1
|
Melocchi A, Schmittlein B, Sadhu S, Nayak S, Lares A, Uboldi M, Zema L, di Robilant BN, Feldman SA, Esensten JH. Automated manufacturing of cell therapies. J Control Release 2025; 381:113561. [PMID: 39993639 DOI: 10.1016/j.jconrel.2025.02.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 02/26/2025]
Abstract
Advanced therapy medicinal products (ATMPs), particularly genetically engineered cell-based therapies, are a major class of drugs with several high-profile Food and Drug Administration (FDA) approvals in the past decade. However, the high cost and limited production capacity of these drugs remain a barrier to access. These costs are primarily due to the complex manufacturing processes (often a single batch for a single patient), which increases personnel and facility expenses, and the challenges associated with tech-transfer from research and development stages to clinical-stage production. In order to scale up and scale out in a cost-effective way, automated solutions capable of multi-step manufacturing have been developed in academia and industry. The aim of the present article is to summarize the design approaches and key features of current multi-step automated systems for cell therapy manufacturing. For each system described in the literature, we will discuss different aspects in detail such as cell specificity, modularity, processing models, manufacturing locations, and integrated quality control. Our analysis highlights that developers need to balance competing needs in an environment where the biological, business, and technological factors are constantly evolving. Thus, designing engineering solutions that align with the pharmaceutical end-user is essential. Adopting a risk-based approach grounded in published data is the most effective strategy to evaluate existing and emerging automated systems.
Collapse
Affiliation(s)
- Alice Melocchi
- Sezione di Tecnologia e Legislazione Farmaceutiche "M. E. Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy; Multiply Labs, San Francisco, CA, USA.
| | | | | | | | | | - Marco Uboldi
- Sezione di Tecnologia e Legislazione Farmaceutiche "M. E. Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy
| | - Lucia Zema
- Sezione di Tecnologia e Legislazione Farmaceutiche "M. E. Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy
| | | | - Steven A Feldman
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Jonathan H Esensten
- Advanced Biotherapy Center (ABC), Sheba Medical Center, Tel Hashomer, Israel
| |
Collapse
|
2
|
Li ZK, Wang LB, Wang LY, Sun XH, Ren ZH, Ma SN, Zhao YL, Liu C, Feng GH, Liu T, Pan TS, Shan QT, Xu K, Luo GZ, Zhou Q, Li W. Adult bi-paternal offspring generated through direct modification of imprinted genes in mammals. Cell Stem Cell 2025; 32:361-374.e6. [PMID: 39879989 DOI: 10.1016/j.stem.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/24/2024] [Accepted: 01/06/2025] [Indexed: 01/31/2025]
Abstract
Imprinting abnormalities pose a significant challenge in applications involving embryonic stem cells, induced pluripotent stem cells, and animal cloning, with no universal correction method owing to their complexity and stochastic nature. In this study, we targeted these defects at their source-embryos from same-sex parents-aiming to establish a stable, maintainable imprinting pattern de novo in mammalian cells. Using bi-paternal mouse embryos, which exhibit severe imprinting defects and are typically non-viable, we introduced frameshift mutations, gene deletions, and regulatory edits at 20 key imprinted loci, ultimately achieving the development of fully adult animals, albeit with a relatively low survival rate. The findings provide strong evidence that imprinting abnormalities are a primary barrier to unisexual reproduction in mammals. Moreover, this approach can significantly improve developmental outcomes for embryonic stem cells and cloned animals, opening promising avenues for advancements in regenerative medicine.
