1
|
Hu M, Fan Z. Role and mechanisms of histone methylation in osteogenic/odontogenic differentiation of dental mesenchymal stem cells. Int J Oral Sci 2025; 17:24. [PMID: 40133254 PMCID: PMC11937254 DOI: 10.1038/s41368-025-00353-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/01/2025] [Accepted: 02/11/2025] [Indexed: 03/27/2025] Open
Abstract
Dental mesenchymal stem cells (DMSCs) are pivotal for tooth development and periodontal tissue health and play an important role in tissue engineering and regenerative medicine because of their multidirectional differentiation potential and self-renewal ability. The cellular microenvironment regulates the fate of stem cells and can be modified using various optimization techniques. These methods can influence the cellular microenvironment, activate disparate signaling pathways, and induce different biological effects. "Epigenetic regulation" refers to the process of influencing gene expression and regulating cell fate without altering DNA sequences, such as histone methylation. Histone methylation modifications regulate pivotal transcription factors governing DMSCs differentiation into osteo-/odontogenic lineages. The most important sites of histone methylation in tooth organization were found to be H3K4, H3K9, and H3K27. Histone methylation affects gene expression and regulates stem cell differentiation by maintaining a delicate balance between major trimethylation sites, generating distinct chromatin structures associated with specific downstream transcriptional states. Several crucial signaling pathways associated with osteogenic differentiation are susceptible to modulation via histone methylation modifications. A deeper understanding of the regulatory mechanisms governing histone methylation modifications in osteo-/odontogenic differentiation and immune-inflammatory responses of DMSCs will facilitate further investigation of the epigenetic regulation of histone methylation in DMSC-mediated tissue regeneration and inflammation. Here is a concise overview of the pivotal functions of epigenetic histone methylation at H3K4, H3K9, and H3K27 in the regulation of osteo-/odontogenic differentiation and renewal of DMSCs in both non-inflammatory and inflammatory microenvironments. This review summarizes the current research on these processes in the context of tissue regeneration and therapeutic interventions.
Collapse
Affiliation(s)
- Meijun Hu
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Zhipeng Fan
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China.
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China.
- Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
2
|
Ru Y, Ma M, Zhou X, Kriti D, Cohen N, D'Souza S, Schaniel C, Motch Perrine SM, Kuo S, Pichurin O, Pinto D, Housman G, Holmes G, Schadt E, van Bakel H, Zhang B, Jabs EW, Wu M. Integrated transcriptomic analysis of human induced pluripotent stem cell-derived osteogenic differentiation reveals a regulatory role of KLF16. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.02.11.579844. [PMID: 38405902 PMCID: PMC10888757 DOI: 10.1101/2024.02.11.579844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Osteogenic differentiation is essential for bone development, metabolism, and repair; however, the underlying regulatory relationships among genes remain poorly understood. To elucidate the transcriptomic changes and identify novel regulatory genes involved in osteogenic differentiation, we differentiated mesenchymal stem cells (MSCs) derived from 20 human iPSC lines into preosteoblasts (preOBs) and osteoblasts (OBs). We then performed transcriptome profiling of MSCs, preOBs and OBs. The iPSC-derived MSCs and OBs showed similar transcriptome profiles to those of primary human MSCs and OBs, respectively. Differential gene expression analysis revealed global changes in the transcriptomes from MSCs to preOBs, and then to OBs, including the differential expression of 840 genes encoding transcription factors (TFs). TF regulatory network analysis uncovered a network comprising 451 TFs, organized into five interactive modules. Multiscale embedded gene co-expression network analysis (MEGENA) identified gene co-expression modules and key network regulators (KNRs). From these analyses, KLF16 emerged as an important TF in osteogenic differentiation. We demonstrate that overexpression of Klf16 in vitro inhibited osteogenic differentiation and mineralization, while Klf16 +/- mice exhibited increased bone mineral density, trabecular number, and cortical bone area. Our study underscores the complexity of osteogenic differentiation and identifies novel regulatory genes such as KLF16, which plays an inhibitory role in osteogenic differentiation both in vitro and in vivo.
Collapse
Affiliation(s)
- Ying Ru
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Meng Ma
- Mount Sinai Genomics, Sema4, Stamford, CT, 06902, USA
| | - Xianxiao Zhou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Divya Kriti
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Present address: Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of British Columbia, Vancouver, BC V6T 2G3, Canada
| | - Ninette Cohen
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Present address: Division of Cytogenetics and Molecular Pathology, Zucker School of Medicine at Hofstra/Northwell, Northwell Health Laboratories, Lake Success, NY, 11030, USA
| | - Sunita D'Souza
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Present address: St Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Christoph Schaniel
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Susan M Motch Perrine
- Department of Anthropology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Sharon Kuo
- Department of Biomedical Sciences, University of Minnesota, Duluth, MN, 55812, USA
- Technological Primates Research Group, Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany
| | - Oksana Pichurin
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Dalila Pinto
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Genevieve Housman
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany
| | - Greg Holmes
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Eric Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ethylin Wang Jabs
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Meng Wu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| |
Collapse
|
3
|
Sabatini C, Lin HJ, Ovik G, Hall R, Lee T. The proneural transcription factor Atoh1 promotes odontogenic differentiation in human dental pulp stem cells (DPSCs). BMC Mol Cell Biol 2025; 26:5. [PMID: 39833721 PMCID: PMC11744864 DOI: 10.1186/s12860-025-00530-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Bioengineering of human teeth for replacement is an appealing regenerative approach in the era of gene therapy. Developmentally regulated transcription factors hold promise in the quest because these transcriptional regulators constitute the gene regulatory networks driving cell fate determination. Atonal homolog 1 (Atoh1) is a transcription factor of the basic helix-loop-helix (bHLH) family essential for neurogenesis in the cerebellum, auditory hair cell differentiation, and intestinal stem cell specification. The functional versatility of Atoh1 prompted us to test the possibility that Atoh1 may intersect the dental pulp stem cell (DPSC) gene regulatory network governing odontogenic differentiation. METHODS We isolated DPSCs from human dental pulps and treated the cells with a replication-deficient adenoviral vector to achieve robust ectopic expression of Atoh1, following which the growth and odontogenic differentiation profiles of DPSCs were characterized. RESULTS DPSCs harboring the Atoh1 expression vector exhibited an approximately 3,000-fold increase in the expression of Atoh1 compared to the negative control, leading to increased DPSC proliferation in the growth medium (P < 0.05). In the odontogenic medium, Atoh1 caused an early induction of BMP2 (P < 0.001) followed by a late induction of BMP7 (P < 0.01) and increased Wnt signaling (P < 0.01). The increased BMP/Wnt signaling led to up to 8-fold increased expression of the master osteogenic transcription factor Osterix (P < 0.005) while exhibiting no significant effect on Runx2 or Dlx5, which are abundantly expressed in DPSCs. Atoh1 stimulated expression of type I collagen (P < 0.005) and small integrin-binding ligand, N-linked glycoproteins (SIBLINGs) such as bone sialoprotein (P < 0.001), dentin matrix protein 1 (P < 0.05), dentin sialophosphoprotein (P < 0.005), and osteopontin (P < 0.001), resulting in increased dentin matrix mineralization (P < 0.05). The odontogenic phenotype is associated with metabolic remodeling marked by enhanced glycolytic flux and attenuated mitochondrial metabolic enzyme activities. CONCLUSIONS Atoh1, despite being a proneural transcription factor in development, possesses a novel odontogenic function upon ectopic expression in DPSCs. This in vitro study demonstrates a novel odontogenic mechanism mediated by ectopic expression of the transcription factor Atoh1 in human DPSCs. The finding may offer an innovative strategy for gene-based regeneration of the pulp-dentin complex.
