1
|
Kouroumalis E, Tsomidis I, Voumvouraki A. Extracellular Vesicles in Viral Liver Diseases. Viruses 2024; 16:1785. [PMID: 39599900 PMCID: PMC11598962 DOI: 10.3390/v16111785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
Extracellular vesicles (EVs) are bilayer vesicles released by cells in the microenvironment of the liver including parenchymal and non-parenchymal cells. They are the third important mechanism in the communications between cells, besides the secretion of cytokines and chemokines and the direct cell-to-cell contact. The aim of this review is to discuss the important role of EVs in viral liver disease, as there is increasing evidence that the transportation of viral proteins, all types of RNA, and viral particles including complete virions is implicated in the pathogenesis of both viral cirrhosis and viral-related hepatocellular carcinoma. The biogenesis of EVs is discussed and their role in the pathogenesis of viral liver diseases is presented. Their use as diagnostic and prognostic biomarkers is also analyzed. Most importantly, the significance of possible novel treatment strategies for liver fibrosis and hepatocellular carcinoma is presented, although available data are based on experimental evidence and clinical trials have not been reported.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Greece;
| | - Ioannis Tsomidis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Greece;
| | - Argyro Voumvouraki
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Greece;
| |
Collapse
|
2
|
Wo Q, Shi L, Shi J, Mao Y, Xie L. The Mechanism by Which Hedgehog Interacting Protein (HHIP) in Cancer-Associated Fibroblasts Regulate the Secretion of Inflammatory Factors Through the JAK1/STAT3 Pathway Affecting Prostate Cancer Stemness. J Inflamm Res 2024; 17:8659-8680. [PMID: 39553307 PMCID: PMC11566605 DOI: 10.2147/jir.s472124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 10/26/2024] [Indexed: 11/19/2024] Open
Abstract
Purpose Prostate cancer (PCa) is seriously affecting men's health and quality of life. Existing studies indicate that PCa stem cells are responsible for promoting the growth and contributing to the high recurrence rate of PCa. Methods We retrieved and downloaded PCa-related datasets from both the GEO and TCGA database. These datasets were subsequently analyzed using single-cell analysis, difference analysis, WGCNA, and machine learning algorithms. WB was performed to detect the expression of Hedgehog interacting protein (HHIP), JAK1/STAT3 pathway-related protein, CD133 and CD44. Immunohistochemistry was conducted to assess the distribution of HHIP and Ki67. The levels of inflammatory factors were measured using ELISA. The tumor cell stemness was evaluated through spheroid formation assay and flow cytometry. Results Through bioinformatics analysis, we identified eight genes (ARHGAP24, HHIP, MITF, CBX7, PPP1R12B, PLEKHA1, ADGRA2, and PGR). Among these genes, we selected HHIP for follow-up experiments and confirmed its low expression in PCa tumor tissues. Primary cancer-associated fibroblasts (CAFs) were extracted, and to further explore the mechanism of HHIP, we overexpressed or knocked down HHIP in CAFs. Overexpression of HHIP was found to inhibit the JAK1/STAT3 pathway and the secretion of inflammatory factors, thus suppressing both the proliferation and stemness of PCa cells. Treatment of CAFs with the JAK1/STAT3 pathway inhibitor AG490 led to a decrease in inflammatory factor secretion, along with inhibition of PCa cell proliferation and stemness. On this basis, knockdown of HHIP partially reversed the inhibitory effects of AG490 on PCa cells. Finally, we constructed a mouse subcutaneous tumor model and found that HHIP inhibited tumor proliferation and densification. Conclusion In summary, HHIP in CAFs can regulate the JAK1/STAT3 pathway and affect the secretion of inflammatory factors, thus affecting the proliferation of PCa.
Collapse
Affiliation(s)
- Qijun Wo
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Lei Shi
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Jun Shi
- Department of Urology,The Second People’s Hospital of Fuyang, Hangzhou, Zhejiang, People’s Republic of China
| | - Yeqing Mao
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Liping Xie
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
3
|
Vastrad B, Vastrad C. Screening and identification of key biomarkers associated with endometriosis using bioinformatics and next-generation sequencing data analysis. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2024; 25:116. [DOI: 10.1186/s43042-024-00572-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/23/2024] [Indexed: 01/04/2025] Open
Abstract
Abstract
Background
Endometriosis is a common cause of endometrial-type mucosa outside the uterine cavity with symptoms such as painful periods, chronic pelvic pain, pain with intercourse and infertility. However, the early diagnosis of endometriosis is still restricted. The purpose of this investigation is to identify and validate the key biomarkers of endometriosis.
Methods
Next-generation sequencing dataset GSE243039 was obtained from the Gene Expression Omnibus database, and differentially expressed genes (DEGs) between endometriosis and normal control samples were identified. After screening of DEGs, gene ontology (GO) and REACTOME pathway enrichment analyses were performed. Furthermore, a protein–protein interaction (PPI) network was constructed and modules were analyzed using the Human Integrated Protein–Protein Interaction rEference database and Cytoscape software, and hub genes were identified. Subsequently, a network between miRNAs and hub genes, and network between TFs and hub genes were constructed using the miRNet and NetworkAnalyst tool, and possible key miRNAs and TFs were predicted. Finally, receiver operating characteristic curve analysis was used to validate the hub genes.
Results
A total of 958 DEGs, including 479 upregulated genes and 479 downregulated genes, were screened between endometriosis and normal control samples. GO and REACTOME pathway enrichment analyses of the 958 DEGs showed that they were mainly involved in multicellular organismal process, developmental process, signaling by GPCR and muscle contraction. Further analysis of the PPI network and modules identified 10 hub genes, including vcam1, snca, prkcb, adrb2, foxq1, mdfi, actbl2, prkd1, dapk1 and actc1. Possible target miRNAs, including hsa-mir-3143 and hsa-mir-2110, and target TFs, including tcf3 (transcription factor 3) and clock (clock circadian regulator), were predicted by constructing a miRNA-hub gene regulatory network and TF-hub gene regulatory network.
Conclusions
This investigation used bioinformatics techniques to explore the potential and novel biomarkers. These biomarkers might provide new ideas and methods for the early diagnosis, treatment and monitoring of endometriosis.
