1
|
Mate N, Satwani V, Pranav, Mobin SM. Blazing Carbon Dots: Unfolding its Luminescence Mechanism to Photoinduced Biomedical Applications. Chem Asian J 2025; 20:e202401098. [PMID: 39499673 DOI: 10.1002/asia.202401098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/14/2024] [Accepted: 11/03/2024] [Indexed: 11/07/2024]
Abstract
Carbon dots (CDs) are carbon-based nanomaterials that have garnered immense attention owing to their exceptional photophysical and optoelectronic properties. They have been employed extensively for biomedical imaging and phototherapy due to their superb water dispersibility, low toxicity, outstanding biocompatibility, and exceptional tissue permeability. This review summarizes the structural classification of CDs, the classification of CDs according to precursor sources, and the luminescence mechanism of CDs. The modification in CDs via various doping routes is comprehensively reviewed, and the effect of such alterations on their photophysical properties, such as absorbance, photoluminescence (PL), and reactive oxygen species generation ability, is also highlighted. This review strives to summarize the role of CDs in cellular imaging and fluorescence lifetime imaging for cellular metabolism. Subsequently, recent advancements and the future potential of CDs as nanotheranostic agents have been discussed. Herein, we have discussed the role of CDs in photothermal, photodynamic, and synergistic therapy of anticancer, antiviral, and antibacterial applications. The overall summary of the review highlights the prospects of CD-based research in bioimaging and biomedicine.
Collapse
Affiliation(s)
- Nirmiti Mate
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India
| | - Vinita Satwani
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India
| | - Pranav
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore Campus, Vellore, India, 632014
| | - Shaikh M Mobin
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India
- Centre for Advanced Electronics (CAE), Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India
| |
Collapse
|
2
|
Jing HH, Shati AA, Alfaifi MY, Elbehairi SEI, Sasidharan S. The future of plant based green carbon dots as cancer Nanomedicine: From current progress to future Perspectives and beyond. J Adv Res 2025; 67:133-159. [PMID: 38320729 PMCID: PMC11725112 DOI: 10.1016/j.jare.2024.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/18/2023] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND The emergence of carbon dots (CDs) as anticancer agents had sparked a transformation in cancer research and treatment strategies. These fluorescent CDs, initially introduced in the early 2000 s, possess exceptional biocompatibility, tunable fluorescence, and surface modification capabilities, positioning them as promising tools in biomedical applications. AIM OF REVIEW The review encapsulates the transformative trajectory of green CDs as future anticancer nanomedicine, poised to redefine the strategies employed in the ongoing fight against cancer. KEY SCIENTIFIC CONCEPTS OF REVIEW The versatility of CDs was rooted in their various synthesis approaches and sustainable strategies, enabling their adaptability for diverse therapeutic uses. In vitro studies had showcased CDs' selective cytotoxicity against cancer cells while sparing healthy counterparts, forming the basis for targeted therapeutic potential. This selectivity had been attributed to the reactive oxygen species (ROS) generation, which opened avenues for targeted interventions. The role of CDs in combination therapies, synergizing with chemotherapy, radiotherapy, and targeted approaches was then investigated to heighten their anticancer efficacy. Notably, in vivo studies highlight CDs' remarkable biocompatibility and minimal side effects, endorsing their translational promise. Integration with conventional cancer treatments such as chemotherapy, radiotherapy, and immunotherapy amplified the versatility and effectiveness of CDs. The exploration of CDs' applications in photo-induced treatments further solidified their significance, positioning them as photosensitizers (PS) in photodynamic therapy (PDT) and photothermal agents (PA) in photothermal therapy (PTT). In PDT, CDs triggered the generation of ROS upon light exposure, facilitating cancer cell elimination, while in PTT, they induced localized hyperthermia within cancer cells, enhancing therapeutic outcomes. In vitro and in vivo investigations validated CDs' efficacy in PDT and PTT, affirming their potential for integration into combination therapies. Looking ahead, the future of CDs in anticancer treatment encompasses bioavailability, biocompatibility, synergistic treatments, tumor targeting, artificial intelligence (AI) and robotics integration, personalized medicine, and clinical translation. This transformative odyssey of CDs as future anticancer agents is poised to redefine the paradigm of cancer treatment strategies.