Collapse
Affiliation(s)
- Camila Sabatini
- Department of Restorative Dentistry, School of Dental Medicine, University at Buffalo, 3435 Main Street, Buffalo, NY, 14214, USA.
| | - Huey-Jiun Lin
- Department of Biochemistry, University at Buffalo, 3435 Main Street, Buffalo, NY, 14214, USA
| | - Galib Ovik
- Department of Biochemistry, University at Buffalo, 3435 Main Street, Buffalo, NY, 14214, USA
| | - Richard Hall
- Department of Oral Surgery, University at Buffalo, 3435 Main Street, Buffalo, NY, 14214, USA
| | - Techung Lee
- Department of Biochemistry, University at Buffalo, 3435 Main Street, Buffalo, NY, 14214, USA
| |
Collapse
|
4
|
Ma Y, Lv W, Guo Y, Yin T, Bai Y, Liu Z, Chen C, WenjuanYang, Feng J, Qian W, Tang R, Su Y, Shan S, Dong H, Bao Y, Qu L. Histone demethylases in autophagy and inflammation. Cell Commun Signal 2025; 23:24. [PMID: 39806430 PMCID: PMC11727796 DOI: 10.1186/s12964-024-02006-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025] Open
Abstract
Autophagy dysfunction is associated with changes in autophagy-related genes. Various factors are connected to autophagy, and the mechanism regulating autophagy is highly complicated. Epigenetic changes, such as aberrant expression of histone demethylase, are actively associated not only with oncogenesis but also with inflammatory responses. Among post-translational modifications, histone lysine methylation holds significant importance. There are over 30 members of histone lysine demethylases (KDMs), which act as epigenetic regulators in physiological processes and diseases. Importantly, KDMs are abnormally expressed in the regulation of cellular autophagy and inflammation, representing a crucial mechanism affecting inflammation-related diseases. This article reviewed the function of KDMs proteins in autophagy and inflammation. Specifically, It focused on the specific regulatory mechanisms underlying the activation or inhibition of autophagy, as well as their abnormal expression in inflammatory responses. By analyzing each KDM in epigenetic modification, this review provides a reliable theoretical basis for clinical decision marking regarding autophagy abnormalities and inflammatory diseases.
Collapse
Affiliation(s)
- Yaoyao Ma
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Hubei, 437000, China
- School of Basic Medical Sciences, Hubei University of Science and Technology, Hubei, 437000, China
| | - Wenting Lv
- 3Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Hubei, 430071, China
| | - Yi Guo
- School of Basic Medical Sciences, Hubei University of Science and Technology, Hubei, 437000, China
| | - Tong Yin
- 3Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Hubei, 430071, China
| | - Yujie Bai
- Department of Scientific Research and Education, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330000, China
| | - Ziqi Liu
- 3Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Hubei, 430071, China
| | - Chao Chen
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - WenjuanYang
- 3Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Hubei, 430071, China
| | - Jiayi Feng
- 3Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Hubei, 430071, China
| | - Wenbin Qian
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Hubei, 437000, China
| | - Ruiling Tang
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Hubei, 437000, China
| | - Yanting Su
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Hubei, 437000, China
| | - Shigang Shan
- School of Public Health and Nursing, Hubei University of Science and Technology, Hubei, 437000, China
| | - Huifen Dong
- 3Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Hubei, 430071, China.
| | - Yongfen Bao
- School of Basic Medical Sciences, Hubei University of Science and Technology, Hubei, 437000, China.
| | - Lihua Qu
- School of Basic Medical Sciences, Hubei University of Science and Technology, Hubei, 437000, China.
- 3Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Hubei, 430071, China.
| |
Collapse
|
5
|
Yang J, Xiong G, He H, Huang H. SFRP2 modulates functional phenotype transition and energy metabolism of macrophages during diabetic wound healing. Front Immunol 2024; 15:1432402. [PMID: 39464880 PMCID: PMC11502328 DOI: 10.3389/fimmu.2024.1432402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/23/2024] [Indexed: 10/29/2024] Open
Abstract
Diabetic foot ulcer (DFU) is a serious complication of diabetes mellitus, which causes great health damage and economic burden to patients. The pathogenesis of DFU is not fully understood. We screened wound healing-related genes using bioinformatics analysis, and full-thickness skin injury mice model and cellular assays were used to explore the role of target genes in diabetic wound healing. SFRP2 was identified as a wound healing-related gene, and the expression of SFRP2 is associated with immune cell infiltration in DFU. In vivo study showed that suppression of SFRP2 delayed the wound healing process of diabetic mice, impeded angiogenesis and matrix remodeling, but did not affect wound healing process of control mice. In addition, suppression of SFRP2 increased macrophage infiltration and impeded the transition of macrophages functional phenotypes during diabetic wound healing, and affected the transcriptome signatures-related to inflammatory response and energy metabolism at the early stage of wound healing. Extracellular flux analysis (EFA) showed that suppression of SFRP2 decreased mitochondrial energy metabolism and increased glycolysis in injury-related macrophages, but impeded both glycolysis and mitochondrial energy metabolism in inflammatory macrophages. In addition, suppression of SFRP2 inhibited wnt signaling-related genes in macrophages. Treatment of AAV-SFRP2 augmented wound healing in diabetic mice and demonstrated the therapeutic potential of SFRP2. In conclusions, SFRP2 may function as a wound healing-related gene in DFU by modulating functional phenotype transition of macrophages and the balance between mitochondrial energy metabolism and glycolysis.
Collapse
Affiliation(s)
- Jiaqi Yang
- Institute of Plastic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Guorui Xiong
- Institute of Plastic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Huijuan He
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Haili Huang
- Institute of Plastic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
6
|
Li Y, He P, Zheng L, Zhou X. Histone-modifying enzymes: Roles in odontogenesis and beyond. Oral Dis 2024; 30:3710-3718. [PMID: 38376106 DOI: 10.1111/odi.14894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/21/2024]
Abstract
OBJECTIVES Odontogenesis, an intricate process initiated by epithelium-mesenchyme interaction, is meticulously regulated by a cascade of regulatory mechanisms. Epigenetic modifications, especially histone modification, have been found to exhibit spatiotemporal specificity during tooth development. However, the expression patterns and roles of enzymes associated with histone modifications have yet to be systematically explored in odontogenesis. This review aims to summarize the histone-modifying enzymes in odontogenesis and their regulation mechanism during tooth development and provide the potential theoretical basis for the clinical management and intervention of dental developmental diseases. SUBJECTS AND METHODS This study conducted a systematic search across PubMed and Web of Science databases, utilizing the keywords "odontogenesis," "histone modification," and "enzyme" for pertinent articles. RESULTS No doubt histone modification contributes extensively to odontogenesis regulation, and the disturbances in histone modifications can derange the odontogenesis process. CONCLUSION Further studies are warranted to elucidate these roles and their potential downstream effects, positioning histone modifications as a pivotal focal point for unraveling the intricacies of tooth development and regeneration.
Collapse
Affiliation(s)
- Yiting Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Pengcheng He
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Liwei Zheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xin Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Liu J, Wang J, Wang Z, Ren H, Zhang Z, Fu Y, Li L, Shen Z, Li T, Tang S, Wei F. PGC-1α/LDHA signaling facilitates glycolysis initiation to regulate mechanically induced bone remodeling under inflammatory microenvironment. Bone 2024; 185:117132. [PMID: 38789096 DOI: 10.1016/j.bone.2024.117132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/29/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
The mechanosensitivity of inflammation can alter cellular mechanotransduction. However, the underlying mechanism remains unclear. This study aims to investigate the metabolic mechanism of inflammation under mechanical force to guide tissue remodeling better. Herein, we found that inflammation hindered bone remodeling under mechanical force, accompanied by a simultaneous enhancement of oxidative phosphorylation (OXPHOS) and glycolysis. The control of metabolism direction through GNE-140 and Visomitin revealed that enhanced glycolysis might act as a compensatory mechanism to resist OXPHOS-induced osteoclastogenesis by promoting osteogenesis. The inhibited osteogenesis induced by inflammatory mechanical stimuli was concomitant with a reduced expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). PGC-1α knockdown impeded osteogenesis under mechanical force and facilitated osteoclastogenesis by enhancing OXPHOS. Conversely, PGC-1α overexpression attenuated the impairment of bone remodeling by inflammatory mechanical signals through promoting glycolysis. This process benefited from the PGC-1α regulation on the transcriptional and translational activity of lactate dehydrogenase A (LDHA) and the tight control of the extracellular acidic environment. Additionally, the increased binding between PGC-1α and LDHA proteins might contribute to the glycolysis promotion within the inflammatory mechanical environment. Notably, LDHA suppression effectively eliminated the bone repair effect mediated by PGC-1α overexpression within inflammatory mechanical environments. In conclusion, this study demonstrated a novel molecular mechanism illustrating how inflammation orchestrated glucose metabolism through glycolysis and OXPHOS to affect mechanically induced bone remodeling.