Collapse
|
4
|
Wu X, Niu J, Shi Y. Exosomes target HBV-host interactions to remodel the hepatic immune microenvironment. J Nanobiotechnology 2024; 22:315. [PMID: 38840207 PMCID: PMC11151510 DOI: 10.1186/s12951-024-02544-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/09/2024] [Indexed: 06/07/2024] Open
Abstract
Chronic hepatitis B poses a significant global burden, modulating immune cells, leading to chronic inflammation and long-term damage. Due to its hepatotropism, the hepatitis B virus (HBV) cannot infect other cells. The mechanisms underlying the intercellular communication among different liver cells in HBV-infected individuals and the immune microenvironment imbalance remain elusive. Exosomes, as important intercellular communication and cargo transportation tools between HBV-infected hepatocytes and immune cells, have been shown to assist in HBV cargo transportation and regulate the immune microenvironment. However, the role of exosomes in hepatitis B has only gradually received attention in recent years. Minimal literature has systematically elaborated on the role of exosomes in reshaping the immune microenvironment of the liver. This review unfolds sequentially based on the biological processes of exosomes: exosomes' biogenesis, release, transport, uptake by recipient cells, and their impact on recipient cells. We delineate how HBV influences the biogenesis of exosomes, utilizing exosomal covert transmission, and reshapes the hepatic immune microenvironment. And based on the characteristics and functions of exosomes, potential applications of exosomes in hepatitis B are summarized and predicted.
Collapse
Affiliation(s)
- Xiaojing Wu
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Junqi Niu
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, Jilin, 130021, People's Republic of China.
| | - Ying Shi
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, Jilin, 130021, People's Republic of China.
| |
Collapse
|
5
|
Khoushab S, Aghmiuni MH, Esfandiari N, Sarvandani MRR, Rashidi M, Taheriazam A, Entezari M, Hashemi M. Unlocking the potential of exosomes in cancer research: A paradigm shift in diagnosis, treatment, and prevention. Pathol Res Pract 2024; 255:155214. [PMID: 38430814 DOI: 10.1016/j.prp.2024.155214] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024]
Abstract
Exosomes, which are tiny particles released by cells, have the ability to transport various molecules, including proteins, lipids, and genetic material containing non-coding RNAs (ncRNAs). They are associated with processes like cancer metastasis, immunity, and tissue repair. Clinical trials have shown exosomes to be effective in treating cancer, inflammation, and chronic diseases. Mesenchymal stem cells (MSCs) and dendritic cells (DCs) are common sources of exosome production. Exosomes have therapeutic potential due to their ability to deliver cargo, modulate the immune system, and promote tissue regeneration. Bioengineered exosomes could revolutionize disease treatment. However, more research is needed to understand exosomes in tumor growth and develop new therapies. This paper provides an overview of exosome research, focusing on cancer and exosome-based therapies including chemotherapy, radiotherapy, and vaccines. It explores exosomes as a drug delivery system for cancer therapy, highlighting their advantages. The article discusses using exosomes for various therapeutic agents, including drugs, antigens, and RNAs. It also examines challenges with engineered exosomes. Analyzing exosomes for clinical purposes faces limitations in sensitivity, specificity, and purification. On the other hand, Nanotechnology offers solutions to overcome these challenges and unlock exosome potential in healthcare. Overall, the article emphasizes the potential of exosomes for personalized and targeted cancer therapy, while acknowledging the need for further research.
Collapse
Affiliation(s)
- Saloomeh Khoushab
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mina Hobabi Aghmiuni
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Negin Esfandiari
- Department of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | | - Mohsen Rashidi
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Department of Orthopedics, Faculty of Medicine, Tehran medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
6
|
Zhang S, Jiang C, Jiang L, Chen H, Huang J, Gao X, Xia Z, Tran LJ, Zhang J, Chi H, Yang G, Tian G. Construction of a diagnostic model for hepatitis B-related hepatocellular carcinoma using machine learning and artificial neural networks and revealing the correlation by immunoassay. Tumour Virus Res 2023; 16:200271. [PMID: 37774952 PMCID: PMC10638043 DOI: 10.1016/j.tvr.2023.200271] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/21/2023] [Accepted: 09/20/2023] [Indexed: 10/01/2023] Open
Abstract
HBV infection profoundly escalates hepatocellular carcinoma (HCC) susceptibility, responsible for a majority of HCC cases. HBV-driven immune-mediated hepatocyte impairment significantly fuels HCC progression. Regrettably, inconspicuous early HCC symptoms often culminate in belated diagnoses. Nevertheless, surgically treated early-stage HCC patients relish augmented five-year survival rates. In contrast, advanced HCC exhibits feeble responses to conventional interventions like radiotherapy, chemotherapy, and surgery, leading to diminished survival rates. This investigation endeavors to unearth diagnostic hallmark genes for HBV-HCC leveraging a bioinformatics framework, thus refining early HBV-HCC detection. Candidate genes were sieved via differential analysis and Weighted Gene Co-Expression Network Analysis (WGCNA). Employing three distinct machine learning algorithms unearthed three feature genes (HHIP, CXCL14, and CDHR2). Melding these genes yielded an innovative Artificial Neural Network (ANN) diagnostic blueprint, portending to alleviate patient encumbrance and elevate life quality. Immunoassay scrutiny unveiled accentuated immune damage in HBV-HCC patients relative to solitary HCC. Through consensus clustering, HBV-HCC was stratified into two subtypes (C1 and C2), the latter potentially indicating milder immune impairment. The diagnostic model grounded in these feature genes showcased robust and transferrable prognostic potentialities, introducing a novel outlook for early HBV-HCC diagnosis. This exhaustive immunological odyssey stands poised to expedite immunotherapeutic curatives' emergence for HBV-HCC.
Collapse
Affiliation(s)
- Shengke Zhang
- Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Chenglu Jiang
- Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Lai Jiang
- Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Haiqing Chen
- Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Jinbang Huang
- Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Xinrui Gao
- Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Zhijia Xia
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, 81377, Germany
| | - Lisa Jia Tran
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, 81377, Germany
| | - Jing Zhang
- Division of Basic Biomedical Sciences, The University of South Dakota Sanford School of Medicine, Vermillion, 57069, USA
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, 646000, China.
| | - Guanhu Yang
- Department of Specialty Medicine, Ohio University, Athens, 45701, USA.