Collapse
Affiliation(s)
- Hong Hui Jing
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia (USM), Pulau Pinang 11800, Malaysia
| | - Ali A Shati
- King Khalid University, Faculty of Science, Biology Department, Abha 9004, Saudi Arabia
| | - Mohammad Y Alfaifi
- King Khalid University, Faculty of Science, Biology Department, Abha 9004, Saudi Arabia
| | - Serag Eldin I Elbehairi
- King Khalid University, Faculty of Science, Biology Department, Abha 9004, Saudi Arabia; Cell Culture Lab, Egyptian Organization for Biological Products and Vaccines (VACSERA Holding Company), 51 Wezaret El-Zeraa St., Agouza, Giza, Egypt
| | - Sreenivasan Sasidharan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia (USM), Pulau Pinang 11800, Malaysia.
| |
Collapse
|
3
|
Zhao D, Deng Y, Jiang X, Bai Y, Qian C, Shi H, Wang J. Advances in Carbon Dot Based Enhancement of Photodynamic Therapy of Tumors. ACS APPLIED BIO MATERIALS 2024; 7:8149-8162. [PMID: 39526921 DOI: 10.1021/acsabm.4c01349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Photodynamic therapy has advantages of high selectivity, less invasiveness, and high lethality for cancer cells compared with traditional treatment methods. However, some problems have hindered the development of photodynamic therapy, such as limited penetration depth, lack of oxygen, and toxicity. Carbon dots are widely used in the imaging and treatment of tumors due to their excellent optical and physicochemical properties, so effective methods have been explored to address the issues in photodynamic therapy via carbon dots. This review aims to elucidate the role of carbon dots in photodynamic therapy of cancer. Moreover, we summarize and discuss some strategies to harness carbon dots to enhance photodynamic therapy. Finally, we summarize many cancer synergistic therapeutic modalities involving carbon dots such as chemodynamic therapy, photothermal therapy, and immunotherapy in combination with photodynamic therapy to achieve more effective and safer treatments.
Collapse
Affiliation(s)
- Donghui Zhao
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Yunhao Deng
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Xianmeng Jiang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Yang Bai
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Chen Qian
- Department of Orthopedics, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu 213164, China
| | - Honglei Shi
- Department of Urology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu 213164, China
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| |
Collapse
|
4
|
Pechnikova NA, Domvri K, Porpodis K, Istomina MS, Iaremenko AV, Yaremenko AV. Carbon Quantum Dots in Biomedical Applications: Advances, Challenges, and Future Prospects. AGGREGATE 2024. [DOI: 10.1002/agt2.707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
ABSTRACTCarbon quantum dots (CQDs) represent a rapidly emerging class of nanomaterials with significant potential in biomedical applications due to their tunable fluorescence, high biocompatibility, and versatile functionalization. This review focuses on the recent progress in utilizing CQDs for drug delivery, bioimaging, biosensing, and cancer therapy. With their unique optical properties, such as tunable fluorescence, high quantum yield, and photostability, CQDs enable precise bioimaging and sensitive biosensing. Their small size, biocompatibility, and ease of surface functionalization allow for the development of targeted drug delivery systems, enhancing therapeutic precision and minimizing side effects. In cancer therapy, CQDs have shown potential in photodynamic and photothermal treatments by generating reactive oxygen species under light exposure, selectively targeting cancer cells while sparing healthy tissues. Furthermore, CQDs’ ability to penetrate biological barriers including the blood–brain barrier opens new possibilities for delivering therapeutic agents to hard‐to‐reach areas, such as tumors or diseased tissues. However, challenges such as optimizing synthesis, ensuring long‐term stability, and addressing safety concerns in biological environments remain critical hurdles. This review discusses current efforts to overcome these barriers and improve CQD performance in clinical settings, including scalable production methods and enhanced biocompatibility. As research progresses, CQDs are expected to play an important role in improving healthcare by offering more targeted treatment options and contributing to advancements in personalized medicine.