Collapse
Affiliation(s)
- Jiani Liu
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, Shandong, China
| | - Jixiao Wang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, Shandong, China
| | - Ziyao Wang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, Shandong, China
| | - Huiying Ren
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, Shandong, China
| | - Zijie Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, Shandong, China
| | - Yajing Fu
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, Shandong, China
| | - Lan Li
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, Shandong, China
| | - Zhiyuan Shen
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, Shandong, China
| | - Tianyi Li
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, Shandong, China
| | - Shuai Tang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, Shandong, China
| | - Fulan Wei
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, Shandong, China.
| |
Collapse
|
8
|
Liu J, Park K, Choi YJ, Lee JH, Cha JY. Genetic polymorphisms linked to extreme postorthodontic external apical root resorption in Koreans. Prog Orthod 2024; 25:23. [PMID: 38853224 PMCID: PMC11162991 DOI: 10.1186/s40510-024-00521-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 05/10/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND External apical root resorption (EARR) is a common undesirable outcome of orthodontic treatment, this study aimed to identify genetic polymorphisms associated with the susceptibility to extreme orthodontic-induced EARR in a Korean population using extreme phenotype analysis sampling. METHODS Genomic DNA was isolated from the saliva of 77 patients who underwent orthodontic treatment involving two maxillary premolar extractions. The patients were divided into two groups based on EARR values measured on periapical radiographs: The significant resorption group (SG, EARR ≥ 4 mm) and the normal group (NG, EARR < 2 mm). In the NG group, patients with EARR < 1 mm were named the non-resorption group (NonG). Targeted next-generation sequencing was performed using the screened single nucleotide polymorphisms (SNPs), and firth logistic regression analysis was used to determine genetic associations with EARR. Haplotype-based association analysis was performed for specific SNPs. RESULTS SNPs related to genes TNFSF11, TNFRSF11B, WNT3A, SFRP2, LRP6, P2RX7, and LRP1 were found to be significantly associated with severe EARR (p < 0.05, pre-Bonferroni correction p-values). Additionally, the haplotype CCA of rs17525809, rs208294, and rs1718119 P2RX7 had a higher frequency in the SG group. CONCLUSION Extreme phenotype analysis has identified eleven SNPs related to genes TNFSF11, TNFRSF11B, WNT3A, SFRP2, LRP6, P2RX7, and LRP1 that are associated with severe root resorption in the Korean population. These findings will contribute to the development of predictive diagnostic tools for identifying severe root resorption that may occur during orthodontic treatment.
Collapse
Affiliation(s)
- Jing Liu
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul, Korea
| | - Kwanwoo Park
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, Korea
| | - Yoon Jeong Choi
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul, Korea
| | - Ji Hyun Lee
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Jung-Yul Cha
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul, Korea.
- BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea.
- Institute for Innovation in Digital Healthcare, Yonsei University, 50-1 Yonseiro, Seodaemun-gu, Seoul, 03722, Korea.
| |
Collapse
|
9
|
Chen JS, Teng YN, Chen CY, Chen JY. A novel STAT3/ NFκB p50 axis regulates stromal-KDM2A to promote M2 macrophage-mediated chemoresistance in breast cancer. Cancer Cell Int 2023; 23:237. [PMID: 37821959 PMCID: PMC10568766 DOI: 10.1186/s12935-023-03088-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/30/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Lysine Demethylase 2A (KDM2A) plays a crucial role in cancer cell growth, differentiation, metastasis, and the maintenance of cancer stemness. Our previous study found that cancer-secreted IL-6 can upregulate the expression of KDM2A to promote further the transition of cells into cancer-associated fibroblasts (CAFs). However, the molecular mechanism by which breast cancer-secreted IL-6 regulates the expression of KDM2A remains unclear. Therefore, this study aimed to elucidate the underlying molecular mechanism of IL-6 in regulating KDM2A expression in CAFs and KDM2A-mediated paclitaxel resistance in breast cancer. METHODS The ectopic vector expression and biochemical inhibitor were used to analyze the KDM2A expression regulated by HS-578 T conditioned medium or IL-6 in mammary fibroblasts. Immunoprecipitation and chromatin immunoprecipitation assays were conducted to examine the interaction between STAT3 and NFκB p50. M2 macrophage polarization was assessed by analyzing M2 macrophage-specific markers using flow cytometry and RT-PCR. ESTIMATE algorithm was used to analyze the tumor microenvironment-dominant breast cancer samples from the TCGA database. The correlation between stromal KDM2A and CD163 + M2 macrophages was analyzed using the Pearson correlation coefficient. Cell viability was determined using trypan blue exclusion assay. RESULTS IL-6 regulates gene expression via activation and dimerization of STAT3 or collaboration of STAT3 and NFκB. However, STAT3, a downstream transcription factor of the IL-6 signaling pathway, was directly complexed with NFκB p50, not NFκB p65, to upregulate the expression of KDM2A in CAFs. Enrichment analysis of immune cells/stromal cells using TCGA-breast cancer RNA-seq data unveiled a positive correlation between stromal KDM2A and the abundance of M2 macrophages. CXCR2-associated chemokines secreted by KDM2A-expressing CAFs stimulated M2 macrophage polarization, which in turn secreted CCL2 to increase paclitaxel resistance in breast cancer cells by activating CCR2 signaling. CONCLUSION This study revealed the non-canonical molecular mechanism of IL-6 secreted by breast cancer upregulated KDM2A expression in CAFs via a novel STAT3/NFκB p50 axis, which STAT3 complexed with NFκB p50 in NFκB p50 binding motif of KDM2A promoter. KDM2A-expressing CAFs dominantly secreted the CXCR2-associated chemokines to promote M2 macrophage polarization and enhance paclitaxel resistance in breast cancer. These findings underscore the therapeutic potential of targeting the CXCR2 or CCR2 pathway as a novel strategy for paclitaxel-resistant breast cancer.
Collapse
Affiliation(s)
- Jia-Shing Chen
- School of Medicine for International Students, College of Medicine, I-Shou University, No.8, Yida Road, Jiaosu Village, Yanchao District, Kaohsiung, 82425, Taiwan
| | - Yu-Ning Teng
- School of Medicine, College of Medicine, I-Shou University, 8 Yida Road, Kaohsiung, 82445, Taiwan ROC
- Department of Pharmacy, E-Da Cancer Hospital, 21 Yida Road, Kaohsiung, 82445, Taiwan ROC
| | - Cheng-Yi Chen
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan ROC
| | - Jing-Yi Chen
- School of Medicine for International Students, College of Medicine, I-Shou University, No.8, Yida Road, Jiaosu Village, Yanchao District, Kaohsiung, 82425, Taiwan.
