1
|
Sim JM, Song HJ, Lee SH, Li XH, Zhan CL, Lu QY, Kim JD, Lee GH, Cui XS. HSP90 Is Required for Meiotic Resumption and Spindle Formation in Porcine Oocytes. Reprod Domest Anim 2025; 60:e70060. [PMID: 40186493 DOI: 10.1111/rda.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/14/2025] [Accepted: 03/28/2025] [Indexed: 04/07/2025]
Abstract
Heat shock protein 90 (HSP90) is a highly conserved molecular chaperone that is expressed in response to stress conditions. HSP90 has been found to be involved in the activation of proteins related to cell division and female reproduction. However, its specific role in porcine oocyte maturation, particularly in cytoskeletal formation, remains unclear. In this study, geldanamycin (GA) was used to inhibit HSP90 activity by binding to its adenosine triphosphate (ATP) binding site. Porcine oocytes surrounded by cumulus cells were cultured in TCM-199 medium for 44 h, with varying concentrations of GA (0.1, 0.5, 1 and 2 μM). It was observed that oocyte maturation significantly decreased when treated with a concentration of 0.5 μM or higher, leading to an increase in oocytes arrested at the germinal vesicle and metaphase I (MI) stage. The expression levels of Cyclin-dependent kinase 1, p-Aurora C (Thr198), p-AKT (Ser473) and p-PLK1 (Thr210) decreased during the MI stage, whereas Polo-like kinase 1 remained consistent with the control group. Additionally, abnormal spindle formation was increased, with abnormalities including aberrant poles, misaligned chromosomes and failure to reach the proximity of the cell membrane. Moreover, examination of mature oocytes at the metaphase II (MII) stage revealed that GA treatment induced a decrease in BCL-2 phosphorylation at the Ser70 site and an increase at the Thr56 site. This led to the release of Cytochrome c from the mitochondria and upregulation of Caspase 3 expression. In conclusion, HSP90 is essential for proper meiotic maturation in porcine oocytes by playing critical roles in meiotic resumption and spindle formation.
Collapse
Affiliation(s)
- Jae-Min Sim
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Hyeon-Ji Song
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Song-Hee Lee
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Xiao-Han Li
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Cheng-Lin Zhan
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Qin-Yue Lu
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Ji-Dam Kim
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Gyu-Hyun Lee
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Xiang-Shun Cui
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| |
Collapse
|
2
|
Clarence T, Bendl J, Cao X, Wang X, Zheng S, Hoffman GE, Kozlenkov A, Hong A, Iskhakova M, Jaiswal MK, Murphy S, Yu A, Haroutunian V, Dracheva S, Akbarian S, Fullard JF, Yuan GC, Lee D, Roussos P. Multiomic single-cell profiling identifies critical regulators of postnatal brain. Nat Genet 2025; 57:591-603. [PMID: 39962241 DOI: 10.1038/s41588-025-02083-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 01/08/2025] [Indexed: 03/15/2025]
Abstract
Human brain development spans from embryogenesis to adulthood, with dynamic gene expression controlled by cell-type-specific cis-regulatory element activity and three-dimensional genome organization. To advance our understanding of postnatal brain development, we simultaneously profiled gene expression and chromatin accessibility in 101,924 single nuclei from four brain regions across ten donors, covering five key postnatal stages from infancy to late adulthood. Using this dataset and chromosome conformation capture data, we constructed enhancer-based gene regulatory networks to identify cell-type-specific regulators of brain development and interpret genome-wide association study loci for ten main brain disorders. Our analysis connected 2,318 cell-specific loci to 1,149 unique genes, representing 41% of loci linked to the investigated traits, and highlighted 55 genes influencing several disease phenotypes. Pseudotime analysis revealed distinct stages of postnatal oligodendrogenesis and their regulatory programs. These findings provide a comprehensive dataset of cell-type-specific gene regulation at critical timepoints in postnatal brain development.
Collapse
Affiliation(s)
- Tereza Clarence
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Jaroslav Bendl
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xuan Cao
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xinyi Wang
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shiwei Zheng
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gabriel E Hoffman
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexey Kozlenkov
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aram Hong
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marina Iskhakova
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Manoj K Jaiswal
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research Education and Clinical Center, James J. Peters VA Medical Center, Bronx, NY, USA
| | - Sarah Murphy
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexander Yu
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vahram Haroutunian
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research Education and Clinical Center, James J. Peters VA Medical Center, Bronx, NY, USA
| | - Stella Dracheva
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research Education and Clinical Center, James J. Peters VA Medical Center, Bronx, NY, USA
| | - Schahram Akbarian
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John F Fullard
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Guo-Cheng Yuan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Donghoon Lee
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Panos Roussos
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Mental Illness Research Education and Clinical Center, James J. Peters VA Medical Center, Bronx, NY, USA.