Collapse
Affiliation(s)
- Nadezhda A. Pechnikova
- Department of Biochemistry & Biotechnology University of Thessaly Volos Greece
- Laboratory of Chemical Engineering A’ Department of Chemical Engineering Faculty of Engineering Aristotle University of Thessaloniki Thessaloniki Greece
- Saint Petersburg Pasteur Institute Saint Petersburg Russia
| | - Kalliopi Domvri
- Oncology Unit, Pulmonary Department, George Papanikolaou Hospital, School of Medicine Aristotle University of Thessaloniki Thessaloniki Greece
- Laboratory of Histology‐Embryology School of Medicine Aristotle University of Thessaloniki Thessaloniki Greece
- Pathology Department George Papanikolaou Hospital Aristotle University of Thessaloniki Thessaloniki Greece
| | - Konstantinos Porpodis
- Oncology Unit, Pulmonary Department, George Papanikolaou Hospital, School of Medicine Aristotle University of Thessaloniki Thessaloniki Greece
| | - Maria S. Istomina
- Institute of Experimental Medicine Almazov National Medical Research Centre Saint‐Peterburg Russia
| | | | - Alexey V. Yaremenko
- Oncology Unit, Pulmonary Department, George Papanikolaou Hospital, School of Medicine Aristotle University of Thessaloniki Thessaloniki Greece
- Center for Nanomedicine Brigham and Women's Hospital, Harvard Medical School Boston Massachusetts USA
| |
Collapse
|
5
|
Choppadandi M, Soumya K, Ghosh S, Balu A, Shingote T, Babu SS, Prasanna VS, Arumugam S, Velyutham R, Yallapu MM, Kapusetti G. Dual Functional Magnetic Nanoparticles Conjugated with Carbon Quantum Dots for Hyperthermia and Photodynamic Therapy for Cancer. Nanotheranostics 2024; 8:442-457. [PMID: 38961886 PMCID: PMC11217784 DOI: 10.7150/ntno.91871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/28/2024] [Indexed: 07/05/2024] Open
Abstract
The global incidence of cancer continues to rise, posing a significant public health concern. Although numerous cancer therapies exist, each has limitations and complications. The present study explores alternative cancer treatment approaches, combining hyperthermia and photodynamic therapy (PDT). Magnetic nanoparticles (MNPs) and amine-functionalized carbon quantum dots (A-CQDs) were synthesized separately and then covalently conjugated to form a single nanosystem for combinational therapy (M-CQDs). The successful conjugation was confirmed using zeta potential, Fourier transform infrared spectroscopy (FT-IR), and UV-visible spectroscopy. Morphological examination in transmission electron microscopy (TEM) further verified the conjugation of CQDs with MNPs. Energy dispersive X-ray spectroscopy (EDX) revealed that M-CQDs contain approximately 12 weight percentages of carbon. Hyperthermia studies showed that both MNP and M-CQDs maintain a constant therapeutic temperature at lower frequencies (260.84 kHz) with high specific absorption rates (SAR) of 118.11 and 95.04 W/g, respectively. In vitro studies demonstrated that MNPs, A-CQDs, and M-CQDs are non-toxic, and combinational therapy (PDT + hyperthermia) resulted in significantly lower cell viability (~4%) compared to individual therapies. Similar results were obtained with Hoechst and propidium iodide (PI) staining assays. Hence, the combination therapy of PDT and hyperthermia shows promise as a potential alternative to conventional therapies, and it could be further explored in combination with existing conventional treatments.
Collapse
Affiliation(s)
- Mounika Choppadandi
- National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat, 382355, India
| | - Kondi Soumya
- National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat, 382355, India
| | - Sumanta Ghosh
- National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat, 382355, India
| | - Aishwarya Balu
- National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat, 382355, India
| | - Tanvi Shingote
- National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat, 382355, India
| | | | - Vani Sai Prasanna
- National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, 700054, India
| | - Somasundaram Arumugam
- National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, 700054, India
| | - Ravichandiran Velyutham
- National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, 700054, India
| | - Murali M. Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas, Rio Grande Valley, McAllen, TX 78504, USA
| | - Govinda Kapusetti
- National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, 700054, India
| |
Collapse
|
6
|
Hussen NH, Hasan AH, FaqiKhedr YM, Bogoyavlenskiy A, Bhat AR, Jamalis J. Carbon Dot Based Carbon Nanoparticles as Potent Antimicrobial, Antiviral, and Anticancer Agents. ACS OMEGA 2024; 9:9849-9864. [PMID: 38463310 PMCID: PMC10918813 DOI: 10.1021/acsomega.3c05537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 01/26/2024] [Accepted: 02/06/2024] [Indexed: 03/12/2024]
Abstract
Antimicrobial and anticancer drugs are widely used due to increasing widespread infectious diseases caused by microorganisms such as bacterial, fungal, viral agents, or cancer cells, which are one of the major causes of mortality globally. Nevertheless, several microorganisms developed resistance to antibiotics as a result of genetic changes that have occurred over an extended period. Carbon-based materials, particularly carbon dots (C-dots), are potential candidates for antibacterial and anticancer nanomaterials due to their low toxicity, ease of synthesis and functionalization, high dispersibility in aqueous conditions, and promising biocompatibility. In this Review, the content is divided into four sections. The first section concentrates on C-dot structures, surface functionalization, and morphology. Following that, we summarize C-dot classifications and preparation methods such as arc discharge, laser ablation, electrochemical oxidation, and so on. The antimicrobial applications of C-dots as antibacterial, antifungal, and antiviral agents both in vivo and in vitro are discussed. Finally, we thoroughly examined the anticancer activity displayed by C-dots.