- Department of Medical Laboratory Science, College of Medical Science and Technology, I-Shou University, No.8, Yida Road, Jiaosu Village, Yanchao District, Kaohsiung, 82425, Taiwan ROC.
| |
Collapse
|
10
|
Liu Q, Gao Y, He J. Stem Cells from the Apical Papilla (SCAPs): Past, Present, Prospects, and Challenges. Biomedicines 2023; 11:2047. [PMID: 37509686 PMCID: PMC10377451 DOI: 10.3390/biomedicines11072047] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Dental diseases occurring on young permanent teeth usually lead to the premature arrest of tooth root development. Sustained tooth root elongation is necessary to achieve the goal of long-term preservation of affected teeth. To this end, stem cell-based regenerative endodontic treatment has been regarded as one of the most promising strategies for treating young permanent teeth with pulp and periapical infections. Endogenous stem cells residing in the apical papilla, named stem cells from the apical papilla (SCAPs), have been intensively investigated due to their critical roles in pulp regeneration and root redevelopment. The present review summarizes advances in the field of SCAPs studies and discusses the challenges that need to be further addressed.
Collapse
Affiliation(s)
- Qi Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yuan Gao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jinzhi He
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
11
|
Zuo Y, Zhan L, Wen H, Xue J, Tan Y, Sun W, Xu E. Stabilization of nuclear β-catenin by inhibiting KDM2A mediates cerebral ischemic tolerance. FASEB J 2023; 37:e22796. [PMID: 36723950 DOI: 10.1096/fj.202201657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/18/2023] [Indexed: 02/02/2023]
Abstract
Hypoxic postconditioning (HPC) with 8% oxygen increases nuclear accumulation of β-catenin through activating the classical Wnt pathway, thereby alleviating transient global cerebral ischemia (tGCI)-induced neuronal damage in the hippocampal CA1 subregion of adult rats. However, little is understood about the regulatory mechanism of nuclear β-catenin in HPC-mediated cerebral ischemic tolerance. Although lysine(K)-specific demethylase 2A (KDM2A) has been known as a crucial regulator of nuclear β-catenin destabilization, whether it plays an important role through modulating nuclear β-catenin in cerebral ischemic tolerance induced by HPC remains unknown. In this study, we explored the molecular mechanism of stabilizing nuclear β-catenin by inhibiting KDM2A-mediated demethylation in the HPC-offered neuroprotection against tGCI. In addition, we confirmed that nuclear methylated-β-catenin in CA1 decreased and nuclear β-catenin turnover increased after tGCI, which were reversed by HPC. The administration with methyltransferase inhibitor AdOx abrogated HPC-induced methylation and stabilization of nuclear β-catenin in CA1, as well as the neuroprotection against tGCI. Notably, HPC downregulated the expression of KDM2A in CA1 and reduced the interaction between KDM2A and β-catenin in the nucleus after tGCI. The knockdown of KDM2A with small-interfering RNA could upregulate nuclear methylated-β-catenin and stabilize β-catenin, thereby increasing survivin in CA1 and improving the cognitive function of rats after tGCI. Opposite results were observed by the administration of KDM2A-carried adenovirus vector. Furthermore, we demonstrated that KDM2A mediates the demethylation of nuclear β-catenin through jumonji C (JmjC) domain of KDM2A in HEK-293T and SH-SY5Y cells. Our data support that the inhibition of KDM2A-mediated demethylation of nuclear β-catenin contributes to HPC-induced neuroprotection against tGCI.
Collapse
Affiliation(s)
- Yunyan Zuo
- Department of Neurology, Institute of Neurosciences, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Lixuan Zhan
- Department of Neurology, Institute of Neurosciences, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Haixia Wen
- Department of Neurology, Institute of Neurosciences, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jiahui Xue
- Department of Neurology, Institute of Neurosciences, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yafu Tan
- Department of Neurology, Institute of Neurosciences, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Weiwen Sun
- Department of Neurology, Institute of Neurosciences, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - En Xu
- Department of Neurology, Institute of Neurosciences, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
12
|
Wang N, Ma T, Yu B. Targeting epigenetic regulators to overcome drug resistance in cancers. Signal Transduct Target Ther 2023; 8:69. [PMID: 36797239 PMCID: PMC9935618 DOI: 10.1038/s41392-023-01341-7] [Citation(s) in RCA: 118] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 01/15/2023] [Accepted: 01/28/2023] [Indexed: 02/18/2023] Open
Abstract
Drug resistance is mainly responsible for cancer recurrence and poor prognosis. Epigenetic regulation is a heritable change in gene expressions independent of nucleotide sequence changes. As the common epigenetic regulation mechanisms, DNA methylation, histone modification, and non-coding RNA regulation have been well studied. Increasing evidence has shown that aberrant epigenetic regulations contribute to tumor resistance. Therefore, targeting epigenetic regulators represents an effective strategy to reverse drug resistance. In this review, we mainly summarize the roles of epigenetic regulation in tumor resistance. In addition, as the essential factors for epigenetic modifications, histone demethylases mediate the histone or genomic DNA modifications. Herein, we comprehensively describe the functions of the histone demethylase family including the lysine-specific demethylase family, the Jumonji C-domain-containing demethylase family, and the histone arginine demethylase family, and fully discuss their regulatory mechanisms related to cancer drug resistance. In addition, therapeutic strategies, including small-molecule inhibitors and small interfering RNA targeting histone demethylases to overcome drug resistance, are also described.
Collapse
Affiliation(s)
- Nan Wang
- Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Ting Ma
- Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Bin Yu
- Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
13
|
Chen Y, Wang X, Wu Z, Jia S, Wan M. Epigenetic regulation of dental-derived stem cells and their application in pulp and periodontal regeneration. PeerJ 2023; 11:e14550. [PMID: 36620748 PMCID: PMC9817962 DOI: 10.7717/peerj.14550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/20/2022] [Indexed: 01/05/2023] Open
Abstract
Dental-derived stem cells have excellent proliferation ability and multi-directional differentiation potential, making them an important research target in tissue engineering. An increasing number of dental-derived stem cells have been discovered recently, including dental pulp stem cells (DPSCs), stem cells from exfoliated deciduous teeth (SHEDs), stem cells from apical papilla (SCAPs), dental follicle precursor cells (DFPCs), and periodontal ligament stem cells (PDLSCs). These stem cells have significant application prospects in tissue regeneration because they are found in an abundance of sources, and they have good biocompatibility and are highly effective. The biological functions of dental-derived stem cells are regulated in many ways. Epigenetic regulation means changing the expression level and function of a gene without changing its sequence. Epigenetic regulation is involved in many biological processes, such as embryonic development, bone homeostasis, and the fate of stem cells. Existing studies have shown that dental-derived stem cells are also regulated by epigenetic modifications. Pulp and periodontal regeneration refers to the practice of replacing damaged pulp and periodontal tissue and restoring the tissue structure and function under normal physiological conditions. This treatment has better therapeutic effects than traditional treatments. This article reviews the recent research on the mechanism of epigenetic regulation of dental-derived stem cells, and the core issues surrounding the practical application and future use of pulp and periodontal regeneration.
Collapse
Affiliation(s)
- Yuyang Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China School of Stomatology, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Xiayi Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China School of Stomatology, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Zhuoxuan Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China School of Stomatology, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Shiyu Jia
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China School of Stomatology, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Mian Wan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China School of Stomatology, Sichuan University, Chengdu, Sichuan, People’s Republic of China,State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| |
Collapse
|
14
|
Wang X, Yu F, Ye L. Epigenetic control of mesenchymal stem cells orchestrates bone regeneration. Front Endocrinol (Lausanne) 2023; 14:1126787. [PMID: 36950693 PMCID: PMC10025550 DOI: 10.3389/fendo.2023.1126787] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/17/2023] [Indexed: 03/08/2023] Open
Abstract
Recent studies have revealed the vital role of MSCs in bone regeneration. In both self-healing bone regeneration processes and biomaterial-induced healing of bone defects beyond the critical size, MSCs show several functions, including osteogenic differentiation and thus providing seed cells. However, adverse factors such as drug intake and body senescence can significantly affect the functions of MSCs in bone regeneration. Currently, several modalities have been developed to regulate MSCs' phenotype and promote the bone regeneration process. Epigenetic regulation has received much attention because of its heritable nature. Indeed, epigenetic regulation of MSCs is involved in the pathogenesis of a variety of disorders of bone metabolism. Moreover, studies using epigenetic regulation to treat diseases are also being reported. At the same time, the effects of epigenetic regulation on MSCs are yet to be fully understood. This review focuses on recent advances in the effects of epigenetic regulation on osteogenic differentiation, proliferation, and cellular senescence in MSCs. We intend to illustrate how epigenetic regulation of MSCs orchestrates the process of bone regeneration.
