 pathway. Cell Death Dis 2021; 12:575. [PMID: 34083516 PMCID: PMC8174541 DOI: 10.1038/s41419-021-03852-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022]
Abstract
Kawasaki disease (KD) is an acute vasculitis of pediatric populations that may develop coronary artery aneurysms if untreated. It has been regarded as the principal cause of acquired heart disease in children of the developed countries. Interleukin (IL)-37, as one of the IL-1 family members, is a natural suppressor of inflammation that is caused by activation of innate and adaptive immunity. However, detailed roles of IL-37 in KD are largely unclear. Sera from patients with KD displayed that IL-37 level was significantly decreased compared with healthy controls (HCs). QRT-PCR and western blot analyses showed that the expression level of IL-37 variant, IL-37b, was remarkably downregulated in human umbilical vein endothelial cells (HUVECs) exposed to KD sera-treated THP1 cells. Therefore, we researched the role of IL-37b in the context of KD and hypothesized that IL-37b may have a powerful protective effect in KD patients. We first observed and substantiated the protective role of IL-37b in a mouse model of KD induced by Candida albicans cell wall extracts (CAWS). In vitro experiments demonstrated that IL-37b alleviated endothelial cell apoptosis and inflammation via IL-1R8 receptor by inhibiting ERK and NFκB activation, which were also recapitulated in the KD mouse model. Together, our findings suggest that IL-37b play an effective protective role in coronary endothelial damage in KD, providing new evidence that IL-37b is a potential candidate drug to treat KD.
Collapse
Affiliation(s)
- Chang Jia
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China
| | - Yingzhi Zhuge
- Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China
| | - Shuchi Zhang
- Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China
| | - Chao Ni
- Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China
| | - Linlin Wang
- Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China
| | - Rongzhou Wu
- Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China
| | - Chao Niu
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China
| | - Zhengwang Wen
- Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China
| | - Xing Rong
- Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China
| | - Huixian Qiu
- Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China.
| | - Maoping Chu
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China. .,Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China.
| |
Collapse
|
22
|
Xu Y, Gu Y, Ji W, Dong Q. Activation of the extracellular-signal-regulated kinase (ERK)/c-Jun N-terminal kinase (JNK) signal pathway and osteogenic factors in subchondral bone of patients with knee osteoarthritis. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:663. [PMID: 33987361 PMCID: PMC8106020 DOI: 10.21037/atm-21-1215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 04/22/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND The objectives of this study was to explore the activation of the extracellular-signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) signaling pathway and osteogenesis-related factors in the subchondral bone of patients with knee osteoarthritis (OA). METHODS Ten patients with primary OA who underwent total knee arthroplasty in the Department of Arthritis Surgery of our hospital were enrolled, and subchondral bone tissue samples were obtained during the operation. He staining and saffron staining were used to observe the arrangement of chondrocytes in the patient tissues. The protein expression levels of JNK, p-JNK, ERK, p-ERK, Runx2 and OMD in subchondral bone were detected by Western Blot. Knee osteoarthritis mice were established. He staining was used to observe the arrangement of subchondral bone cells in the knee joint of mice. Cellular mineralized nodules were determined by alizarin red staining. RESULTS Firstly, in general and staining, it was observed that the subchondral bone lesions of knee OA participants were obvious. Compared with normal knee joints, the levels of phosphorylation-c-Jun N-terminal kinase (P-JNK) and phosphorylation-extracellular-signal-regulated kinase (P-ERK) in the subchondral bone of knee arthritis participants were significantly increased (P<0.05). The level of osteomodulin (OMD) was significantly reduced (P<0.05). Secondly, compared with normal mice, the levels of JNK, P-JNK, OMD, ERK, and P-ERK in the model group were significantly different (P<0.05). At 2-8 weeks, the JNK and P-JNK levels in the mice model group increased significantly over time (P<0.05), and the OMD level decreased significantly over time (P<0.05). The levels of ERK and P-ERK fluctuated over time. Thirdly, osteoblasts were treated with different concentrations of anisomycin, and stained with alizarin red after continuous culture for 24 and 48 h, respectively. It was found that all the cells were stained with orange-red mineralized nodules. As the concentration of anisomycin was increased, the number of cell mineralization nodules was significantly larger, and the positive rate of chemical nodules increased. Different concentrations of anisomycin were given to interfere with the osteoblasts of mice. When anisomycin was administered at a dose of 25 ng, the OMD level reached the highest level. When the concentration of anisomycin was increased, the osteocalcin (OCN) level also showed an upward trend. CONCLUSIONS The process by which the JNK signaling pathway regulates OMD may be closely related to the pathological changes of subchondral bone in patients with knee OA, and is involved in the occurrence and development of knee arthritis.