Collapse
Affiliation(s)
- Narmin Hamaamin Hussen
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, University of Sulaimani, Sulaimani 46001, Iraq
| | - Aso Hameed Hasan
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia 81310 Johor Bahru, Johor, Malaysia
- Department of Chemistry, College of Science, University of Garmian, Kalar 46021, Kurdistan Region, Iraq
| | - Yar Muhammed FaqiKhedr
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, University of Sulaimani, Sulaimani 46001, Iraq
| | - Andrey Bogoyavlenskiy
- Research and Production Center for Microbiology and Virology, Almaty 050010, Kazakhstan
| | - Ajmal R Bhat
- Department of Chemistry, RTM Nagpur University, Nagpur 440033, India
| | - Joazaizulfazli Jamalis
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia 81310 Johor Bahru, Johor, Malaysia
| |
Collapse
|
7
|
Wang H, Yang S, Chen L, Li Y, He P, Wang G, Dong H, Ma P, Ding G. Tumor diagnosis using carbon-based quantum dots: Detection based on the hallmarks of cancer. Bioact Mater 2024; 33:174-222. [PMID: 38034499 PMCID: PMC10684566 DOI: 10.1016/j.bioactmat.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/15/2023] [Accepted: 10/05/2023] [Indexed: 12/02/2023] Open
Abstract
Carbon-based quantum dots (CQDs) have been shown to have promising application value in tumor diagnosis. Their use, however, is severely hindered by the complicated nature of the nanostructures in the CQDs. Furthermore, it seems impossible to formulate the mechanisms involved using the inadequate theoretical frameworks that are currently available for CQDs. In this review, we re-consider the structure-property relationships of CQDs and summarize the current state of development of CQDs-based tumor diagnosis based on biological theories that are fully developed. The advantages and deficiencies of recent research on CQDs-based tumor diagnosis are thus explained in terms of the manifestation of nine essential changes in cell physiology. This review makes significant progress in addressing related problems encountered with other nanomaterials.
Collapse
Affiliation(s)
- Hang Wang
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- CAS Center for Excellence in Superconducting Electronics (CENSE), Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Siwei Yang
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Liangfeng Chen
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Yongqiang Li
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Peng He
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Gang Wang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, PR China
| | - Hui Dong
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- CAS Center for Excellence in Superconducting Electronics (CENSE), Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Peixiang Ma
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China
| | - Guqiao Ding
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| |
Collapse
|
8
|
Kaurav H, Verma D, Bansal A, Kapoor DN, Sheth S. Progress in drug delivery and diagnostic applications of carbon dots: a systematic review. Front Chem 2023; 11:1227843. [PMID: 37521012 PMCID: PMC10375716 DOI: 10.3389/fchem.2023.1227843] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/05/2023] [Indexed: 08/01/2023] Open
Abstract
Carbon dots (CDs), which have particle size of less than 10 nm, are carbon-based nanomaterials that are used in a wide range of applications in the area of novel drug delivery in cancer, ocular diseases, infectious diseases, and brain disorders. CDs are biocompatible, eco-friendly, easy to synthesize, and less toxic with excellent chemical inertness, which makes them very good nanocarrier system to deliver multi-functional drugs effectively. A huge number of researchers worldwide are working on CDs-based drug delivery systems to evaluate their versatility and efficacy in the field of pharmaceuticals. As a result, there is a tremendous increase in our understanding of the physicochemical properties, diagnostic and drug delivery aspects of CDs, which consequently has led us to design and develop CDs-based theranostic system for the treatment of multiple disorders. In this review, we aim to summarize the advances in application of CDs as nanocarrier including gene delivery, vaccine delivery and antiviral delivery, that has been carried out in the last 5 years.