Collapse
Affiliation(s)
- Xiaofeng Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fanyuan Yu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Fanyuan Yu, ; Ling Ye,
| | - Ling Ye
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Fanyuan Yu, ; Ling Ye,
| |
Collapse
|
15
|
Liu Z, Yan N, Chen Y, Hu B. Hepatocyte Growth Factor Promotes Differentiation Potential and Stress Response of Human Stem Cells from Apical Papilla. Cells Tissues Organs 2022; 213:40-54. [PMID: 36170806 DOI: 10.1159/000527212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/13/2022] [Indexed: 11/19/2022] Open
Abstract
Harsh local microenvironment, such as hypoxia and lack of instructive clues for transplanted stem cells, presents the serious obstacle for stem cell therapies' efficacy. Therefore, continued efforts have been taken to improve stem cells' viability and plasticity. Hepatocyte growth factor (HGF) has previously been reported to mitigate the complications of various human diseases in animal model studies and in some clinical trials. Besides, human stem cells from the root apical papilla (SCAP) are deemed a better resource of mesenchymal stem cells due to derived stem cells holding greater amplification ability in vitro compared with those from other dental resources. To move forward, evaluating effects and understanding underlying molecular mechanisms of HGF on SCAP for periodontal regeneration are needed. In this study, HGF was transgenically expressed in SCAP, and it was found that HGF enhanced osteo/dentinogenic differentiation capacity of SCAP compared with those of non-treated control in an ectopic mineralization model. Moreover, HGF reduced the apoptosis of SCAP under both normoxic and hypoxic conditions, whereas the combination of HGF and hypoxia exposure had inhibitory effects on cell proliferation during an 8-day in vitro culture period. Transcriptome analysis further revealed that suppressed cell cycle progression and activated BMP/TGFβ, Hedgehog, WNT, FGF, HOX, and other morphogen family members result upon HGF overexpression, which may render SCAP recapitulate part of neural crest stem cell characteristics. Moreover, strengthened stress response modulation such as unfolded protein response, macroautophagy, and anti-apoptotic molecules might explain the increased viability of SCAP. In all, our results imply that these potential mechanisms underlying HGF-promoting SCAP differentiation could be further elucidated and harnessed to improve periodontal tissue regeneration.
Collapse
Affiliation(s)
- Zhenhai Liu
- Department of Stomatology, Beijing Jishuitan Hospital, Beijing, China
| | - Na Yan
- Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences. National Center for Nanoscience and Technology, Beijing, China
| | - Ying Chen
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Wuxi, China
| | - Bin Hu
- Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences. National Center for Nanoscience and Technology, Beijing, China
| |
Collapse
|
16
|
Epigenetic Regulation of Methylation in Determining the Fate of Dental Mesenchymal Stem Cells. Stem Cells Int 2022; 2022:5015856. [PMID: 36187229 PMCID: PMC9522499 DOI: 10.1155/2022/5015856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Dental mesenchymal stem cells (DMSCs) are crucial in tooth development and periodontal health, and their multipotential differentiation and self-renewal ability play a critical role in tissue engineering and regenerative medicine. Methylation modifications could promote the appropriate biological behavior by postsynthetic modification of DNA or protein and make the organism adapt to developmental and environmental prompts by regulating gene expression without changing the DNA sequence. Methylation modifications involved in DMSC fate include DNA methylation, RNA methylation, and histone modifications, which have been proven to exert a significant effect on the regulation of the fate of DMSCs, such as proliferation, self-renewal, and differentiation potential. Understanding the regulation of methylation modifications on the behavior and the immunoinflammatory responses involved in DMSCs contributes to further study of the mechanism of methylation on tissue regeneration and inflammation. In this review, we briefly summarize the key functions of histone methylation, RNA methylation, and DNA methylation in the differentiation potential and self-renewal of DMSCs as well as the opportunities and challenges for their application in tissue regeneration and disease therapy.
Collapse
|
17
|
DNA Methylation and Histone Modification in Dental-derived Mesenchymal Stem Cells. Stem Cell Rev Rep 2022; 18:2797-2816. [PMID: 35896859 DOI: 10.1007/s12015-022-10413-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2022] [Indexed: 10/16/2022]
Abstract
Epigenetic regulation, mainly involving DNA methylation, histone modification, and noncoding RNAs (ncRNAs), is essential for the regulation of multiple cellular processes. Dental-derived mesenchymal stem cells (DMSCs), a kind of multipotent cells derived from dental tissues, are impactful in regenerative medicine. Recent studies have shown that epigenetic regulation plays a major role in DMSCs. Therefore, exploring how epigenetic regulation is involved in DMSCs may be of guiding significance for tissue repair and regeneration or for exploring more effective treatments. A number of research of ncRNAs in DMSCs have been reported. However, little is known about the roles of DNA methylation and histone modifications in DMSCs. In this review, we summarize the important roles of DNA methylation and histone modifications of the fate of DMSCs.
Collapse
|
18
|
Li N, Li Z, Fu L, Yan M, Wang Y, Yu J, Wu J. PD-1 suppresses the osteogenic and odontogenic differentiation of stem cells from dental apical papilla via targeting SHP2/NF-κB axis. Stem Cells 2022; 40:763-777. [PMID: 35589562 DOI: 10.1093/stmcls/sxac037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/12/2022] [Indexed: 11/13/2022]
Abstract
Stem cells from the apical papilla (SCAPs) are important for tooth root development and regeneration of root dentin. Here, we examined the expression of programmed cell death protein-1 (PD-1) in SCAPs and investigated the effect of PD-1 on odontogenic and osteogenic differentiation and the relationship between PD-1 and SHP2/NF-κB signals. SCAPs were obtained and cultured in the related medium. The proliferation ability was evaluated by cell counting kit 8 (CCK-8) and 5-ethynyl-20-deoxyuridine (EdU) assay. Alkaline phosphatase (ALP) activity assay, ALP staining, western blot, real time quantitative reverse-transcription polymerase chain reaction (RT-qPCR), Alizarin Red S (ARS) staining, and immunofluorescence (IF) staining were performed to explore the osteo/odontogenic potential and the involvement of SHP2/NF-κB pathways. Besides, we transplanted SCAPs component into mouse calvaria defects to evaluate osteogenesis in vivo. We found that human SCAPs expressed PD-1 for the first time. PD-1 knockdown enhanced the osteo/odontogenic differentiation of SCAPs by suppressing SHP2 pathway and activating NF-κB pathway. Overexpression of PD-1 inhibited the osteogenesis and odontogenesis of SCAPs via activation of SHP2 signal and inhibition of NF-κB pathway. PD-1 activated SHP2 signal to block NF-κB signal and then played a vital role in osteo/odontogenic differentiation of SCAPs.