Collapse
Affiliation(s)
- Zhi-Kun Li
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| | - Li-Bin Wang
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Le-Yun Wang
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Xue-Han Sun
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ze-Hui Ren
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Si-Nan Ma
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yu-Long Zhao
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Liu
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Gui-Hai Feng
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Tao Liu
- Beijing SeqWisdom Biotechnology Co., Ltd., Beijing 100176, China
| | - Tian-Shi Pan
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Qing-Tong Shan
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Kai Xu
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Guan-Zheng Luo
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| | - Qi Zhou
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| | - Wei Li
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| |
Collapse
|
3
|
Matsuo-Takasaki M, Kambayashi S, Hemmi Y, Wakabayashi T, Shimizu T, An Y, Ito H, Takeuchi K, Ibuki M, Kawashima T, Masayasu R, Suzuki M, Kawai Y, Umekage M, Kato TM, Noguchi M, Nakade K, Nakamura Y, Nakaishi T, Nishishita N, Tsukahara M, Hayashi Y. Complete suspension culture of human induced pluripotent stem cells supplemented with suppressors of spontaneous differentiation. eLife 2024; 12:RP89724. [PMID: 39529479 PMCID: PMC11556790 DOI: 10.7554/elife.89724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) are promising resources for producing various types of tissues in regenerative medicine; however, the improvement in a scalable culture system that can precisely control the cellular status of hiPSCs is needed. Utilizing suspension culture without microcarriers or special materials allows for massive production, automation, cost-effectiveness, and safety assurance in industrialized regenerative medicine. Here, we found that hiPSCs cultured in suspension conditions with continuous agitation without microcarriers or extracellular matrix components were more prone to spontaneous differentiation than those cultured in conventional adherent conditions. Adding PKCβ and Wnt signaling pathway inhibitors in the suspension conditions suppressed the spontaneous differentiation of hiPSCs into ectoderm and mesendoderm, respectively. In these conditions, we successfully completed the culture processes of hiPSCs, including the generation of hiPSCs from peripheral blood mononuclear cells with the expansion of bulk population and single-cell sorted clones, long-term culture with robust self-renewal characteristics, single-cell cloning, direct cryopreservation from suspension culture and their successful recovery, and efficient mass production of a clinical-grade hiPSC line. Our results demonstrate that precise control of the cellular status in suspension culture conditions paves the way for their stable and automated clinical application.
Collapse
Affiliation(s)
- Mami Matsuo-Takasaki
- iPS Cell Advanced Characterization and Development Team, RIKEN BioResource Research CenterIbarakiJapan
| | - Sho Kambayashi
- Regenerative Medicine and Cell Therapy Laboratories, KANEKA CORPORATIONKobeJapan
| | - Yasuko Hemmi
- iPS Cell Advanced Characterization and Development Team, RIKEN BioResource Research CenterIbarakiJapan
| | - Tamami Wakabayashi
- iPS Cell Advanced Characterization and Development Team, RIKEN BioResource Research CenterIbarakiJapan
| | - Tomoya Shimizu
- iPS Cell Advanced Characterization and Development Team, RIKEN BioResource Research CenterIbarakiJapan
| | - Yuri An
- iPS Cell Advanced Characterization and Development Team, RIKEN BioResource Research CenterIbarakiJapan
| | - Hidenori Ito
- iPS Cell Advanced Characterization and Development Team, RIKEN BioResource Research CenterIbarakiJapan
| | - Kazuhiro Takeuchi
- Regenerative Medicine and Cell Therapy Laboratories, KANEKA CORPORATIONKobeJapan
| | - Masato Ibuki
- Regenerative Medicine and Cell Therapy Laboratories, KANEKA CORPORATIONKobeJapan
| | - Terasu Kawashima
- Regenerative Medicine and Cell Therapy Laboratories, KANEKA CORPORATIONKobeJapan
| | - Rio Masayasu
- Regenerative Medicine and Cell Therapy Laboratories, KANEKA CORPORATIONKobeJapan
| | - Manami Suzuki
- Regenerative Medicine and Cell Therapy Laboratories, KANEKA CORPORATIONKobeJapan
| | - Yoshikazu Kawai
- Regenerative Medicine and Cell Therapy Laboratories, KANEKA CORPORATIONKobeJapan
| | | | - Tomoaki M Kato
- Research and Development Center, CiRA FoundationKyotoJapan
| | - Michiya Noguchi
- Cell Engineering Division, RIKEN BioResource Research CenterIbarakiJapan
| | - Koji Nakade
- Gene Engineering Division, RIKEN BioResource Research CenterIbarakiJapan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research CenterIbarakiJapan
| | - Tomoyuki Nakaishi
- Regenerative Medicine and Cell Therapy Laboratories, KANEKA CORPORATIONKobeJapan
| | - Naoki Nishishita