Collapse
Affiliation(s)
- Hemlata Kaurav
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Dhriti Verma
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Amit Bansal
- Formulation Research and Development, Perrigo Company Plc, Allegan, MI, United States
| | - Deepak N. Kapoor
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Sandeep Sheth
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL, United States
| |
Collapse
|
9
|
Hui S. Carbon dots (CDs): basics, recent potential biomedical applications, challenges, and future perspectives. JOURNAL OF NANOPARTICLE RESEARCH 2023; 25:68. [DOI: 10.1007/s11051-023-05701-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/24/2023] [Indexed: 01/06/2025]
|
10
|
Carigga Gutierrez NM, Pujol-Solé N, Arifi Q, Coll JL, le Clainche T, Broekgaarden M. Increasing cancer permeability by photodynamic priming: from microenvironment to mechanotransduction signaling. Cancer Metastasis Rev 2022; 41:899-934. [PMID: 36155874 DOI: 10.1007/s10555-022-10064-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/06/2022] [Indexed: 01/25/2023]
Abstract
The dense cancer microenvironment is a significant barrier that limits the penetration of anticancer agents, thereby restraining the efficacy of molecular and nanoscale cancer therapeutics. Developing new strategies to enhance the permeability of cancer tissues is of major interest to overcome treatment resistance. Nonetheless, early strategies based on small molecule inhibitors or matrix-degrading enzymes have led to disappointing clinical outcomes by causing increased chemotherapy toxicity and promoting disease progression. In recent years, photodynamic therapy (PDT) has emerged as a novel approach to increase the permeability of cancer tissues. By producing excessive amounts of reactive oxygen species selectively in the cancer microenvironment, PDT increases the accumulation, penetration depth, and efficacy of chemotherapeutics. Importantly, the increased cancer permeability has not been associated to increased metastasis formation. In this review, we provide novel insights into the mechanisms by which this effect, called photodynamic priming, can increase cancer permeability without promoting cell migration and dissemination. This review demonstrates that PDT oxidizes and degrades extracellular matrix proteins, reduces the capacity of cancer cells to adhere to the altered matrix, and interferes with mechanotransduction pathways that promote cancer cell migration and differentiation. Significant knowledge gaps are identified regarding the involvement of critical signaling pathways, and to which extent these events are influenced by the complicated PDT dosimetry. Addressing these knowledge gaps will be vital to further develop PDT as an adjuvant approach to improve cancer permeability, demonstrate the safety and efficacy of this priming approach, and render more cancer patients eligible to receive life-extending treatments.
Collapse
Affiliation(s)
| | - Núria Pujol-Solé
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Qendresa Arifi
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Jean-Luc Coll
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Tristan le Clainche
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38000, Grenoble, France.
| | - Mans Broekgaarden
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38000, Grenoble, France.
| |
Collapse
|
11
|
Uprety B, Abrahamse H. Semiconductor quantum dots for photodynamic therapy: Recent advances. Front Chem 2022; 10:946574. [PMID: 36034651 PMCID: PMC9405672 DOI: 10.3389/fchem.2022.946574] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Photodynamic therapy is a promising cancer treatment that induces apoptosis as a result of the interactions between light and a photosensitizing drug. Lately, the emergence of biocompatible nanoparticles has revolutionized the prospects of photodynamic therapy (PDT) in clinical trials. Consequently, a lot of research is now being focused on developing non-toxic, biocompatible nanoparticle-based photosensitizers for effective cancer treatments using PDT. In this regard, semiconducting quantum dots have shown encouraging results. Quantum dots are artificial semiconducting nanocrystals with distinct chemical and physical properties. Their optical properties can be fine-tuned by varying their size, which usually ranges from 1 to 10 nm. They present many advantages over conventional photosensitizers, mainly their emission properties can be manipulated within the near IR region as opposed to the visible region by the former. Consequently, low intensity light can be used to penetrate deeper tissues owing to low scattering in the near IR region. Recently, successful reports on imaging and PDT of cancer using carbon (carbon, graphene based) and metallic (Cd based) based quantum dots are promising. This review aims to summarize the development and the status quo of quantum dots for cancer treatment.