Collapse
Affiliation(s)
- Yaofeng Xu
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Orthopedics, Suzhou Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Traditional Chinese Medicine, Suzhou, China
| | - Yuguo Gu
- Department of Orthopedics, Suzhou Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Traditional Chinese Medicine, Suzhou, China
| | - Wanbo Ji
- Department of Orthopedics, Suzhou Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Traditional Chinese Medicine, Suzhou, China
| | - Qirong Dong
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
23
|
Peng S, Yan Y, Li R, Dai H, Xu J. Extracellular vesicles from M1‐polarized macrophages promote inflammation in the temporomandibular joint via miR‐1246 activation of the Wnt/β‐catenin pathway. Ann N Y Acad Sci 2021; 1503:48-59. [DOI: 10.1111/nyas.14590] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/17/2021] [Accepted: 02/24/2021] [Indexed: 12/16/2022]
Affiliation(s)
- Sisi Peng
- College of Stomatology Chongqing Medical University Chongqing China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences Chongqing China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing China
| | - Yin Yan
- College of Stomatology Chongqing Medical University Chongqing China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences Chongqing China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing China
| | - Rui Li
- College of Stomatology Chongqing Medical University Chongqing China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences Chongqing China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing China
| | - Hongwei Dai
- College of Stomatology Chongqing Medical University Chongqing China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences Chongqing China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing China
| | - Jie Xu
- College of Stomatology Chongqing Medical University Chongqing China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences Chongqing China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing China
| |
Collapse
|
24
|
Luo P, Peng S, Yan Y, Ji P, Xu J. IL-37 inhibits M1-like macrophage activation to ameliorate temporomandibular joint inflammation through the NLRP3 pathway. Rheumatology (Oxford) 2021; 59:3070-3080. [PMID: 32417913 DOI: 10.1093/rheumatology/keaa192] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/26/2020] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES IL-37 has been identified as an important anti-inflammatory and immunosuppressive factor. This study was undertaken to explore how IL-37 affects M1/M2-like macrophage polarization and thus contributes to anti-inflammatory processes in the temporomandibular joint. METHODS Western blotting, quantitative real-time PCR (qRT-PCR) and immunofluorescence were used to verify the IL-37-induced polarization shift from the M1 phenotype to the M2 phenotype, and the related key pathways were analysed by western blotting. Human chondrocytes were stimulated with M1-conditioned medium (CM) or IL-37-pretreated M1-CM, and inflammatory cytokines were detected. siRNA-IL-1R8 and MCC-950 were used to investigate the mechanism underlying the anti-inflammatory effects of IL-37. Complete Freund's adjuvant-induced and disc perforation-induced inflammation models were used for in vivo studies. Haematoxylin and eosin, immunohistochemical and safranin-O staining protocols were used to analyse histological changes in the synovium and condyle. RESULTS Western blotting, qRT-PCR and immunofluorescence showed that IL-37 inhibited M1 marker expression and upregulated M2 marker expression. Western blotting and qRT-PCR showed that pretreatment with IL-37 suppressed inflammatory cytokine expression in chondrocytes. IL-37 inhibited the expression of NLRP3 and upregulated the expression of IL-1R8. Si-IL-1R8 and MCC-950 further confirmed that the anti-inflammatory properties of IL-37 were dependent on the presence of IL-1R8 and NLRP3. In vivo, IL-37 reduced synovial M1 marker expression and cartilage degeneration and increased M2 marker expression. CONCLUSION IL-37 shifting of the polarization of macrophages from the pro-inflammatory M1 phenotype to the beneficial anti-inflammatory M2 phenotype seems to be a promising therapeutic strategy for treating temporomandibular joint inflammation.