| | - Gang Tian
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
7
|
Wang J, Sun T. Mir-25-3p in extracellular vesicles from fibroblast-like synoviocytes alleviates pyroptosis of chondrocytes in knee osteoarthritis. J Bioenerg Biomembr 2023; 55:365-380. [PMID: 37725203 DOI: 10.1007/s10863-023-09964-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/29/2023] [Indexed: 09/21/2023]
Abstract
Knee osteoarthritis (KOA) is defined as a joint disease that occurs mostly among elderly people. Fibroblast-like synoviocytes-derived extracellular vesicles (FLS-EVs) have impacts on the treatment of OA. This study elucidated the mechanism of miR-25-3p in pyroptosis of chondrocytes in KOA. FLSs and EVs were extracted from neonatal mice; destabilization of the medial meniscus (DMM) was used to simulate KOA in mice, followed by the evaluation of cartilage damage and the contents of MMP-3 and MMP-13 in KOA mice. Lipopolysaccharide (LPS) was used to induce inflammation damage in mouse chondrocytes ATDC5, and the cell viability and the expressions of NLRP3, Cleaved-Caspase-1, GSDMD-N, IL-18, and IL-1β were examined. We found that FLS-EV treatment mitigated the knee-joint damage and symptoms of KOA mice, decreased MMP-3 and MMP-13, and inhibited pyroptosis of chondrocytes in DMM mice and LPS-induced ATD5 cells. Then, Cy3-labeled miR-25-3p in mice chondrocytes was observed and the expressions and the binding relation of miR-25-3p and cytoplasmic polyadenylation element-binding protein 1 (CPEB1) were verified. It showed that FLS-EVs carried miR-25-3p into chondrocytes, and upregulated miR-25-3p expression while inhibited CPEB1 transcription, resulting in mitigation of pyroptosis of chondrocytes, and CPEB1 overexpression reversed the inhibition of FLS-EVs on pyroptosis of chondrocytes in KOA.
Collapse
Affiliation(s)
- Jianhang Wang
- Trauma department of orthopedics Yantaishan Hospital, 10087 Keji Avenue, Laishan District, Yantai, Shandong, 264003, China
| | - Tao Sun
- Trauma department of orthopedics Yantaishan Hospital, 10087 Keji Avenue, Laishan District, Yantai, Shandong, 264003, China.
| |
Collapse
|
8
|
Parthasarathy G, Hirsova P, Kostallari E, Sidhu GS, Ibrahim SH, Malhi H. Extracellular Vesicles in Hepatobiliary Health and Disease. Compr Physiol 2023; 13:4631-4658. [PMID: 37358519 PMCID: PMC10798368 DOI: 10.1002/cphy.c210046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Extracellular vesicles (EVs) are membrane-bound nanoparticles released by cells and are an important means of intercellular communication in physiological and pathological states. We provide an overview of recent advances in the understanding of EV biogenesis, cargo selection, recipient cell effects, and key considerations in isolation and characterization techniques. Studies on the physiological role of EVs have relied on cell-based model systems due to technical limitations of studying endogenous nanoparticles in vivo . Several recent studies have elucidated the mechanistic role of EVs in liver diseases, including nonalcoholic fatty liver disease, viral hepatitis, cholestatic liver disease, alcohol-associated liver disease, acute liver injury, and liver cancers. Employing disease models and human samples, the biogenesis of lipotoxic EVs downstream of endoplasmic reticulum stress and microvesicles via intracellular activation stress signaling are discussed in detail. The diverse cargoes of EVs including proteins, lipids, and nucleic acids can be enriched in a disease-specific manner. By carrying diverse cargo, EVs can directly confer pathogenic potential, for example, recruitment and activation of monocyte-derived macrophages in NASH and tumorigenicity and chemoresistance in hepatocellular carcinoma. We discuss the pathogenic role of EVs cargoes and the signaling pathways activated by EVs in recipient cells. We review the literature that EVs can serve as biomarkers in hepatobiliary diseases. Further, we describe novel approaches to engineer EVs to deliver regulatory signals to specific cell types, and thus use them as therapeutic shuttles in liver diseases. Lastly, we identify key lacunae and future directions in this promising field of discovery and development. © 2023 American Physiological Society. Compr Physiol 13:4631-4658, 2023.
Collapse
Affiliation(s)
| | - Petra Hirsova
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Enis Kostallari
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Guneet S. Sidhu
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Samar H. Ibrahim
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Harmeet Malhi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
9
|
Shi Y, Zhou L, Zeng W, Wei B, Deng J. Sparse Independence Component Analysis for Competitive Endogenous RNA Co-Module Identification in Liver Hepatocellular Carcinoma. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2023; 11:384-393. [PMID: 37465460 PMCID: PMC10351610 DOI: 10.1109/jtehm.2023.3283519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/31/2023] [Accepted: 06/04/2023] [Indexed: 07/20/2023]
Abstract
OBJECTIVE Long non-coding RNAs (lncRNAs) have been shown to be associated with the pathogenesis of different kinds of diseases and play important roles in various biological processes. Although numerous lncRNAs have been found, the functions of most lncRNAs and physiological/pathological significance are still in its infancy. Meanwhile, their expression patterns and regulation mechanisms are also far from being fully understood. METHODS In order to reveal functional lncRNAs and identify the key lncRNAs, we develop a new sparse independence component analysis (ICA) method to identify lncRNA-mRNA-miRNA expression co-modules based on the competitive endogenous RNA (ceRNA) theory using the sample-matched lncRNA, mRNA and miRNA expression profiles. The expression data of the three RNA combined together is approximated sparsely to obtain the corresponding sparsity coefficient, and then it is decomposed by using ICA constraint optimization to obtain the common basis and modules. Subsequently, affine propagation clustering is used to perform cluster analysis on the common basis under multiple running conditions to obtain the co-modules for the selection of different RNA elements. RESULTS We applied sparse ICA to Liver Hepatocellular Carcinoma (LIHC) dataset and the experiment results demonstrate that the proposed sparse ICA method can effectively discover biologically functional expression common modules. CONCLUSION It may provide insights into the function of lncRNAs and molecular mechanism of LIHC. Clinical and Translational Impact Statement-The results on LIHC dataset demonstrate that the proposed sparse ICA method can effectively discover biologically functional expression common modules, which may provide insights into the function of IncRNAs and molecular mechanism of LIHC.