Collapse
Affiliation(s)
- Na Li
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing, Jiangsu, China.,Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zehan Li
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing, Jiangsu, China.,Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lin Fu
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing, Jiangsu, China.,Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ming Yan
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing, Jiangsu, China.,Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yanqiu Wang
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing, Jiangsu, China.,Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jinhua Yu
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing, Jiangsu, China.,Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jintao Wu
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing, Jiangsu, China.,Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
19
|
Wang N, Li M, Cao Y, Yang H, Li L, Ge L, Fan Z, Zhang C, Jin L. PRMT6/LMNA/CXCL12 signaling pathway regulated the osteo/odontogenic differentiation ability in dental stem cells isolated from apical papilla. Cell Tissue Res 2022; 389:187-199. [PMID: 35543755 DOI: 10.1007/s00441-022-03628-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 04/20/2022] [Indexed: 11/02/2022]
Abstract
Tooth loss and maxillofacial bone defect are common diseases, which seriously affect people's health. Effective tooth and maxillofacial bone tissue regeneration is a key problem that need to be solved. In the present study, we investigate the role of PRMT6 in osteo/odontogenic differentiation and migration capacity by using SCAPs. Our results showed that knockdown of PRMT6 promoted the osteo/odontogenic differentiation compared with the control group, as detected by alkaline phosphatase activity, alizarin red staining, and the indicators of osteo/odontogenic differentiation measured by Western blot. In addition, overexpression of PRMT6 inhibited the osteo/odontogenic differentiation potentials of SCAPs. Then, knockdown of PRMT6 promoted the migration ability and overexpression of PRMT6 inhibited the migration ability in SCAPs. Mechanically, we discovered that the depletion of PRMT6 promoted the expression of CXCL12 by decreasing H3R2 methylation in the promoter region of CXCL12. In addition, PRMT6 formed a protein complex with LMNA, a nuclear structural protein. Depletion of LMNA inhibited the osteo/odontogenic differentiation and CXCL12 expression and increased the intranucleus PRMT6 in SCAPs. To sum up, PRMT6 might inhibit the osteo/odontogenic differentiation and migration ability of SCAPs via inhibiting CXCL12. And LMNA might be a negative regulator of PRMT6. It is suggested that PRMT6 may be a key target for SCAP-mediated bone and tooth tissue regeneration.
Collapse
Affiliation(s)
- Ning Wang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, 100050, Beijing, China
| | - Miao Li
- Laboratory of Molecular Signaling and Stem Cells Therapy, Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, 100050, Beijing, China.,Department of Endodontics, Capital Medical University School of Stomatology, Beijing, 100050, China.,Department of Stomatology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yangyang Cao
- Laboratory of Molecular Signaling and Stem Cells Therapy, Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, 100050, Beijing, China
| | - Haoqing Yang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, 100050, Beijing, China
| | - Le Li
- Stomatological Disease Prevention and Control Center, Tsinghua University Hospital, Tsinghua University, Beijing, China
| | - Lihua Ge
- Laboratory of Molecular Signaling and Stem Cells Therapy, Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, 100050, Beijing, China
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, 100050, Beijing, China. .,Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China.
| | - Chen Zhang
- Department of Endodontics, Capital Medical University School of Stomatology, Beijing, 100050, China.
| | - Luyuan Jin
- Department of General Dentistry and Integrated Emergency Dental Care, Capital Medical University School of Stomatology, Beijing, 100050, China.
| |
Collapse
|
20
|
Combined Transcriptomic and Protein Array Cytokine Profiling of Human Stem Cells from Dental Apical Papilla Modulated by Oral Bacteria. Int J Mol Sci 2022; 23:ijms23095098. [PMID: 35563488 PMCID: PMC9103834 DOI: 10.3390/ijms23095098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/22/2022] [Accepted: 04/30/2022] [Indexed: 11/18/2022] Open
Abstract
Stem cells from the apical papilla (SCAP) are a promising resource for use in regenerative endodontic treatment (RET) that may be adversely affected by oral bacteria, which in turn can exert an effect on the success of RET. Our work aims to study the cytokine profile of SCAP upon exposure to oral bacteria and their supernatants—Fusobacterium nucleatum and Enterococcus faecalis—as well as to establish their effect on the osteogenic and immunogenic potentials of SCAP. Further, we target the presence of key proteins of the Wnt/β-Catenin, TGF-β, and NF-κB signaling pathways, which play a crucial role in adult osteogenic differentiation of mesenchymal stem cells, using the Western blot (WB) technique. The membrane-based sandwich immunoassay and transcriptomic analysis showed that, under the influence of F. nucleatum (both bacteria and supernatant), the production of pro-inflammatory cytokines IL-6, IL-8, and MCP-1 occurred, which was also confirmed at the mRNA level. Conversely, E. faecalis reduced the secretion of the aforementioned cytokines at both mRNA and protein levels. WB analysis showed that SCAP co-cultivation with E. faecalis led to a decrease in the level of the key proteins of the Wnt/β-Catenin and NF-κB signaling pathways: β-Catenin (p = 0.0068 *), LRP-5 (p = 0.0059 **), and LRP-6 (p = 0.0329 *), as well as NF-kB (p = 0.0034 **) and TRAF6 (p = 0.0285 *). These results suggest that oral bacteria can up- and downregulate the immune and inflammatory responses of SCAP, as well as influence the osteogenic potential of SCAP, which may negatively regulate the success of RET.
Collapse
|
21
|
Ledwon JK, Vaca EE, Huang CC, Kelsey LJ, McGrath JL, Topczewski J, Gosain AK, Topczewska JM. Langerhans cells and SFRP2/Wnt/beta-catenin signalling control adaptation of skin epidermis to mechanical stretching. J Cell Mol Med 2022; 26:764-775. [PMID: 35019227 PMCID: PMC8817127 DOI: 10.1111/jcmm.17111] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/08/2021] [Accepted: 10/29/2021] [Indexed: 12/01/2022] Open
Abstract
Skin can be mechanically stimulated to grow through a clinical procedure called tissue expansion (TE). Using a porcine TE model, we determined that expansion promptly activates transcription of SFRP2 in skin and we revealed that in the epidermis, this protein is secreted by Langerhans cells (LCs). Similar to well‐known mechanosensitive genes, the increase in SFRP2 expression was proportional to the magnitude of tension, showing a spike at the apex of the expanded skin. This implies that SFRP2 might be a newly discovered effector of mechanotransduction pathways. In addition, we found that acute stretching induces accumulation of b‐catenin in the nuclei of basal keratinocytes (KCs) and LCs, indicating Wnt signalling activation, followed by cell proliferation. Moreover, TE‐activated LCs proliferate and migrate into the suprabasal layer of skin, suggesting that LCs rebuild their steady network within the growing epidermis. We demonstrated that in vitro hrSFRP2 treatment on KCs inhibits Wnt/b‐catenin signalling and stimulates KC differentiation. In parallel, we observed an accumulation of KRT10 in vivo in the expanded skin, pointing to TE‐induced, SFRP2‐augmented KC maturation. Overall, our results reveal that a network of LCs delivers SFRP2 across the epidermis to fine‐tune Wnt/b‐catenin signalling to restore epidermal homeostasis disrupted by TE.
Collapse
Affiliation(s)
- Joanna K Ledwon
- Department of Surgery, Plastic Surgery Division, Northwestern University Feinberg School of Medicine, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Elbert E Vaca
- Department of Surgery, Plastic Surgery Division, Northwestern University Feinberg School of Medicine, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Chiang C Huang
- University of Wisconsin, Joseph J Zilber School of Public Health, Milwaukee, Illinois, USA
| | - Lauren J Kelsey
- Department of Surgery, Plastic Surgery Division, Northwestern University Feinberg School of Medicine, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Jennifer L McGrath
- Department of Surgery, Plastic Surgery Division, Northwestern University Feinberg School of Medicine, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Jacek Topczewski
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Arun K Gosain
- Department of Surgery, Plastic Surgery Division, Northwestern University Feinberg School of Medicine, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Jolanta M Topczewska
- Department of Surgery, Plastic Surgery Division, Northwestern University Feinberg School of Medicine, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA.,Department of Pediatrics, Northwestern University Feinberg School of Medicine, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| |
Collapse
|
22
|
Okić-Đorđević I, Obradović H, Kukolj T, Petrović A, Mojsilović S, Bugarski D, Jauković A. Dental mesenchymal stromal/stem cells in different microenvironments— implications in regenerative therapy. World J Stem Cells 2021; 13:1863-1880. [PMID: 35069987 PMCID: PMC8727232 DOI: 10.4252/wjsc.v13.i12.1863] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/15/2021] [Accepted: 11/25/2021] [Indexed: 02/06/2023] Open
Abstract
Current research data reveal microenvironment as a significant modifier of physical functions, pathologic changes, as well as the therapeutic effects of stem cells. When comparing regeneration potential of various stem cell types used for cytotherapy and tissue engineering, mesenchymal stem cells (MSCs) are currently the most attractive cell source for bone and tooth regeneration due to their differentiation and immunomodulatory potential and lack of ethical issues associated with their use. The microenvironment of donors and recipients selected in cytotherapy plays a crucial role in regenerative potential of transplanted MSCs, indicating interactions of cells with their microenvironment indispensable in MSC-mediated bone and dental regeneration. Since a variety of MSC populations have been procured from different parts of the tooth and tooth-supporting tissues, MSCs of dental origin and their achievements in capacity to reconstitute various dental tissues have gained attention of many research groups over the years. This review discusses recent advances in comparative analyses of dental MSC regeneration potential with regards to their tissue origin and specific microenvironmental conditions, giving additional insight into the current clinical application of these cells.