Collapse
Affiliation(s)
- Ping Luo
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Chongqing Medical University.,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Sisi Peng
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Chongqing Medical University.,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yin Yan
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Chongqing Medical University.,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Ping Ji
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Chongqing Medical University.,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jie Xu
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Chongqing Medical University.,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
25
|
Liu X, Cai HX, Cao PY, Feng Y, Jiang HH, Liu L, Ke J, Long X. TLR4 contributes to the damage of cartilage and subchondral bone in discectomy-induced TMJOA mice. J Cell Mol Med 2020; 24:11489-11499. [PMID: 32914937 PMCID: PMC7576306 DOI: 10.1111/jcmm.15763] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 07/17/2020] [Accepted: 08/05/2020] [Indexed: 02/05/2023] Open
Abstract
The abundance of inflammatory mediators in injured joint indicates innate immune reactions activated during temporomandibular joint osteoarthritis (TMJOA) progression. Toll‐like receptor 4 (TLR4) can mediate innate immune reaction. Herein, we aimed to investigate the expression profile and effect of TLR4 in the cartilage and subchondral bone of the discectomy‐induced TMJOA mice. The expression of TLR4 and NFκB p65 in the synovium of TMJOA patients was measured by immunohistochemistry, Western blotting and RT‐PCR. H&E and Masson staining were utilized to assess the damage of cartilage and subchondral bone of the discectomy‐induced TMJOA mice. A TLR4 inhibitor, TAK‐242, was used to assess the effect of TLR4 in the cartilage and subchondral bone of the discectomy‐induced TMJOA mice by Safranin O, micro‐CT, immunofluorescence and immunohistochemistry. Western blotting was used to quantify the expression and effect of TLR4 in IL‐1β–induced chondrocytes. The expression of TLR4 and NFκB p65 was elevated in the synovium of TMJOA patients, compared with the normal synovium. TLR4 elevated in the damaged cartilage and subchondral bone of discectomy‐induced TMJOA mice, and the rate of TLR4 expressing chondrocytes positively correlated with OA score. Intraperitoneal injections of TAK‐242 ameliorate the extent of TMJOA. Furthermore, TLR4 promotes the expression of MyD88/NFκB, pro‐inflammatory and catabolic mediators in cartilage of discectomy‐induced TMJOA. Besides, TLR4 participates in the production of MyD88/NFκB, pro‐inflammatory and catabolic mediators in IL‐1β–induced chondrocytes. TLR4 contributes to the damage of cartilage and subchondral bone in discectomy‐induced TMJOA mice through activation of MyD88/NFκB and release of pro‐inflammatory and catabolic mediators.