Collapse
|
12
|
Chen C, Wu C, Yu J, Zhu X, Wu Y, Liu J, Zhang Y. Photodynamic-based combinatorial cancer therapy strategies: Tuning the properties of nanoplatform according to oncotherapy needs. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214495] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Wang B, Cai H, Waterhouse GIN, Qu X, Yang B, Lu S. Carbon Dots in Bioimaging, Biosensing and Therapeutics: A Comprehensive Review. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202200012] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Boyang Wang
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450000 China
| | - Huijuan Cai
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450000 China
| | | | - Xiaoli Qu
- Erythrocyte Biology Laboratory School of Life Sciences Zhengzhou University Zhengzhou 450001 China
| | - Bai Yang
- State Key Lab of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 China
| | - Siyu Lu
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450000 China
| |
Collapse
|
14
|
Mauro N, Utzeri MA, Sciortino A, Messina F, Cannas M, Popescu R, Gerthsen D, Buscarino G, Cavallaro G, Giammona G. Decagram-Scale Synthesis of Multicolor Carbon Nanodots: Self-Tracking Nanoheaters with Inherent and Selective Anticancer Properties. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2551-2563. [PMID: 34985246 DOI: 10.1021/acsami.1c19599] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Carbon nanodots (CDs) are a new class of carbon-based nanoparticles endowed with photoluminescence, high specific surface area, and good photothermal conversion, which have spearheaded many breakthroughs in medicine, especially in drug delivery and cancer theranostics. However, the tight control of their structural, optical, and biological properties and the synthesis scale-up have been very difficult so far. Here, we report for the first time an efficient protocol for the one-step synthesis of decagram-scale quantities of N,S-doped CDs with a narrow size distribution, along with a single nanostructure multicolor emission, high near-infrared (NIR) photothermal conversion efficiency, and selective reactive oxygen species (ROS) production in cancer cells. This allows achieving targeted and multimodal cytotoxic effects (i.e., photothermal and oxidative stresses) in cancer cells by applying biocompatible NIR laser sources that can be remotely controlled under the guidance of fluorescence imaging. Hence, our findings open up a range of possibilities for real-world biomedical applications, among which is cancer theranostics. In this work, indocyanine green is used as a bidentate SOx donor which has the ability to tune surface groups and emission bands of CDs obtained by solvothermal decomposition of citric acid and urea in N,N-dimethylformamide. The co-doping implies various surface states providing transitions in the visible region, thus eliciting a tunable multicolor emission from blue to red and excellent photothermal efficiency in the NIR region useful in bioimaging applications and image-guided anticancer phototherapy. The fluorescence self-tracking capability of SOx-CDs reveals that they can enter cancer cells more quickly than healthy cell lines and undergo a different intracellular fate after cell internalization. This could explain why sulfur doping entails pro-oxidative activities by triggering more ROS generation in cancer cells when compared to healthy cell lines. We also find that oxidative stress can be locally enhanced under the effects of a NIR laser at moderate power density (2.5 W cm-2). Overall, these findings suggest that SOx-CDs are endowed with inherent drug-independent cytotoxic effects toward cancer cells, which would be selectively enhanced by external NIR light irradiation and helpful in precision anticancer approaches. Also, this work opens a debate on the role of CD surface engineering in determining nanotoxicity as a function of cell metabolism, thus allowing a rational design of next-generation nanomaterials with targeted anticancer properties.
Collapse
Affiliation(s)
- Nicolò Mauro
- Laboratory of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy
| | - Mara Andrea Utzeri
- Laboratory of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy
| | - Alice Sciortino
- Department of Physics and Chemistry (DiFC) "E. Segrè", University of Palermo, via Archirafi 36, 90123 Palermo, Italy
| | - Fabrizio Messina
- Department of Physics and Chemistry (DiFC) "E. Segrè", University of Palermo, via Archirafi 36, 90123 Palermo, Italy
- ATeNCenter, University of Palermo, Viale delle Scienze─Ed. 18/A, 90128 Palermo, Italy
| | - Marco Cannas
- Department of Physics and Chemistry (DiFC) "E. Segrè", University of Palermo, via Archirafi 36, 90123 Palermo, Italy
| | - Radian Popescu
- Laboratory for Electron Microscopy, Karlsruhe Institute of Technology|KIT, Finanzmanagement Kaiserstraße 12, D-76131 Karlsruhe, Germany
| | - Dagmar Gerthsen
- Laboratory for Electron Microscopy, Karlsruhe Institute of Technology|KIT, Finanzmanagement Kaiserstraße 12, D-76131 Karlsruhe, Germany
| | - Gianpiero Buscarino