Collapse
Affiliation(s)
- Ivana Okić-Đorđević
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Hristina Obradović
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Tamara Kukolj
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Anđelija Petrović
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Slavko Mojsilović
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Diana Bugarski
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Aleksandra Jauković
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| |
Collapse
|
23
|
Wang N, Han X, Yang H, Xia D, Fan Z. miR-6807-5p Inhibited the Odontogenic Differentiation of Human Dental Pulp Stem Cells Through Directly Targeting METTL7A. Front Cell Dev Biol 2021; 9:759192. [PMID: 34790668 PMCID: PMC8591228 DOI: 10.3389/fcell.2021.759192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/30/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Tooth tissue regeneration mediated by mesenchymal stem cells (MSCs) has become the most ideal treatment. Although the known regulatory mechanism and some achievements have been discovered, directional differentiation cannot effectively induce regeneration of tooth tissue. In this study, we intended to explore the function and mechanism of miR-6807-5p and its target gene METTL7A in odontogenic differentiation. Methods: In this study, human dental pulp stem cells (DPSCs) were used. Alkaline phosphatase (ALP), Alizarin red staining (ARS), and calcium ion quantification were used to detect the odontogenic differentiation of miR-6807-5p and METTL7A. Real-time RT-PCR, western blot, dual-luciferase reporter assay, and pull-down assay with biotinylated miRNA were used to confirm that METTL7A was the downstream gene of miR-6807-5p. Protein mass spectrometry and co-immunoprecipitation (Co-IP) were used to detect that SNRNP200 was the co-binding protein of METTL7A. Results: After mineralized induction, the odontogenic differentiation was enhanced in the miR-6807-5p-knockdown group and weakened in the miR-6807-5p-overexpressed group compared with the control group. METTL7A was the downstream target of miR-6807-5p. After mineralized induction, the odontogenic differentiation was weakened in the METTL7A-knockdown group and enhanced in the METTL7A-overexpressed group compared with the control group. SNRNP200 was the co-binding protein of METTL7A. The knockdown of SNRNP200 inhibited the odontogenic differentiation of DPSCs. Conclusion: This study verified that miR-6807-5p inhibited the odontogenic differentiation of DPSCs. The binding site of miR-6807-5p was the 3′UTR region of METTL7A, which was silenced by miR-6807-5p. METTL7A promoted the odontogenic differentiation of DPSCs. SNRNP200, a co-binding protein of METTL7A, promoted the odontogenic differentiation of DPSCs.
Collapse
Affiliation(s)
- Ning Wang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Xiao Han
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Haoqing Yang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Dengsheng Xia
- Department of General Dentistry and Integrated Emergency Dental Care, Capital Medical University School of Stomatology, Beijing, China
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China.,Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
24
|
Cao M, Wang H, Li W, Jiang X, Wang X, Guo W, Gao P, Zou Y. Inverse Associations Between Circulating Secreted Frizzled Related Protein 2 (sFRP2) and Cardiometabolic Risk Factors. Front Cardiovasc Med 2021; 8:723205. [PMID: 34722660 PMCID: PMC8551478 DOI: 10.3389/fcvm.2021.723205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/22/2021] [Indexed: 12/05/2022] Open
Abstract
Background: Secreted frizzled-related protein 2 (sFRP2) plays an important role in metabolic syndrome and cardiovascular diseases (CVDs); However, its relevance with cardiometabolic diseases remains to be elucidated. We aimed to determine the serum levels of sFRP2 in patients at different stages of heart failure (HF) with or without type 2 diabetes mellitus (T2DM), and assess the correlation between circulating sFRP2 levels and cardiometabolic risk factors. Methods: In this study, serum samples from 277 patients visiting Zhongshan Hospital affiliated to Fudan University were collected. These patients were clinically diagnosed and categorized as five groups, including the control group, pre-clinical HF group, pre-clinical HF+T2DM group, HF group and HF+T2DM group. Serum sFRP2 levels were measured with enzyme-linked immunosorbent assay (ELISA) tests and the clinical characteristics of each patient were recorded. Spearman rank correlation analysis and multiple stepwise linear regression analysis were conducted. Univariate and multivariate logistic regression analysis were performed to screen risk factors for HF in patients with CVDs. Results: Serum sFRP2 levels were significantly lower in the HF+T2DM group compared with the other four groups. Spearman rank correlation analysis showed that sFRP2 was negatively correlated with parameters including patients' age, fasting plasma glucose (FPG), glycated hemoglobin A1c (HbA1c), cardiac troponin T (cTNT), N-terminal pro-B-type natriuretic peptide (NT-proBNP), high-sensitivity C-reactive protein (hs-CRP), left atrial dimension (LAD) and left ventricular posterior wall (LVPW), and positively correlated with hemoglobin, estimated glomerular filtration rate (eGFR), albumin, total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and left ventricular ejection fraction (LVEF). However, in multiple regression analysis, significant associations with ln(sFRP2) were observed only in FPG, hs-CRP and LAD. Higher serum sFRP2 was significantly linked to lower odds of HF in patients with CVDs. Conclusion: sFRP2 progressively decreased when glucose homeostasis and cardiac function deteriorated. sFRP2 acted as a risk factor for HF in patients with CVDs, especially in those with concomitant T2DM.
Collapse
Affiliation(s)
- Mengying Cao
- Shanghai Institute of Cardiovascular Diseases, Shanghai Clinical Bioinformatics Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenshu Li
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, China
| | - Xueli Jiang
- Shanghai Institute of Cardiovascular Diseases, Shanghai Clinical Bioinformatics Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaolin Wang
- Shanghai Institute of Cardiovascular Diseases, Shanghai Clinical Bioinformatics Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Guo
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Pan Gao
- Shanghai Institute of Cardiovascular Diseases, Shanghai Clinical Bioinformatics Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Shanghai Clinical Bioinformatics Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Liu L, Liu J, Lin Q. Histone demethylase KDM2A: Biological functions and clinical values (Review). Exp Ther Med 2021; 22:723. [PMID: 34007332 DOI: 10.3892/etm.2021.10155] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/04/2021] [Indexed: 12/15/2022] Open
Abstract
Histone lysine demethylation modification is a critical epigenetic modification. Lysine demethylase 2A (KDM2A), a Jumonji C domain-containing demethylase, demethylates the dimethylated H3 lysine 36 (H3K36) residue and exerts little or no activity on monomethylated and trimethylated H3K36 residues. KDM2A expression is regulated by several factors, such as microRNAs, and the phosphorylation of KDM2A also plays a vital role in its function. KDM2A mainly recognizes the unmethylated region of CpG islands and subsequently demethylates histone H3K36 residues. In addition, KDM2A recognizes and binds to phosphorylated proteins, and promotes their ubiquitination and degradation. KDM2A plays an important role in chromosome remodeling and gene transcription, and is involved in cell proliferation and differentiation, cell metabolism, heterochromosomal homeostasis and gene stability. Notably, KDM2A is crucial for tumorigenesis and progression. In the present review, the documented biological functions of KDM2A in physiological and pathological processes are comprehensively summarized.