Collapse
Affiliation(s)
- Xin Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Heng-Xing Cai
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Pin-Yin Cao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases &, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yaping Feng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Heng-Hua Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Li Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jin Ke
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xing Long
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
26
|
IL-37 Gene Modification Enhances the Protective Effects of Mesenchymal Stromal Cells on Intestinal Ischemia Reperfusion Injury. Stem Cells Int 2020; 2020:8883636. [PMID: 32849879 PMCID: PMC7439787 DOI: 10.1155/2020/8883636] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/15/2020] [Accepted: 07/24/2020] [Indexed: 12/14/2022] Open
Abstract
Background Ischemia reperfusion injury (IRI) is the major cause of intestinal damage in clinic. Although either mesenchymal stromal cells (MSCs) or interleukin 37 (IL-37) shows some beneficial roles to ameliorate IRI, their effects are limited. In this study, the preventative effects of IL-37 gene-modified MSCs (IL-37-MSCs) on intestinal IRI are investigated. Methods Intestinal IRI model was established by occluding the superior mesenteric artery for 30 minutes and then reperfused for 72 hours in rats. Forty adult male Sprague-Dawley rats were randomly divided into the sham control, IL-37-MSC-treated, MSC-treated, recombinant IL-37- (rIL-37-) treated, and untreated groups. Intestinal damage was assessed by H&E staining. The levels of gut barrier function factors (diamine oxidase and D-Lactate) and inflammation cytokine IL-1β were assayed using ELISA. The synthesis of tissue damage-related NLRP3 inflammasome and downstream cascade reactions including cleaved caspase-1, IL-1β, and IL-18 was detected by western blot. The mRNA levels of proinflammatory mediators IL-6 and TNF-α, which are downstream of IL-1β and IL-18, were determined by qPCR. Data were analyzed by one-way analysis of variance (ANOVA) after the normality test and followed by post hoc analysis with the least significant difference (LSD) test. Results IL-37-MSCs were able to migrate to the damaged tissue and significantly inhibit intestinal IRI. As compared with MSCs or the rIL-37 monotherapy group, IL-37-MSC treatment both improved gut barrier function and decreased local and systemic inflammation cytokine IL-1β level in IRI rats. In addition, tissue damage-related NLRP3 and downstream targets (cleaved caspase-1, IL-1β, and IL-18) were significantly decreased in IRI rats treated with IL-37-MSCs. Furthermore, IL-1β- and IL-18-related proinflammatory mediator IL-6 and TNF-α mRNA expressions were all significantly decreased in IRI rats treated with IL-37-MSCs. Conclusion The results suggest that IL-37 gene modification significantly enhances the protective effects of MSCs against intestinal IRI. In addition, NLRP3-related signaling pathways could be associated with IL-37-MSC-mediated protection.
Collapse
|
27
|
Li W, Ding F, Zhai Y, Tao W, Bi J, Fan H, Yin N, Wang Z. IL-37 is protective in allergic contact dermatitis through mast cell inhibition. Int Immunopharmacol 2020; 83:106476. [PMID: 32278131 DOI: 10.1016/j.intimp.2020.106476] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/02/2020] [Accepted: 04/02/2020] [Indexed: 12/20/2022]
Abstract
Allergic contact dermatitis (ACD), characterized predominantly by erythema, vesiculation, and pruritus, is a T cell-mediated skin inflammatory condition. Among immune cells involved in ACD, mast cells (MCs) play an essential role in its pathogenesis. As an inhibitor of proinflammatory IL-1 family members, interleukin 37 (IL-37) has been shown to ameliorate inflammatory responses in various allergic diseases. In this study, we assessed the immunomodulatory effect of IL-37 on allergic inflammation using a 2,4-dinitrofluorobenzene (DNFB)-induced ACD rat model and isolated rat peritoneal mast cells (RPMCs). Systematic application of IL-37 significantly relieved ear swelling, reduced inflammatory cell infiltration, decreased inflammatory cytokine production (TNF-α, IL-1β, IFN-γ, and IL-13), inhibited MC recruitment, lowered IgE levels, and reduced IL-33 production in the local ear tissues with DNFB challenge. Additionally, RPMCs isolated from ACD rats with IL-37 intervention showed downregulation of IL-6, TNF-α, IL-13, and MCP-1 production following IL-33 stimulation, and reduction of β-hexosaminidase and histamine release under DNP-IgE/HSA treatment. Moreover, IL-37 treatment also significantly restrained NF-κB activation and P38 phosphorylation in ACD RPMCs. SIS3, a specific Smad3 inhibitor, abolished the suppressive effects of IL-37 on MC-mediated allergic inflammation, suggesting the participation of Smad3 in the anti-ACD effect of IL-37. These findings indicated that IL-37 protects against IL-33-regulated MC inflammatory responses via inhibition of NF-κB and P38 MAPK activation accompanying the regulation of Smad3 in rats with ACD.
