1
|
Mineura K, Tanaka S, Goda Y, Terada Y, Yoshizawa A, Umemura K, Sato A, Yamada Y, Yutaka Y, Ohsumi A, Nakajima D, Hamaji M, Mennju T, Kreisel D, Date H. Fibrotic progression from acute cellular rejection is dependent on secondary lymphoid organs in a mouse model of chronic lung allograft dysfunction. Am J Transplant 2024; 24:944-953. [PMID: 38403187 PMCID: PMC11144565 DOI: 10.1016/j.ajt.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 02/27/2024]
Abstract
Chronic lung allograft dysfunction (CLAD) remains one of the major limitations to long-term survival after lung transplantation. We modified a murine model of CLAD and transplanted left lungs from BALB/c donors into B6 recipients that were treated with intermittent cyclosporine and methylprednisolone postoperatively. In this model, the lung allograft developed acute cellular rejection on day 15 which, by day 30 after transplantation, progressed to severe pleural and peribronchovascular fibrosis, reminiscent of changes observed in restrictive allograft syndrome. Lung transplantation into splenectomized B6 alymphoplastic (aly/aly) or splenectomized B6 lymphotoxin-β receptor-deficient mice demonstrated that recipient secondary lymphoid organs, such as spleen and lymph nodes, are necessary for progression from acute cellular rejection to allograft fibrosis in this model. Our work uncovered a critical role for recipient secondary lymphoid organs in the development of CLAD after pulmonary transplantation and may provide mechanistic insights into the pathogenesis of this complication.
Collapse
Affiliation(s)
- Katsutaka Mineura
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Satona Tanaka
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Yasufumi Goda
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuriko Terada
- Department of Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Akihiko Yoshizawa
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Keisuke Umemura
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Kyoto, Japan
| | - Atsuyasu Sato
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshito Yamada
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yojiro Yutaka
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akihiro Ohsumi
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Daisuke Nakajima
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masatsugu Hamaji
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toshi Mennju
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Daniel Kreisel
- Department of Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA; Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Hiroshi Date
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
2
|
Liang H, Zhang L, Rong J. Potential roles of exosomes in the initiation and metastatic progression of lung cancer. Biomed Pharmacother 2023; 165:115222. [PMID: 37549459 DOI: 10.1016/j.biopha.2023.115222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/17/2023] [Accepted: 07/23/2023] [Indexed: 08/09/2023] Open
Abstract
Lung cancer (LC) incidence and mortality continue to increase annually worldwide. LC is insidious and readily metastasizes and relapses. Except for its early diagnosis and surgical resection, there is no effective cure for advanced metastatic LC, and the prognosis remains dismal. Exosomes, a class of nano-sized extracellular vesicles produced by healthy or diseased cells, are coated with a bilayer lipid membrane and contain various functional molecules such as proteins, lipids, and nucleic acids. They can be used for intracellular or intercellular signaling or the transportation of biological substances. A growing body of evidence supports that exosomes play multiple crucial roles in the occurrence and metastatic progression of many malignancies, including LC. The elucidation of the potential roles of exosomes in the initiation, invasion, and metastasis of LC and their underlying molecular mechanisms may contribute to improved early diagnosis and treatment.
Collapse
Affiliation(s)
- Hongyuan Liang
- Department of Radiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang 110004, PR China
| | - Lingyun Zhang
- Department of Medical Oncology, the First Hospital of China Medical University, No. 210 Baita Street, Hunnan District, Shenyang 110001, PR China.
| | - Jian Rong
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang 110004, PR China.
| |
Collapse
|
3
|
Markers of Bronchiolitis Obliterans Syndrome after Lung Transplant: Between Old Knowledge and Future Perspective. Biomedicines 2022; 10:biomedicines10123277. [PMID: 36552035 PMCID: PMC9775233 DOI: 10.3390/biomedicines10123277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/02/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Bronchiolitis obliterans syndrome (BOS) is the most common form of CLAD and is characterized by airflow limitation and an obstructive spirometric pattern without high-resolution computed tomography (HRCT) evidence of parenchymal opacities. Computed tomography and microCT analysis show abundant small airway obstruction, starting from the fifth generation of airway branching and affecting up to 40-70% of airways. The pathogenesis of BOS remains unclear. It is a multifactorial syndrome that leads to pathological tissue changes and clinical manifestations. Because BOS is associated with the worst long-term survival in LTx patients, many studies are focused on the early identification of BOS. Markers may be useful for diagnosis and for understanding the molecular and immunological mechanisms involved in the onset of BOS. Diagnostic and predictive markers of BOS have also been investigated in various biological materials, such as blood, BAL, lung tissue and extracellular vesicles. The aim of this review was to evaluate the scientific literature on markers of BOS after lung transplant. We performed a systematic review to find all available data on potential prognostic and diagnostic markers of BOS.