Collapse
Affiliation(s)
- Yuhu Shi
- Information Engineering CollegeShanghai Maritime UniversityShanghai201306China
| | - Lili Zhou
- Yangpu District Central HospitalShanghai200433China
| | - Weiming Zeng
- Information Engineering CollegeShanghai Maritime UniversityShanghai201306China
| | - Boyang Wei
- Information Engineering CollegeShanghai Maritime UniversityShanghai201306China
| | - Jin Deng
- College of Mathematics and InformaticsSouth China Agricultural UniversityGuangzhou510642China
| |
Collapse
|
10
|
Zhou Y, Wu M, Wen L, Wu W. Hsa_circ_0000129 drives tumor growth via sequestering miR-485-3p and upregulating SPIN1 in breast cancer. J Biochem Mol Toxicol 2023; 37:e23254. [PMID: 36426627 DOI: 10.1002/jbt.23254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 09/27/2022] [Accepted: 11/15/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Breast cancer (BC) is second cancer frequently occurring worldwide. Circular RNA hsa_circ_0000129 (circ_0000129) exerts a tumor-promoting effect in BC. Nevertheless, the molecular mechanisms mediated by the upregulation of circ_0000129 during BC progression are not well understood. METHODS Forty-five BC patients were recruited for the research. Changes in circ_0000129 levels were detected with quantitative reverse transcription-polymerase chain reaction. Cell proliferation, apoptosis, migration, invasion, and angiopoiesis were determined by cell counting, 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, transwell, and tube formation assays. Protein levels were detected by western blot analysis. The regulatory mechanism of circ_0000129 was predicted by bioinformatics analysis and validated by dual-luciferase reporter and RNA immunoprecipitation assays. In vivo experiments were carried out to verify the function of circ_0000129. RESULTS Circ_0000129 was overexpressed in BC samples and cell lines. Functionally, circ_0000129 silencing reduced cell proliferation, migration, invasion, and promoted cell apoptosis, as well as induced HUVEC angiopoiesis in vitro. Furthermore, circ_0000129 knockdown decreased BC cell growth in mouse xenograft models. Mechanically, circ_0000129 interacted with miR-485-3p to mediate the inhibiting effect of miR-485-3p on SPIN1. Silenced miR-485-3p expression weakened the inhibiting effect of circ_0000129 knockdown on BC cell malignant behaviors. Also, forced SPIN1 expression weakened miR-485-3p upregulation mediated effects on BC cell malignant behaviors. CONCLUSION Circ_0000129 acted as a miR-485-3p sponge molecular to mediate expression, thus promoting BC progression.
Collapse
Affiliation(s)
- Yuxin Zhou
- Medical School, Ningbo University, Ningbo, Zhejiang, China
| | - Minhua Wu
- Department of Breast Surgery, Li Huili Hospital Ningbo Medical Center, Ningbo, Zhejiang, China
| | - Limu Wen
- Department of Breast Surgery, Li Huili Hospital Ningbo Medical Center, Ningbo, Zhejiang, China
| | - Weizhu Wu
- Department of Breast Surgery, Li Huili Hospital Ningbo Medical Center, Ningbo, Zhejiang, China
| |
Collapse
|
11
|
Exosomes in HBV infection. Clin Chim Acta 2023; 538:65-69. [PMID: 36375524 DOI: 10.1016/j.cca.2022.11.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
Exosomes have been identified as important mediators of intercellular communication in several physiological and pathological processes. Hepatitis B is caused by infection with the hepatitis B virus (HBV), which impairs hepatocytes, with chronic infection resulting in cirrhosis or liver cancer. We studied the roles and functions of exosomes in HBV infection and found that exosomes could promote HBV spread and development of HBV-related diseases. Exosomes could be used as potential biomarkers for HBV diagnosis. Furthermore, exosomes have potential applications in treatment for HBV infection via inhibition of HBV replication and transcription.
Collapse
|
12
|
Identification of the Hub Genes and Potential Regulation Network in Chronic Hepatitis B via Bioinformatics Analysis. DISEASE MARKERS 2022; 2022:6113807. [PMID: 36193503 PMCID: PMC9525735 DOI: 10.1155/2022/6113807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/19/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022]
Abstract
Background Chronic hepatitis B (CHB) is a serious infectious disease which is induced by hepatitis B virus (HBV) infection. This project was conducted to reveal the potential mechanism in CHB development via analyzing the public clinical data. Methods GSE33857 and GSE110217, obtained from the GEO database, were used for bioinformatics excavation. Briefly, the raw data of GSE33857 and GSE110217 were analyzed with the GEO2R, and then the expressed matrix files were generated. The matrix files was visualized as heat map with R software. The targets of the miRNAs were analyzed with the miRDIP database. The functional annotation and pathway enrichment were performed using “clusterProfiler” package in R software. The STRING database was utilized to analyze the interaction of the DEGs, and the PPI and miRNA-mRNA network were established according to the related results. Results 93 downregulated genes and 17 upregulated genes in GES33857, and 111 downregulated and 40 upregulated genes in GSE110217 were identified as the hub nodes. The targets of the DEGs in the datasets were enriched in PI3K/AKT and MAPK pathways and associated with transcriptional regulation. Moreover, PPI and miRNA-mRNA networks were also established with the DEGs and related targets in the datasets. miR-122-5p, miR-125b-5p, miR-136-5p, miR-194-5p, miR-139-5p, miR-140-5p, miR-181a-5p, and miR-29b-3p were identified as the potential biomarkers in CHB. Conclusion Eight miRNAs, including miR-122-5p, miR-125b-5p, miR-136-5p, miR-194-5p, miR-139-5p, miR-140-5p, miR-181a-5p, and miR-29b-3p, were identified as the potential biomarkers in CHB, and the PPI and miRNA-mRNA networks were also established.
Collapse
|
13
|
Intercellular communication in the tumour microecosystem: Mediators and therapeutic approaches for hepatocellular carcinoma. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166528. [PMID: 36007784 DOI: 10.1016/j.bbadis.2022.166528] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/10/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022]
Abstract
Hepatocellular carcinoma (HCC), one of the most common tumours worldwide, is one of the main causes of mortality in cancer patients. There are still numerous problems hindering its early diagnosis, which lead to late patients receiving treatment, and these problems need to be solved urgently. The tumour microecosystem is a complex network system comprising seven parts: the hypoxia niche, immune microenvironment, metabolic microenvironment, acidic niche, innervated niche, mechanical microenvironment, and microbial microenvironment. Intercellular communication is divided into direct contact and indirect communication. Direct contact communication includes gap junctions, tunneling nanotubes, and receptor-ligand interactions, whereas indirect communication includes exosomes, apoptotic vesicles, and soluble factors. Mechanical communication and cytoplasmic exchange are further means of intercellular communication. Intercellular communication mediates the crosstalk between the tumour microecosystem and the host as well as that between cells and cell-free components in the tumour microecosystem, causing changes in the tumour hallmarks of the HCC microecosystem such as changes in tumour proliferation, invasion, apoptosis, angiogenesis, metastasis, inflammatory response, gene mutation, immune escape, metabolic reprogramming, and therapeutic resistance. Here, we review the role of the above-mentioned intercellular communication in the HCC microecosystem and discuss the advantages of targeted intercellular communication in the clinical diagnosis and treatment of HCC. Finally, the current problems and prospects are discussed.