- Regenerative Medicine and Cell Therapy Laboratories, KANEKA CORPORATIONKobeJapan
| | | | - Yohei Hayashi
- iPS Cell Advanced Characterization and Development Team, RIKEN BioResource Research CenterIbarakiJapan
- Faculty of Medicine and School of Integrative and Global Majors, University of TsukubaIbarakiJapan
| |
Collapse
|
4
|
Conner AA, Yao Y, Chan SW, Jain D, Wong SM, Yim EKF, Rizwan M. High-throughput analysis of topographical cues for the expansion of murine pluripotent stem cells. NANOTECHNOLOGY 2024; 35:455101. [PMID: 39084233 DOI: 10.1088/1361-6528/ad6994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/31/2024] [Indexed: 08/02/2024]
Abstract
The expansion of pluripotent stem cells (PSCs)in vitroremains a critical barrier to their use in tissue engineering and regenerative medicine. Biochemical methods for PSC expansion are known to produce heterogeneous cell populations with varying states of pluripotency and are cost-intensive, hindering their clinical translation. Engineering biomaterials to physically control PSC fate offers an alternative approach. Surface or substrate topography is a promising design parameter for engineering biomaterials. Topographical cues have been shown to elicit profound effects on stem cell differentiation and proliferation. Previous reports have shown isotropic substrate topographies to be promising in expanding PSCs. However, the optimal feature to promote PSC proliferation and the pluripotent state has not yet been determined. In this work, the MultiARChitecture (MARC) plate is developed to conduct a high-throughput analysis of topographical cues in a 96-well plate format. The MARC plate is a reproducible and customizable platform for the analysis of multiple topographical patterns and features and is compatible with both microscopic assays and molecular biology techniques. The MARC plate is used to evaluate the expression of pluripotency markersOct4, Nanog, andSox2and the differentiation markerLmnAas well as the proliferation of murine embryonic stem (mES) cells. Our systematic analyses identified three topographical patterns that maintain pluripotency in mES cells after multiple passages: 1µm pillars (1µm spacing, square arrangement), 2µm wells (c-c (x, y) = 4, 4µm), and 5µm pillars (c-c (x, y) = 7.5, 7.5µm). This study represents a step towards developing a biomaterial platform for controlled murine PSC expansion.
Collapse
Affiliation(s)
- Abigail A Conner
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
| | - Yuan Yao
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
| | - Sarah W Chan
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
| | - Deepak Jain
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
| | - Suzanne M Wong
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
| | - Evelyn K F Yim
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
- Center for Biotechnology and Bioengineering, University of Waterloo, Waterloo, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Canada
| | - Muhammad Rizwan
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
- Department of Biomedical Engineering, The University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| |
Collapse
|
5
|
Ullmann K, Manstein F, Triebert W, Kriedemann N, Franke A, Teske J, Mertens M, Lupanow V, Göhring G, Haase A, Martin U, Zweigerdt R. Matrix-free human pluripotent stem cell manufacturing by seed train approach and intermediate cryopreservation. Stem Cell Res Ther 2024; 15:89. [PMID: 38528578 DOI: 10.1186/s13287-024-03699-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/17/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Human pluripotent stem cells (hPSCs) have an enormous therapeutic potential, but large quantities of cells will need to be supplied by reliable, economically viable production processes. The suspension culture (three-dimensional; 3D) of hPSCs in stirred tank bioreactors (STBRs) has enormous potential for fuelling these cell demands. In this study, the efficient long-term matrix-free suspension culture of hPSC aggregates is shown. METHODS AND RESULTS STBR-controlled, chemical aggregate dissociation and optimized passage duration of 3 or 4 days promotes exponential hPSC proliferation, process efficiency and upscaling by a seed train approach. Intermediate high-density cryopreservation of suspension-derived hPSCs followed by direct STBR inoculation enabled complete omission of matrix-dependent 2D (two-dimensional) culture. Optimized 3D cultivation over 8 passages (32 days) cumulatively yielded ≈4.7 × 1015 cells, while maintaining hPSCs' pluripotency, differentiation potential and karyotype stability. Gene expression profiling reveals novel insights into the adaption of hPSCs to continuous 3D culture compared to conventional 2D controls. CONCLUSIONS Together, an entirely matrix-free, highly efficient, flexible and automation-friendly hPSC expansion strategy is demonstrated, facilitating the development of good manufacturing practice-compliant closed-system manufacturing in large scale.