- Center for Precision Medicine and Translational Therapeutics, James J. Peters VA Medical Center, Bronx, NY, USA.
| |
Collapse
|
4
|
Jiang WJ, Lee SH, Heo G, Chung HJ, Cho ES, Sa SJ, Hochi S, Cui XS. Knockdown of Y-box binding protein 1 induces autophagy in early porcine embryos. Front Cell Dev Biol 2023; 11:1238546. [PMID: 37965572 PMCID: PMC10642524 DOI: 10.3389/fcell.2023.1238546] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
Y-box binding protein 1 (YBX1) plays important roles in RNA stabilization, translation, transcriptional regulation, and mitophagy. However, its effects on porcine preimplantation embryos remain unclear. In this study, we knocked down YBX1 in the one-cell (1C) stage embryo via small interfering RNA microinjection to determine its function in porcine embryo development. The mRNA level of YBX1 was found to be highly expressed at the four-cell (4C) stage in porcine embryos compared with one-cell (1C) and two-cell (2C) stages. The number of blastocysts was reduced following YBX1 knockdown. Notably, YBX1 knockdown decreased the phosphatase and tensin homolog-induced kinase 1 (PINK1) and parkin RBR E3 ubiquitin protein ligase (PRKN) mRNA levels. YBX1 knockdown also decreased PINK1, active mitochondria, and sirtuin 1 levels, indicating reduced mitophagy and mitochondrial biogenesis. Furthermore, YBX1 knockdown increased the levels of glucose-regulated protein 78 (GRP78) and calnexin, leading to endoplasmic reticulum (ER) stress. Additionally, YBX1 knockdown increased autophagy and apoptosis. In conclusion, knockdown of YBX1 decreases mitochondrial function, while increasing ER stress and autophagy during embryonic development.
Collapse
Affiliation(s)
- Wen-Jie Jiang
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Song-Hee Lee
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Geun Heo
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Hak Jae Chung
- Swine Science Division, National Institute of Animal Science, Cheonan-si, Republic of Korea
| | - Eun Seok Cho
- Swine Science Division, National Institute of Animal Science, Cheonan-si, Republic of Korea
| | - Soo Jin Sa
- Planning and Coordination Division, National Institute of Animal Science, Iseo-myeon, Republic of Korea
| | - Shinichi Hochi
- Faculty of Textile Science and Technology, Shinshu University, Ueda, Japan
| | - Xiang-Shun Cui
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
5
|
Li XH, Sun MH, Jiang WJ, Zhou D, Lee SH, Heo G, Chen Z, Cui XS. ZSCAN4 Regulates Zygotic Genome Activation and Telomere Elongation in Porcine Parthenogenetic Embryos. Int J Mol Sci 2023; 24:12121. [PMID: 37569497 PMCID: PMC10418334 DOI: 10.3390/ijms241512121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Zinc finger and SCAN domain-containing 4 (ZSCAN4), a DNA-binding protein, maintains telomere length and plays a key role in critical aspects of mouse embryonic stem cells, including maintaining genomic stability and defying cellular senescence. However, the effect of ZSCAN4 in porcine parthenogenetic embryos remains unclear. To investigate the function of ZSCAN4 and the underlying mechanism in porcine embryo development, ZSCAN4 was knocked down via dsRNA injection in the one-cell stage. ZSCAN4 was highly expressed in the four- and five- to eight-cell stages in porcine embryos. The percentage of four-cell stage embryos, five- to eight-cell stage embryos, and blastocysts was lower in the ZSCAN4 knockdown group than in the control group. Notably, depletion of ZSCAN4 induced the protein expression of DNMT1 and 5-Methylcytosine (5mC, a methylated form of the DNA base cytosine) in the four-cell stage. The H3K27ac level and ZGA genes expression decreased following ZSCAN4 knockdown. Furthermore, ZSCAN4 knockdown led to DNA damage and shortened telomere compared with the control. Additionally, DNMT1-dsRNA was injected to reduce DNA hypermethylation in ZSCAN4 knockdown embryos. DNMT1 knockdown rescued telomere shortening and developmental defects caused by ZSCAN4 knockdown. In conclusion, ZSCAN4 is involved in the regulation of transcriptional activity and is essential for maintaining telomere length by regulating DNMT1 expression in porcine ZGA.
Collapse
Affiliation(s)
- Xiao-Han Li
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Ming-Hong Sun
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Wen-Jie Jiang
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Dongjie Zhou
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Song-Hee Lee
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Geun Heo
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Zhi Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiang-Shun Cui
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|