- Department of Physics and Chemistry (DiFC) "E. Segrè", University of Palermo, via Archirafi 36, 90123 Palermo, Italy
- ATeNCenter, University of Palermo, Viale delle Scienze─Ed. 18/A, 90128 Palermo, Italy
| | - Gennara Cavallaro
- Laboratory of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy
- ATeNCenter, University of Palermo, Viale delle Scienze─Ed. 18/A, 90128 Palermo, Italy
| | - Gaetano Giammona
- Laboratory of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy
| |
Collapse
|
15
|
Mansuriya BD, Altintas Z. Carbon Dots: Classification, Properties, Synthesis, Characterization, and Applications in Health Care-An Updated Review (2018-2021). NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2525. [PMID: 34684966 PMCID: PMC8541690 DOI: 10.3390/nano11102525] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
Carbon dots (CDs) are usually smaller than 10 nm in size, and are meticulously formulated and recently introduced nanomaterials, among the other types of carbon-based nanomaterials. They have gained significant attention and an incredible interest in the field of nanotechnology and biomedical science, which is merely due to their considerable and exclusive attributes; including their enhanced electron transferability, photobleaching and photo-blinking effects, high photoluminescent quantum yield, fluorescence property, resistance to photo-decomposition, increased electrocatalytic activity, good aqueous solubility, excellent biocompatibility, long-term chemical stability, cost-effectiveness, negligible toxicity, and acquaintance of large effective surface area-to-volume ratio. CDs can be readily functionalized owing to the abundant functional groups on their surfaces, and they also exhibit remarkable sensing features such as specific, selective, and multiplex detectability. In addition, the physico-chemical characteristics of CDs can be easily tunable based on their intended usage or application. In this comprehensive review article, we mainly discuss the classification of CDs, their ideal properties, their general synthesis approaches, and primary characterization techniques. More importantly, we update the readers about the recent trends of CDs in health care applications (viz., their substantial and prominent role in the area of electrochemical and optical biosensing, bioimaging, drug/gene delivery, as well as in photodynamic/photothermal therapy).
Collapse
Affiliation(s)
| | - Zeynep Altintas
- Institute of Chemistry, Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany;
| |
Collapse
|
16
|
Tetrahedral Framework Nucleic Acid-Based Delivery of Resveratrol Alleviates Insulin Resistance: From Innate to Adaptive Immunity. NANO-MICRO LETTERS 2021; 13:86. [PMID: 34138319 PMCID: PMC8006527 DOI: 10.1007/s40820-021-00614-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 01/24/2021] [Indexed: 02/06/2023]
Abstract
Tetrahedral framework nucleic acid (tFNA)-based delivery of resveratrol (RSV) ameliorates the performance of RSV. tFNAs-RSV improve insulin sensitivity in high-fat diet-fed mice by promoting Treg and Th2 and suppressing Th1 and Th17, and switching macrophage from M1 to M2 phenotype both in vitro and in vivo.
Obesity-induced insulin resistance is the hallmark of metabolic syndrome, and chronic, low-grade tissue inflammation links obesity to insulin resistance through the activation of tissue-infiltrating immune cells. Current therapeutic approaches lack efficacy and immunomodulatory capacity. Thus, a new therapeutic approach is needed to prevent chronic inflammation and alleviate insulin resistance. Here, we synthesized a tetrahedral framework nucleic acid (tFNA) nanoparticle that carried resveratrol (RSV) to inhibit tissue inflammation and improve insulin sensitivity in obese mice. The prepared nanoparticles, namely tFNAs-RSV, possessed the characteristics of simple synthesis, stable properties, good water solubility, and superior biocompatibility. The tFNA-based delivery ameliorated the lability of RSV and enhanced its therapeutic efficacy. In high-fat diet (HFD)-fed mice, the administration of tFNAs-RSV ameliorated insulin resistance by alleviating inflammation status. tFNAs-RSV could reverse M1 phenotype macrophages in tissues to M2 phenotype macrophages. As for adaptive immunity, the prepared nanoparticles could repress the activation of Th1 and Th17 and promote Th2 and Treg, leading to the alleviation of insulin resistance. Furthermore, this study is the first to demonstrate that tFNAs, a nucleic acid material, possess immunomodulatory capacity. Collectively, our findings demonstrate that tFNAs-RSV alleviate insulin resistance and ameliorate inflammation in HFD mice, suggesting that nucleic acid materials or nucleic acid-based delivery systems may be a potential agent for the treatment of insulin resistance and obesity-related metabolic diseases.![]()
Collapse
|
17
|