Collapse
|
14
|
Yang S, Wang J, Wang S, Zhou A, Zhao G, Li P. Roles of small extracellular vesicles in the development, diagnosis and possible treatment strategies for hepatocellular carcinoma (Review). Int J Oncol 2022; 61:91. [PMID: 35674180 PMCID: PMC9262158 DOI: 10.3892/ijo.2022.5381] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/24/2022] [Indexed: 11/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common malignancy of hepatocytes accounting for 75-85% of primary hepatic carcinoma cases. Small extracellular vesicles (sEVs), previously known as exosomes with a diameter of 30-200 nm, can transport a variety of biological molecules between cells, and have been proposed to function in physiological and pathological processes. Recent studies have indicated that the cargos of sEVs are implicated in intercellular crosstalk among HCC cells, paratumor cells and the tumor microenvironment. sEV-encapsulated substances (including DNA, RNA, proteins and lipids) regulate signal transduction pathways in recipient cells and contribute to cancer initiation and progression in HCC. In addition, the differential expression of sEV cargos between patients facilitates the potential utility of sEVs in the diagnosis and prognosis of patients with HCC. Furthermore, the intrinsic properties of low immunogenicity and high stability render sEVs ideal vehicles for targeted drug delivery in the treatment of HCC. The present review article summarizes the carcinogenic and anti-neoplastic capacities of sEVs and discusses the potential and prospective diagnostic and therapeutic applications of sEVs in HCC.
Collapse
Affiliation(s)
- Shuyue Yang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Jiaxin Wang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Shidong Wang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Anni Zhou
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Guiping Zhao
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Peng Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| |
Collapse
|
15
|
Nie G, Lian N, Peng D, Lu J, Li B. Prognostic Value of Exosomal Noncoding RNA in Hepatocellular Carcinoma: A Meta-analysis. Carcinogenesis 2022; 43:754-765. [PMID: 35904534 DOI: 10.1093/carcin/bgac066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/29/2022] [Accepted: 07/26/2022] [Indexed: 02/05/2023] Open
Abstract
High morbidity, recurrence and mortality make hepatocellular carcinoma (HCC) a leading cause of cancer-related burden and deaths. The lack of prognostic evaluation methods weakened the therapeutic efficacy for HCC. Exosomal noncoding RNAs (ncRNAs) play a key role in cancer development. Our meta-analysis aimed to assess the prognostic value of exosome-transferred noncoding RNAs in predicting the outcomes of patients with HCC. We obtained 16 articles from PubMed, Web of Science, Scopus and EMBASE up to 4 November 2021. The ncRNAs were divided into three parts:microRNAs (miRNA), long noncoding RNAs (lncRNA) and circular RNAs (circRNA). In the pooled hazard ratios (HRs), upregulated miRNAs were 3.06 (95% CI = 2.51-3.73), downregulated miRNAs were 3.28 (95% CI = 2.61-4.11), lncRNAs were 3.34 (95% CI = 1.87-5.96), and circRNAs were 1.76 (95% CI = 1.36-2.14). As the results of subgroup analysis, upregulated miRNAs had a pooled HR of 3.10 (95% CI = 1.66-5.81), and the HR of downregulated miRNAs was 3.04 (95% CI = 2.17-4.28) for multivariate analysis of overall survival (OS). Meanwhile, upregulated miRNAs had a pooled HR of 2.61 (95% CI = 1.89-3.60), and the HR of downregulated miRNAs was 3.77 (95% CI = 1.11-12.73) for multivariate analysis of other endpoints. Remarkably, miR-21 has a pooled HR of 2.48 (95%CI = 1.52-4.05, I 2 = 0) for disease-free survival (DFS). In conclusion, the expression of exosomal noncoding RNAs can be used to evaluate the prognosis of patients with HCC. Exosome-transferred miR-21 might serve as a potential prognostic biomarker in HCC.
Collapse
Affiliation(s)
- Guilin Nie
- Department of Biliary Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Nan Lian
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Dingzhong Peng
- Department of Biliary Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Jiong Lu
- Department of Biliary Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Bei Li
- Department of Biliary Surgery, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Exosomal microRNA-25 released from cancer cells targets SIK1 to promote hepatocellular carcinoma tumorigenesis. Dig Liver Dis 2022; 54:954-963. [PMID: 34384713 DOI: 10.1016/j.dld.2021.07.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/05/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is recognized as a leading cause of cancer-associated fatality worldwide. Our study here aimed to probe the mechanism by which exosomes secreted by CSQT-2, an HCC cell line, affected the progression of HCC. METHODS Exosomes were extracted from CSQT-2 cells. Colony formation, Transwell, sphere formation and flow cytometric analyses were applied to assess cell biological activities. Microarray analysis detected the change of microRNA (miRNA) expression after exosome treatment, followed by RT-qPCR validation. Luciferase reporter was applied to detect the binding between SIK1 and miR-25. Xenograft studies in nude mice manifested tumor growth and metastatic ability of miR-25 and SIK1. RESULTS The exosome treatment enhanced cell malignant phenotype in vitro and tumor growth and liver and lung metastases in vivo. The exosomes elevated miR-25 expression in HCC cells. miR-25 targeted SIK1 which was decreased in the exosomes-treated cells. miR-25 inhibitor reduced cell malignant phenotype and attenuated tumorigenesis and metastasis in vivo. SIK1 silencing reversed the effect of miR-25 inhibitor. The exosome treatment potentiated the Wnt/β-catenin pathway in cells, whereas miR-25 inhibitor blunted the pathway activity. CONCLUSION MiR-25 shuttled through CSQT-2-derived exosomes promoted the development of HCC by reducing SIK1 expression and potentiating the Wnt/β-catenin pathway.