Collapse
Affiliation(s)
- Lisheng Liu
- Key Laboratory of Animal Resistance Research, College of Life Science, Shandong Normal University, Jinan, Shandong 250014, P.R. China.,Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Jiangnan Liu
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Qinghai Lin
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| |
Collapse
|
26
|
Su X, Yang H, Shi R, Zhang C, Liu H, Fan Z, Zhang J. Depletion of SNRNP200 inhibits the osteo-/dentinogenic differentiation and cell proliferation potential of stem cells from the apical papilla. BMC DEVELOPMENTAL BIOLOGY 2020; 20:22. [PMID: 33203369 PMCID: PMC7672972 DOI: 10.1186/s12861-020-00228-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/09/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Tissue regeneration mediated by mesenchymal stem cells (MSCs) is deemed a desirable way to repair teeth and craniomaxillofacial tissue defects. Nevertheless, the molecular mechanisms about cell proliferation and committed differentiation of MSCs remain obscure. Previous researches have proved that lysine demethylase 2A (KDM2A) performed significant function in the regulation of MSC proliferation and differentiation. SNRNP200, as a co-binding factor of KDM2A, its potential effect in regulating MSCs' function is still unclear. Therefore, stem cells from the apical papilla (SCAPs) were used to investigate the function of SNRNP200 in this research. METHODS The alkaline phosphatase (ALP) activity assay, Alizarin Red staining, and osteogenesis-related gene expressions were used to examine osteo-/dentinogenic differentiation potential. Carboxyfluorescein diacetate, succinimidyl ester (CFSE) and cell cycle analysis were applied to detect the cell proliferation. Western blot analysis was used to evaluate the expressions of cell cycle-related proteins. RESULTS Depletion of SNRNP200 caused an obvious decrease of ALP activity, mineralization formation and the expressions of osteo-/dentinogenic genes including RUNX2, DSPP, DMP1 and BSP. Meanwhile, CFSE and cell cycle assays revealed that knock-down of SNRNP200 inhibited the cell proliferation and blocked cell cycle at the G2/M and S phase in SCAPs. In addition, it was found that depletion of SNRNP200 up-regulated p21 and p53, and down-regulated the CDK1, CyclinB, CyclinE and CDK2. CONCLUSIONS Depletion of SNRNP200 repressed osteo-/dentinogenic differentiation potentials and restrained cell proliferation through blocking cell cycle progression at the G2/M and S phase, further revealing that SNRNP200 has crucial effects on preserving the proliferation and differentiation potentials of dental tissue-derived MSCs.
Collapse
Affiliation(s)
- Xiaomin Su
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, 100050, China
| | - Haoqing Yang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, 100050, China
| | - Ruitang Shi
- Department of Endodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Chen Zhang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, 100050, China
| | - Huina Liu
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, 100050, China
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, 100050, China.
| | - Jianpeng Zhang
- Department of Endodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
27
|
Wu Y, Liu X, Zheng H, Zhu H, Mai W, Huang X, Huang Y. Multiple Roles of sFRP2 in Cardiac Development and Cardiovascular Disease. Int J Biol Sci 2020; 16:730-738. [PMID: 32071544 PMCID: PMC7019133 DOI: 10.7150/ijbs.40923] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 12/14/2019] [Indexed: 12/13/2022] Open
Abstract
The Wnt signaling pathway plays important roles in organ development and disease processes. Secreted frizzled-related protein 2 (sFRP2), a vital molecule of Wnt signaling, can regulate cardiac development and cardiovascular disease. Recent studies have suggested that sFRP2 is not only an antagonist of the canonical Wnt signaling pathway, but also has a more complex relationship in myocardial fibrosis, angiogenesis, cardiac hypertrophy and cardiac regeneration. Here, we review the role of sFRP2 and Wnt signaling in cardiac development and cardiovascular disease.
Collapse
Affiliation(s)
- Yu Wu
- Department of Cardiology, Shunde hospital, Southern Medical University, Jiazi Road 1 Lunjiao Town, Shunde District, Foshan, Guangdong, 528308, China
| | - Xinyue Liu
- Department of Cardiology, Shunde hospital, Southern Medical University, Jiazi Road 1 Lunjiao Town, Shunde District, Foshan, Guangdong, 528308, China
| | - Haoxiao Zheng
- Department of Cardiology, Shunde hospital, Southern Medical University, Jiazi Road 1 Lunjiao Town, Shunde District, Foshan, Guangdong, 528308, China
| | - Hailan Zhu
- Department of Cardiology, Shunde hospital, Southern Medical University, Jiazi Road 1 Lunjiao Town, Shunde District, Foshan, Guangdong, 528308, China
| | - Weiyi Mai
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou
| | - Xiaohui Huang
- Department of Cardiology, Shunde hospital, Southern Medical University, Jiazi Road 1 Lunjiao Town, Shunde District, Foshan, Guangdong, 528308, China
| | - Yuli Huang
- Department of Cardiology, Shunde hospital, Southern Medical University, Jiazi Road 1 Lunjiao Town, Shunde District, Foshan, Guangdong, 528308, China
- The George Institute for Global Health, NSW 2042 Australia
| |
Collapse
|
28
|
Yang H, Li G, Han N, Zhang X, Cao Y, Cao Y, Fan Z. Secreted frizzled-related protein 2 promotes the osteo/odontogenic differentiation and paracrine potentials of stem cells from apical papilla under inflammation and hypoxia conditions. Cell Prolif 2019; 53:e12694. [PMID: 31568642 PMCID: PMC6985663 DOI: 10.1111/cpr.12694] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/31/2019] [Accepted: 08/17/2019] [Indexed: 12/15/2022] Open
Abstract
Objectives Mesenchymal stem cell (MSC)‐based dental tissue regeneration is a potential treatment method in future, while inflammation and hypoxia niche will affect MSC‐mediated tissue regeneration. In this research, we intended to investigate the influence and mechanism of secreted frizzled‐related protein 2(SFRP2) on MSC function under inflammation and hypoxia conditions. Material and methods Stem cells from apical papilla (SCAPs) were used in this study. The alkaline phosphatase (ALP) activity, Alizarin Red S staining, scratch‐simulated wound migration and transwell chemotaxis assay were used to evaluate the functions of SFRP2. The Western blot, real‐time RT‐PCR and ChIP assays were used to evaluate the mechanism of SFRP2. Results Under inflammation and hypoxia conditions, the over‐expression of SFRP2 could enhance the osteo/odontogenic differentiation ability. Mechanismly, SFRP2 inhibited canonical Wnt/β‐catenin signalling pathway and then inhibited the target genes of nuclear factor kappa B (NFkB) signalling pathway. Inflammation or hypoxia conditions could promote the expression of lysine demethylase 2A (KDM2A) and repress SFRP2 transcription through decreasing histone methylation in the SFRP2 promoter. Besides, proteomic analysis showed that SFRP2 promoted SCAPs to secret more functional cytokines, which improve the migration, chemotaxis and osteo/odontogenic ability of MSCs. Conclusions Our discoveries revealed that SFRP2 enhanced the osteo/odontogenic differentiation and paracrine potentials of SCAPs under hypoxia and inflammation conditions and provided a potential cytokine for promoting tissue regeneration in hypoxia and inflammatory niche.
Collapse
Affiliation(s)
- Haoqing Yang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Guoqing Li
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China.,Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Nannan Han
- Department of Periodontology, Capital Medical University School of Stomatology, Beijing, China
| | - Xiuli Zhang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China.,Department of Periodontology, Capital Medical University School of Stomatology, Beijing, China
| | - Yangyang Cao
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Yu Cao
- Department of General Dentistry, Capital Medical University School of Stomatology, Beijing, China
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| |
Collapse
|