Collapse
Affiliation(s)
- Weihua Li
- Department of Cardiology, Affiliated Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, China
| | - Fengmin Ding
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yi Zhai
- Department of Cardiology, Affiliated Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, China
| | - Wenting Tao
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Jing Bi
- Department of Pathogen Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Hong Fan
- Department of Pathogen Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Nina Yin
- Department of Anatomy, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Zhigang Wang
- Department of Pathogen Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China.
| |
Collapse
|
28
|
Pan Y, Wen X, Hao D, Wang Y, Wang L, He G, Jiang X. The role of IL-37 in skin and connective tissue diseases. Biomed Pharmacother 2019; 122:109705. [PMID: 31918276 DOI: 10.1016/j.biopha.2019.109705] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/12/2019] [Accepted: 11/24/2019] [Indexed: 02/05/2023] Open
Abstract
IL-37 was discovered as an anti-inflammatory and immunosuppressive cytokine of the IL-1 family. Significant advancements in the understanding of signaling pathways associated with IL-37 have been made in recent years. IL-37 binds to IL-18R and recruits IL-1R8 to form the IL-37/IL-1R8/IL-18Rα complex. Capase-1 plays a key role in the nuclear transduction of IL-37 signal, processing precursor IL-37 into the mature isoform, and interacting with Smad3. IL-37 exerts its role by activating anti-inflammation pathways including AMPK, PTEN, Mer, STAT3 and p62, and promoting tolerogenic dendritic cells and Tregs. In addition, IL-37 inhibits pro-inflammatory cytokines such as IL-1, IL-6, IL-8, IL-17, IL-23, TNF-α, and IFN-γ, and suppresses Fyn, MAPK, TAK1, NFκB, and mTOR signaling. The final effects of IL-37 depend on the interaction among IL-18R, IL-1R8, IL-37 and IL-18BP. Previous studies have deciphered the role of IL-37 in the development and pathogenesis of autoimmune diseases, chronic infections and cancer. In this review, we discuss the role of IL-37 in psoriasis, atopic dermatitis, Behcet's diseases, systemic lupus erythematosus, and other skin and connective tissue diseases.
Collapse
Affiliation(s)
- Yu Pan
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Xiang Wen
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Dan Hao
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Yujia Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Lian Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Gu He
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, PR China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, PR China.
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
29
|
Luo P, Feng C, Jiang C, Ren X, Gou L, Ji P, Xu J. IL-37b alleviates inflammation in the temporomandibular joint cartilage via IL-1R8 pathway. Cell Prolif 2019; 52:e12692. [PMID: 31560411 PMCID: PMC6869040 DOI: 10.1111/cpr.12692] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/22/2019] [Accepted: 08/24/2019] [Indexed: 02/06/2023] Open
Abstract
Objectives Interleukin (IL)‐37 is a natural suppressor of innate inflammation. This study was conducted to explore the anti‐inflammatory effects of IL‐37 in temporomandibular joint (TMJ) inflammation. Materials and Methods The expression of IL‐37 in the TMJ was measured using ELISA and IHC. Human TMJ chondrocytes were treated with IL‐37b and IL‐1β, and inflammation‐related factors were detected. siRNA‐IL‐1R8 was transfected into chondrocytes, and the affected pathways were detected. IL‐37b was used in disc‐perforation‐induced TMJ inflammation in SD rats. Micro‐CT, IHC, real‐time PCR and histological staining were used to quantify the therapeutic effect of IL‐37b. Results IL‐37 was expressed in the synovium and the disc of patients with osteoarthritis (OA) and in the articular cartilage of condylar fracture patients. IL‐37 was highly expressed in synovial fluid of patients with synovitis than in those with OA and disc displacement and was closely related to visual analogue scale (VAS) score. In vitro, IL‐37b suppressed the expression of pro‐inflammatory factors. In addition, IL‐37b exerted anti‐inflammatory effects via IL‐1R8 by inhibiting the p38, ERK, JNK and NF‐κB activation, while silencing IL‐1R8 led to inflammation and upregulation of these signals. In disc‐perforation‐induced TMJ inflammation in SD rats, IL‐37b suppressed inflammation and inhibited osteoclast formation to protect against TMJ. Conclusions IL‐37b may be a novel therapeutic agent for TMJ inflammation.
Collapse
Affiliation(s)
- Ping Luo
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Chi Feng
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Chao Jiang
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Xiaochun Ren
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Liming Gou
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Ping Ji
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jie Xu
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|