Collapse
|
17
|
Paskeh MDA, Entezari M, Mirzaei S, Zabolian A, Saleki H, Naghdi MJ, Sabet S, Khoshbakht MA, Hashemi M, Hushmandi K, Sethi G, Zarrabi A, Kumar AP, Tan SC, Papadakis M, Alexiou A, Islam MA, Mostafavi E, Ashrafizadeh M. Emerging role of exosomes in cancer progression and tumor microenvironment remodeling. J Hematol Oncol 2022; 15:83. [PMID: 35765040 PMCID: PMC9238168 DOI: 10.1186/s13045-022-01305-4] [Citation(s) in RCA: 319] [Impact Index Per Article: 106.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 06/13/2022] [Indexed: 12/14/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide, and the factors responsible for its progression need to be elucidated. Exosomes are structures with an average size of 100 nm that can transport proteins, lipids, and nucleic acids. This review focuses on the role of exosomes in cancer progression and therapy. We discuss how exosomes are able to modulate components of the tumor microenvironment and influence proliferation and migration rates of cancer cells. We also highlight that, depending on their cargo, exosomes can suppress or promote tumor cell progression and can enhance or reduce cancer cell response to radio- and chemo-therapies. In addition, we describe how exosomes can trigger chronic inflammation and lead to immune evasion and tumor progression by focusing on their ability to transfer non-coding RNAs between cells and modulate other molecular signaling pathways such as PTEN and PI3K/Akt in cancer. Subsequently, we discuss the use of exosomes as carriers of anti-tumor agents and genetic tools to control cancer progression. We then discuss the role of tumor-derived exosomes in carcinogenesis. Finally, we devote a section to the study of exosomes as diagnostic and prognostic tools in clinical courses that is important for the treatment of cancer patients. This review provides a comprehensive understanding of the role of exosomes in cancer therapy, focusing on their therapeutic value in cancer progression and remodeling of the tumor microenvironment.
Collapse
Affiliation(s)
- Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohamad Javad Naghdi
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sina Sabet
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Amin Khoshbakht
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Division of Epidemiology, Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396, Istanbul, Turkey
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia
- AFNP Med Austria, Vienna, Austria
| | - Md Asiful Islam
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul, Turkey.
| |
Collapse
|
18
|
Zhou JF, Xiong Y, Kang X, Pan Z, Zhu Q, Goldbrunner R, Stavrinou L, Lin S, Hu W, Zheng F, Stavrinou P. Application of stem cells and exosomes in the treatment of intracerebral hemorrhage: an update. Stem Cell Res Ther 2022; 13:281. [PMID: 35765072 PMCID: PMC9241288 DOI: 10.1186/s13287-022-02965-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/19/2022] [Indexed: 12/14/2022] Open
Abstract
Non-traumatic intracerebral hemorrhage is a highly destructive intracranial disease with high mortality and morbidity rates. The main risk factors for cerebral hemorrhage include hypertension, amyloidosis, vasculitis, drug abuse, coagulation dysfunction, and genetic factors. Clinically, surviving patients with intracerebral hemorrhage exhibit different degrees of neurological deficits after discharge. In recent years, with the development of regenerative medicine, an increasing number of researchers have begun to pay attention to stem cell and exosome therapy as a new method for the treatment of intracerebral hemorrhage, owing to their intrinsic potential in neuroprotection and neurorestoration. Many animal studies have shown that stem cells can directly or indirectly participate in the treatment of intracerebral hemorrhage through regeneration, differentiation, or secretion. However, considering the uncertainty of its safety and efficacy, clinical studies are still lacking. This article reviews the treatment of intracerebral hemorrhage using stem cells and exosomes from both preclinical and clinical studies and summarizes the possible mechanisms of stem cell therapy. This review aims to provide a reference for future research and new strategies for clinical treatment.
Collapse
Affiliation(s)
- Jian-Feng Zhou
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China
| | - Yu Xiong
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China
| | - Xiaodong Kang
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China
| | - Zhigang Pan
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China
| | - Qiangbin Zhu
- Department of Neurosurgery, Hui'an County Hospital of Fujian Province, Quanzhou, Fujian, China
| | - Roland Goldbrunner
- Department of Neurosurgery, Faculty of Medicine and University Hospital, Center for Neurosurgery, University of Cologne, Cologne, Germany
| | - Lampis Stavrinou
- 2nd Department of Neurosurgery, Athens Medical School, "Attikon" University Hospital, National and Kapodistrian University, Athens, Greece
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China. .,Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia.
| | - Weipeng Hu
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China.
| | - Feng Zheng
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China.
| | - Pantelis Stavrinou
- Department of Neurosurgery, Faculty of Medicine and University Hospital, Center for Neurosurgery, University of Cologne, Cologne, Germany.,Neurosurgery, Metropolitan Hospital, Athens, Greece
| |
Collapse
|
19
|
Jia N, Gao W, Fan X, Gao H, Li X, Mi B, Yang J. Clinical Efficacy of PEG-IFN α-2a and PEG-IFN α-2b in the Treatment of Hepatitis B e Antigen-Positive Hepatitis B and Their Value in Improving Inflammatory Factors and Hemodynamics in Patients: A Comparative Study. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3185320. [PMID: 35726331 PMCID: PMC9206564 DOI: 10.1155/2022/3185320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 11/17/2022]
Abstract
Objective To compare the merits and demerits of PEG-IFNα-2a and PEG-IFNα-2b for the treatment of hepatitis B e antigen (HBeAg)-positive chronic hepatitis B (CHB). Methods Clinical files from eighty-four CHB patients admitted to the Second Hospital of Shanxi Medical University between January 2018 and January 2019 were retrospectively analyzed and assigned to two groups: group 2a treated with PEG-IFNα-2a and group 2b treated with PEG-IFNα-2b. The clinical efficacy was compared between the above two arms, and the liver function (ALT, AST, HA, LN, and IV-C), HBV-DNA, HBsAg, HBeAg, and inflammatory factors (IFs, IL-1β, IL-6, IL-8, and TNF-α) were tested at 12 weeks (T1), 24 weeks (T2), and 48 weeks (T3). The alterations of hemodynamics (SBP, DBP, MAP, and CVP), cardiac function (LVEF and BNP), and the incidence of adverse reactions (ARs) during treatment were recorded. Finally, the patients were followed up for 2 years to investigate the quality of life (QOL) as well as the positive seroconversion rate of HBsAg and HBeAg. Results The overall response rate was similar in the two arms (P > 0.05). After treatment, the liver function, HBV-DNA, HBsAg, HBeAg, IFs, hemodynamics, and cardiac function were enormously improved (P < 0.05), with faster improvement in group 2b compared with group 2a (P < 0.05). The investigation of ARs identified notably lower incidence rates of alopecia, thrombocytopenia, and granulocytopenia in group 2a as compared to group 2b (P < 0.05). The prognostic follow-up results revealed no distinct difference in the QOL score and the positive seroconversion rate of HBsAg and HBeAg (P > 0.05); however, the quantitative results of HBV-DNA, HBsAg, and HBeAg in group 2b were lower than those in group 2a (P < 0.05). Conclusions Both PEG-IFNα-2a and PEG-IFNα-2b have excellent and stable therapeutic effects on HBeAg-positive CHB, among which PEG-IFNα-2b renders a faster treatment process but higher side effects, which can provide valuable references when choosing a treatment plan for CHB.