Yang Y, Li M, Zhou C, Zhou K, Yu J, Su Y, Hu N, Zhang Y. Laser-Induced MoO x/Sulfur-Doped Graphene Hybrid Frameworks as Efficient Antibacterial Agents. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1596-1604. [PMID: 33481594 DOI: 10.1021/acs.langmuir.0c03453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Rational design and scalable construction of antibacterial mediators based on unique graphene architectures with highly efficient antibacterial ability and significant biocompatibility are challenging. Herein, sulfur-doped graphene skeletons uniformly decorated with metal oxide nanoparticles were designed and constructed via one-step laser-induced microexplosive techniques and demonstrated for the first time as highly efficient antibacterial agents. The optical density and flat colony counting methods demonstrated that the as-designed laser-induced MoOx/sulfur-doped graphene hybrids exhibited exceptional activity inhibition of Escherichia coli and Staphylococcus aureus. Moreover, the bacteria were treated with an impressive laser-induced MoOx/sulfur-doped graphene colloidal solution of concentration as low as 1 mg/mL for 4 h, leading to an excellent viability loss of 85% for the two bacteria. Cell toxicity experiments proved that the biological toxicity of laser-induced MoOx/sulfur-doped graphene to pig sperm cells was negligible. The molecular dynamics calculations proposed that the intrinsic interaction with N-acetylglucosamine at the cell wall and the high-efficiency synergistic effect of sulfur-doped graphene and MoOx played the key role in inhibiting the viability of bacteria. This work provides new insights for a novel structure design and opens up a potential route to construct antibacterial agents with high efficiency for clinical application.
Collapse
Affiliation(s)
- Yong Yang
- Key Laboratory for Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Ming Li
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Chao Zhou
- Key Laboratory for Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Kexin Zhou
- Key Laboratory for Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jian Yu
- Key Laboratory for Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yanjie Su
- Key Laboratory for Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Nantao Hu
- Key Laboratory for Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yafei Zhang
- Key Laboratory for Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
18
|
|
19
|
Li Y, Zhou R, Xiao D, Shi S, Peng S, Wu S, Wu P, Lin Y. Polypeptide uploaded efficient nanophotosensitizers to overcome photodynamic resistance for enhanced anticancer therapy. CHEMICAL ENGINEERING JOURNAL 2021; 403:126344. [DOI: 10.1016/j.cej.2020.126344] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
20
|
Li Y, Wu S, Zhang J, Zhou R, Cai X. Sulphur doped carbon dots enhance photodynamic therapy via PI3K/Akt signalling pathway. Cell Prolif 2020; 53:e12821. [PMID: 32364266 PMCID: PMC7260068 DOI: 10.1111/cpr.12821] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/10/2020] [Accepted: 03/15/2020] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES Photodynamic therapy (PDT) is a promising approach for cancer treatment, and the underlying signalling pathway changes has been carried out for studying the PDT mechanisms, but is majorly limited to organic photosensitizers (PSs). For the emerging nano-PSs typically possessing higher 1 O2 quantum yield, few mechanistic studies were carried out, which limited their further applications in clinical therapeutics. PI3K/Akt signalling pathway, a most frequently activated signalling network in cancers, could promote cancer cell survival, but was seldom reported in previous PDT studies mediated by nano-PSs. MATERIALS AND METHODS Sulphur doped carbon dots (S-CDs) was prepared via a hydrothermal synthetic route and was characterized by transmission electron microscopy, X-ray photoelectron spectroscopy and so on. CCK-8 assay and Annexin V/PI staining were performed to demonstrate the death of cancer cells, Western blot, RT-PCR and immunofluorescence were employed to explore the underlying mechanism, and variation of PI3K/Akt and other signalling pathways was detected by Western blot. RESULTS S-CDs was successfully synthesized, and it was much more efficient compared with classic organic PSs. S-CDs could induce cancer cell death through mitochondria mediated cell apoptosis with the imbalance of Bcl-2 family proteins and caspase cascade via several signalling pathways. Low concentration of S-CDs could effectively inhibit PI3K/Akt pathway and promote p38/JNK pathway, on one way inhibiting cancer cell survival and on the other way promoting cell apoptosis. CONCLUSIONS Herein, we found that S-CDs acted as an inhibitor of the PI3K/Akt pathway for efficient cancer cell killing, thus yielding in a higher PDT performance over the existing photosensitizers.
Collapse
Affiliation(s)
- Yanjing Li
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Shihong Wu
- Analytical & Testing CenterSichuan UniversityChengduChina
| | - Junjiang Zhang
- Department of ProsthodonticsTianjin Medical UniversityTianjinChina
| | - Ronghui Zhou
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Xiaoxiao Cai
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|