Collapse
Affiliation(s)
- Kevin Ullmann
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic Transplantation and Vascular Surgery (HTTG), Hannover Medical School (MHH), Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
- REBIRTH Research Center for Translational and Regenerative Medicine, Hannover Medical School (MHH), Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Felix Manstein
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic Transplantation and Vascular Surgery (HTTG), Hannover Medical School (MHH), Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- REBIRTH Research Center for Translational and Regenerative Medicine, Hannover Medical School (MHH), Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Wiebke Triebert
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic Transplantation and Vascular Surgery (HTTG), Hannover Medical School (MHH), Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- REBIRTH Research Center for Translational and Regenerative Medicine, Hannover Medical School (MHH), Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Nils Kriedemann
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic Transplantation and Vascular Surgery (HTTG), Hannover Medical School (MHH), Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- REBIRTH Research Center for Translational and Regenerative Medicine, Hannover Medical School (MHH), Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Annika Franke
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic Transplantation and Vascular Surgery (HTTG), Hannover Medical School (MHH), Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- REBIRTH Research Center for Translational and Regenerative Medicine, Hannover Medical School (MHH), Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Jana Teske
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic Transplantation and Vascular Surgery (HTTG), Hannover Medical School (MHH), Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- REBIRTH Research Center for Translational and Regenerative Medicine, Hannover Medical School (MHH), Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Mira Mertens
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic Transplantation and Vascular Surgery (HTTG), Hannover Medical School (MHH), Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- REBIRTH Research Center for Translational and Regenerative Medicine, Hannover Medical School (MHH), Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Victoria Lupanow
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic Transplantation and Vascular Surgery (HTTG), Hannover Medical School (MHH), Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- REBIRTH Research Center for Translational and Regenerative Medicine, Hannover Medical School (MHH), Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Gudrun Göhring
- Department of Human Genetics, Hannover Medical School (MHH), Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Alexandra Haase
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic Transplantation and Vascular Surgery (HTTG), Hannover Medical School (MHH), Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- REBIRTH Research Center for Translational and Regenerative Medicine, Hannover Medical School (MHH), Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic Transplantation and Vascular Surgery (HTTG), Hannover Medical School (MHH), Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- REBIRTH Research Center for Translational and Regenerative Medicine, Hannover Medical School (MHH), Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic Transplantation and Vascular Surgery (HTTG), Hannover Medical School (MHH), Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
- REBIRTH Research Center for Translational and Regenerative Medicine, Hannover Medical School (MHH), Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
6
|
Shimizu Y, Ntege EH, Azuma C, Uehara F, Toma T, Higa K, Yabiku H, Matsuura N, Inoue Y, Sunami H. Management of Rheumatoid Arthritis: Possibilities and Challenges of Mesenchymal Stromal/Stem Cell-Based Therapies. Cells 2023; 12:1905. [PMID: 37508569 PMCID: PMC10378234 DOI: 10.3390/cells12141905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/28/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Rheumatoid arthritis (RA) is a highly prevalent, chronic, and progressive autoimmune disorder primarily affecting joints and muscles. The associated inflammation, pain, and motor restriction negatively impact patient quality of life (QOL) and can even contribute to premature mortality. Further, conventional treatments such as antiinflammatory drugs are only symptomatic. Substantial progress has been made on elucidating the etiopathology of overt RA, in particular the contributions of innate and adaptive immune system dysfunction to chronic inflammation. Although the precise mechanisms underlying onset and progression remain elusive, the discovery of new drug targets, early diagnosis, and new targeted treatments have greatly improved the prognosis and QOL of patients with RA. However, a sizable proportion of patients develop severe adverse effects, exhibit poor responses, or cannot tolerate long-term use of these drugs, necessitating more effective and safer therapeutic alternatives. Mounting preclinical and clinical evidence suggests that the transplantation of multipotent adult stem cells such as mesenchymal stromal/stem cells is a safe and effective treatment strategy for controlling chronic inflammation and promoting tissue regeneration in patients with intractable diseases, including RA. This review describes the current status of MSC-based therapies for RA as well as the opportunities and challenges to broader clinical application.