Collapse
Affiliation(s)
- Nina Jia
- Department of Gastroenterology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001 Shanxi, China
| | - Wei Gao
- Department of Gastroenterology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001 Shanxi, China
| | - Xiaohong Fan
- Department of Gastroenterology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001 Shanxi, China
| | - Hong Gao
- Department of Gastroenterology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001 Shanxi, China
| | - Xueqing Li
- Department of Gastroenterology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001 Shanxi, China
| | - Biantao Mi
- Department of Gastroenterology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001 Shanxi, China
| | - Jie Yang
- Department of Gastroenterology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001 Shanxi, China
| |
Collapse
|
20
|
Chen S, Wu H, Zhu L, Jiang M, Wei S, Luo J, Liu A. MiR-199b-5p Promotes Gastric Cancer Progression by Regulating HHIP Expression. Front Oncol 2021; 11:728393. [PMID: 34532291 PMCID: PMC8438221 DOI: 10.3389/fonc.2021.728393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/03/2021] [Indexed: 12/29/2022] Open
Abstract
Objectives Gastric cancer (GC) is one of the most common malignant tumors. More and more evidences support the role of microRNAs (miRNAs) in tumor progression. However, the role of miRNAs in human GC remains largely unknown. Methods Based on the published gastric cancer expression profile data, combined with bioinformatics analysis, potential miRNAs in the process of GC were screened. The expression of miR-199b-5p in GC cells and patients’ plasma was detected by RT-PCR. The effects of miR-199b-5p on GC in vitro were detected by EdU proliferation assay, colony formation assay, Transwell assay and wound healing assay. Western blot was used to detect epithelial-mesenchymal transition (EMT) related proteins. The subcutaneous tumorigenesis model and metastatic tumor model of mice were used to study its effect in vivo. Bioinformatics and Dual luciferase reporter assay were used to verify the effect of miR-199b-5p and its target gene. Results Through bioinformatics analysis, we screened a novel miRNA miR-199b-5p that was significantly up-regulated in GC tissue and associated with poor prognosis of GC patients. RT-PCR results showed that its expression was also up-regulated in GC cell lines and patients’ plasma. MiR-199b-5p can significantly promote GC cell proliferation and migration in vitro and in vivo. Western blot showed that miR-199b-5p could promote the EMT process of GC. HHIP has been proved to be a target of miR-199b-5p, and the recovery of HHIP can weaken the effect of miR-199b-5p. Conclusion MiR-199b-5p may play an oncogene role in GC by targeting HHIP, suggesting that miR-199b-5p may be a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Songda Chen
- Department of Endoscopy, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Huijie Wu
- Department of Endoscopy, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Lingyu Zhu
- Department of Endoscopy, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Mengjie Jiang
- Department of Endoscopy, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Shuli Wei
- Department of Gastroenterology, The 10th Affiliated Hospital of Guangxi Medical University, Qinzhou, China
| | - Jinhua Luo
- Department of Gastroenterology, The 10th Affiliated Hospital of Guangxi Medical University, Qinzhou, China
| | - Aiqun Liu
- Department of Endoscopy, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
21
|
Supadmanaba IGP, Comandatore A, Morelli L, Giovannetti E, Lagerweij T. Organotypic-liver slide culture systems to explore the role of extracellular vesicles in pancreatic cancer metastatic behavior and guide new therapeutic approaches. Expert Opin Drug Metab Toxicol 2021; 17:937-946. [PMID: 33945374 DOI: 10.1080/17425255.2021.1925646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/30/2021] [Indexed: 02/08/2023]
Abstract
Introduction: Recent studies suggested that extracellular vesicles (EVs) play a role both in the metastatic niche formation and in the progression of several tumors, including pancreatic cancer. In particular, the effects of EVs on metastasis should be studied in model systems that take into account both the tumor cells and the metastatic site/tumor microenvironment. Studies with labeled EVs or EV-secreting cells in ex vivo models will reflect the physiological and pathological functions of EVs. The organotypic-tissue slide culture systems can fulfill such a role.Areas covered: This review provides an overview of available organotypic-culture slide systems. We specifically focus on the assay system of liver culture-slides in combination with pancreatic tumors, which can be modulated to test the efficacy of new therapeutic approaches.Expert opinion: The intercellular exchange of EVs has emerged as a biologically relevant phenomenon to drive cancer metastasis. However, further models need to be developed to better elucidate the functional roles of EVs. The use of novel organotypic slide culture systems provides the opportunity to explore the role of EVs in the metastatic behavior of pancreatic cancer, decreasing the use of costly and cumbersome organoid or animal models.
Collapse
Affiliation(s)
- I Gede Putu Supadmanaba
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Biochemistry Department, Faculty of Medicine, Universitas Udayana, Denpasar, Bali, Indonesia
| | - Annalisa Comandatore
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Luca Morelli
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Pharmacology Lab, AIRC Start-Up Unit, Fondazione Pisana per La Scienza, Pisa, Italy
| | - Tonny Lagerweij
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Kostallari E, Valainathan S, Biquard L, Shah VH, Rautou PE. Role of extracellular vesicles in liver diseases and their therapeutic potential. Adv Drug Deliv Rev 2021; 175:113816. [PMID: 34087329 PMCID: PMC10798367 DOI: 10.1016/j.addr.2021.05.026] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/17/2021] [Accepted: 05/29/2021] [Indexed: 02/07/2023]
Abstract
More than eight hundred million people worldwide have chronic liver disease, with two million deaths per year. Recurring liver injury results in fibrogenesis, progressing towards cirrhosis, for which there doesn't exists any cure except liver transplantation. Better understanding of the mechanisms leading to cirrhosis and its complications is needed to develop effective therapies. Extracellular vesicles (EVs) are released by cells and are important for cell-to-cell communication. EVs have been reported to be involved in homeostasis maintenance, as well as in liver diseases. In this review, we present current knowledge on the role of EVs in non-alcoholic fatty liver disease and non-alcoholic steatohepatitis, alcohol-associated liver disease, chronic viral hepatitis, primary liver cancers, acute liver injury and liver regeneration. Moreover, therapeutic strategies involving EVs as targets or as tools to treat liver diseases are summarized.
Collapse
Affiliation(s)
- Enis Kostallari
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States.
| | - Shantha Valainathan
- Université de Paris, AP-HP, Hôpital Beaujon, Service d'Hépatologie, DMU DIGEST, Centre de Référence des Maladies Vasculaires du Foie, FILFOIE, ERN RARE-LIVER, Centre de recherche sur l'inflammation, Inserm, UMR 1149, Paris, France
| | - Louise Biquard
- Université de Paris, Centre de recherche sur l'inflammation, Inserm, UMR 1149, Paris, France.
| | - Vijay H Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States.
| | - Pierre-Emmanuel Rautou
- Université de Paris, AP-HP, Hôpital Beaujon, Service d'Hépatologie, DMU DIGEST, Centre de Référence des Maladies Vasculaires du Foie, FILFOIE, ERN RARE-LIVER, Centre de recherche sur l'inflammation, Inserm, UMR 1149, Paris, France.
| |
Collapse
|
23
|
Wang G, Wen Y, Chen S, Zhang G, Li M, Zhang S, Qi S, Feng W. Use of a panel of four microRNAs in CSF as a predicted biomarker for postoperative neoangiogenesis in moyamoya disease. CNS Neurosci Ther 2021; 27:908-918. [PMID: 33942536 PMCID: PMC8265944 DOI: 10.1111/cns.13646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION AND AIMS At present, the treatment for moyamoya disease (MMD) primarily consists of combined direct and indirect bypass surgery. Nevertheless, more than half of indirect bypass surgeries fail to develop good collaterals from the dura and temporal muscle. This study aimed to investigate whether microRNAs (miRNAs) in cerebrospinal fluid (CSF) could serve as biomarkers for the prediction of postoperative collateral formation. METHODS Moyamoya disease patients with indirect bypass surgery were divided into angiogenesis and non-angiogenesis groups, CSF was obtained, and miRNA sequencing was performed using the CSF. Candidate miRNAs were filtered and subsequently verified through qRT-PCR. The diagnostic utility of these differential miRNAs was investigated by using receiver operating characteristic (ROC) curve analysis. Finally, the potential biological processes and signaling pathways associated with candidate miRNAs were analyzed using R software. RESULTS The expression levels of four miRNAs (miR-92a-3p, miR-486-3p, miR-25-3p, and miR-155-5p) were significantly increased in the angiogenesis group. By combining these four miRNAs (area under the curve [AUC] =0.970), we established an accurate predictive model of collateral circulation after indirect bypass surgery in MMD patients. GO and KEGG analyses demonstrated a high correlation with biological processes and signaling pathways related to angiogenesis. CONCLUSION The 4-miRNA signature is a good model to predict angiogenesis after indirect bypass surgery and help the surgeon to select a appreciate bypass strategy.
Collapse
Affiliation(s)
- Gang Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yunyu Wen
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Siyuan Chen
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guozhong Zhang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mingzhou Li
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shichao Zhang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Songtao Qi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenfeng Feng
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
24
|
Ouyang Y, Tang Y, Fu L, Peng S, Wu W, Tan D, Fu X. Exosomes secreted by chronic hepatitis B patients with PNALT and liver inflammation grade ≥ A2 promoted the progression of liver cancer by transferring miR-25-3p to inhibit the co-expression of TCF21 and HHIP. Cell Prolif 2020; 53:e12833. [PMID: 32525231 PMCID: PMC7377934 DOI: 10.1111/cpr.12833] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES The current study aimed to investigate the mechanism by which exosomes secreted by CHB patients with PNALT and liver inflammation grade (≥A2) affected the development of liver cancer. MATERIALS AND METHODS Gene expression was assessed by RT-PCR, Western blotting and immunohistochemistry. CCK-8, colony formation, transwell, scratch-wound and flow cytometry assays were used to detect cell viability, proliferation, apoptosis and metastasis. The interaction of TCF21 and HHIP was assessed by co-immunoprecipitation assay. Luciferase reporter was used to detect the combination of TCF21/HHIP and miR-25-3p. Xenograft studies in nude mice manifested tumour growth ability of miR-25-3p. Bioinformatics analyses were conducted using TargetScan, EVmiRNA, TCGA, GEO, DAVID, COEXPEDIA, UALCAN, UCSC and the Human Protein Atlas databases. RESULTS CHB-PNALT-Exo (≥A2) promoted the proliferation and metastasis of HepG2.2.15 cells. miR-25-3p was upregulated in CHB-PNALT-Exo (≥A2). miR-25-3p overexpression promoted cell proliferation and metastasis and was related to poor survival in patients with CHB-PNALT (≥A2). The cell proliferation- and metastasis-promoting functions of CHB-PNALT-Exo (≥A2) were abolished by miR-25-3p inhibitors. TCF21 directly interacted with HHIP. Inhibition of TCF21 or HHIP promoted cell proliferation and metastasis. Knockdown of TCF21 or HHIP counteracted the effects of CHB-PNALT-Exo (≥A2) containing miR-25-3p inhibitor on cell proliferation, metastasis and the expression of Ki67, E-cadherin and caspase-3/-9. CONCLUSIONS Transfer of miR-25-3p by CHB-PNALT-Exo promoted the development of liver cancer by inhibiting the co-expression of TCF21 and HHIP.
Collapse
Affiliation(s)
- Yi Ouyang
- Key Laboratory of Viral HepatitisDepartment of Infectious DiseasesXiangya HospitalCentral South UniversityChangshaChina
| | - Yujing Tang
- Department of Second Area of Liver DiseaseXia'men Hospital of Chinese MedicineXia'menChina
| | - Lei Fu
- Key Laboratory of Viral HepatitisDepartment of Infectious DiseasesXiangya HospitalCentral South UniversityChangshaChina
| | - Shifang Peng
- Key Laboratory of Viral HepatitisDepartment of Infectious DiseasesXiangya HospitalCentral South UniversityChangshaChina
| | - Wanfeng Wu
- School of the Integrated Traditional Chinese and Western MedicineHunan University of Chinese MedicineChangshaChina
| | - Deming Tan
- Key Laboratory of Viral HepatitisDepartment of Infectious DiseasesXiangya HospitalCentral South UniversityChangshaChina
| | - Xiaoyu Fu
- Key Laboratory of Viral HepatitisDepartment of Infectious DiseasesXiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|