Collapse
Affiliation(s)
- Yusuke Shimizu
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, Nishihara 903-0215, Japan
| | - Edward Hosea Ntege
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, Nishihara 903-0215, Japan
| | - Chinatsu Azuma
- Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, Nishihara 903-0215, Japan
| | - Fuminari Uehara
- Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, Nishihara 903-0215, Japan
| | - Takashi Toma
- Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, Nishihara 903-0215, Japan
| | - Kotaro Higa
- Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, Nishihara 903-0215, Japan
| | - Hiroki Yabiku
- Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, Nishihara 903-0215, Japan
| | - Naoki Matsuura
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, Nishihara 903-0215, Japan
| | - Yoshikazu Inoue
- Department of Plastic and Reconstructive Surgery, School of Medicine, Fujita Health University, Toyoake 470-1192, Japan
| | - Hiroshi Sunami
- Center for Advanced Medical Research, School of Medicine, University of the Ryukyus, Nishihara 903-0215, Japan
| |
Collapse
|
7
|
Jin G, Chang Y, Harris J, Bao X. Adoptive Immunotherapy: A Human Pluripotent Stem Cell Perspective. Cells Tissues Organs 2023; 212:439-467. [PMID: 36599319 PMCID: PMC10318121 DOI: 10.1159/000528838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/20/2022] [Indexed: 01/05/2023] Open
Abstract
The past decade has witnessed significant advances in cancer immunotherapy, particularly through the adoptive transfer of engineered T cells in treating advanced leukemias and lymphomas. Despite these excitements, challenges remain with scale, cost, and ensuring quality control of engineered immune cells, including chimeric antigen receptor T, natural killer cells, and macrophages. The advent of human pluripotent stem cells (hPSCs), including human embryonic stem cells and induced pluripotent stem cells, has transformed immunotherapy by providing a scalable, off-the-shelf source of any desired immune cells for basic research, translational studies, and clinical interventions. The tractability of hPSCs for gene editing could also generate homogenous, universal cellular products with custom functionality for individual or combinatory therapeutic applications. This review will explore various immune cell types whose directed differentiation from hPSCs has been achieved and recently adapted for translational immunotherapy and feature forward-looking bioengineering techniques shaping the future of the stem cell field.
Collapse
Affiliation(s)
- Gyuhyung Jin
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907
| | - Yun Chang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907
| | - Jackson Harris
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907
| | - Xiaoping Bao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
8
|
Stacey GN, Cao J, Hu B, Zhou Q. Manufacturing with pluripotent stem cells (
PSConf
2021): Key issues for future research and development. Cell Prolif 2022; 55:e13301. [PMID: 35933704 PMCID: PMC9357356 DOI: 10.1111/cpr.13301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
Human pluripotent stem cells (hPSC) have the capability to deliver novel cell‐based medicines that could transform medical treatments for a wide range of diseases including age‐related degenerative disorders and traumatic injury. In spite of significant investment in this area, due to the novel nature of these hPSC‐based medicines, there are challenges in almost all aspects of their manufacturing including bioprocessing, characterization and delivery. The Chinese Academy of Sciences and the Chinese Society for Stem Cell Research have collaborated to create a new discussion forum called PSConf 2021 (Pluripotent Stem Cell Conference 2021), intended to promote exchanges in communication on cutting‐edge developments and international coordination in hPSC manufacturing. The PSConf 2021 addressed crucial topics in stem cell‐based manufacturing, including stem cell differentiation, culture scale‐up, product formulation and release. This report summarizes the proceedings and conclusions from the discussion sessions, and it is accompanied by publication of individual papers from the speakers at the PSConf 2021.
Collapse
Affiliation(s)
- Glyn N. Stacey
- International Stem Cell Banking Initiative Barley Herts UK
- National Stem Cell Resource Center Chinese Academy of Sciences Beijing China
- Institute for Stem Cell and Regenerative Medicine Chinese Academy of Sciences Beijing China
| | - Jingyi Cao
- Institute for Stem Cell and Regenerative Medicine Chinese Academy of Sciences Beijing China
| | - Baoyang Hu
- Institute for Stem Cell and Regenerative Medicine Chinese Academy of Sciences Beijing China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology Chinese Academy of Sciences Beijing China
- Beijing Institute for Stem Cell and Regenerative Medicine Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Qi Zhou
- Institute for Stem Cell and Regenerative Medicine Chinese Academy of Sciences Beijing China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology Chinese Academy of Sciences Beijing China
- Beijing Institute for Stem Cell and Regenerative Medicine Beijing China
- University of Chinese Academy of Sciences Beijing China
| |
Collapse
|