Collapse
|
4
|
Halloran K, Mackova M, Parkes MD, Hirji A, Weinkauf J, Timofte IL, Snell GI, Westall GP, Lischke R, Zajacova A, Havlin J, Hachem R, Kreisel D, Levine D, Kubisa B, Piotrowska M, Juvet S, Keshavjee S, Jaksch P, Klepetko W, Halloran PF. The molecular features of chronic lung allograft dysfunction in lung transplant airway mucosa. J Heart Lung Transplant 2022; 41:1689-1699. [PMID: 36163162 DOI: 10.1016/j.healun.2022.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/22/2022] [Accepted: 08/17/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Many lung transplants fail due to chronic lung allograft dysfunction (CLAD). We recently showed that transbronchial biopsies (TBBs) from CLAD patients manifest severe parenchymal injury and dedifferentiation, distinct from time-dependent changes. The present study explored time-selective and CLAD-selective transcripts in mucosal biopsies from the third bronchial bifurcation (3BMBs), compared to those in TBBs. METHODS We used genome-wide microarray measurements in 324 3BMBs to identify CLAD-selective changes as well as time-dependent changes and develop a CLAD classifier. CLAD-selective transcripts were identified with linear models for microarray data (limma) and were used to build an ensemble of 12 classifiers to predict CLAD. Hazard models and random forests were then used to predict the risk of graft loss using the CLAD classifier, transcript sets associated with rejection, injury, and time. RESULTS T cell-mediated rejection and donor-specific antibody were increased in CLAD 3BMBs but most had no rejection. Like TBBs, 3BMBs showed a time-dependent increase in transcripts expressed in inflammatory cells that was not associated with CLAD or survival. Also like TBBs, the CLAD-selective transcripts in 3BMBs reflected severe parenchymal injury and dedifferentiation, not inflammation or rejection. While 3BMBs and TBBs did not overlap in their top 20 CLAD-selective transcripts, many CLAD-selective transcripts were significantly increased in both for example LOXL1, an enzyme controlling matrix remodeling. In Cox models for one-year survival, the 3BMB CLAD-selective transcripts and CLAD classifier predicted graft loss and correlated with CLAD stage. Many 3BMB CLAD-selective transcripts were also increased by injury in kidney transplants and correlated with decreased kidney survival, including LOXL1. CONCLUSIONS Mucosal and transbronchial biopsies from CLAD patients reveal a diffuse molecular injury and dedifferentiation state that impacts prognosis and correlates with the physiologic disturbances. CLAD state in lung transplants shares features with failing kidney transplants, indicating elements shared by the injury responses of distressed organs.
Collapse
Affiliation(s)
| | | | | | - Alim Hirji
- University of Alberta, Edmonton, Alberta, Canada
| | | | | | - Greg I Snell
- Alfred Hospital Lung Transplant Service, Melbourne, Victoria, Australia
| | - Glen P Westall
- Alfred Hospital Lung Transplant Service, Melbourne, Victoria, Australia
| | | | | | - Jan Havlin
- University Hospital Motol, Prague, Czech Republic
| | - Ramsey Hachem
- Washington University in St Louis, St. Louis, Missouri
| | | | | | | | | | - Stephen Juvet
- Toronto Lung Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Shaf Keshavjee
- Toronto Lung Transplant Program, University Health Network, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
5
|
Assadiasl S, Nicknam MH. Cytokines in Lung Transplantation. Lung 2022; 200:793-806. [PMID: 36348053 DOI: 10.1007/s00408-022-00588-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022]
Abstract
Lung transplantation has developed significantly in recent years, but post-transplant care and patients' survival still need to be improved. Moreover, organ shortage urges novel modalities to improve the quality of unsuitable lungs. Cytokines, the chemical mediators of the immune system, might be used for diagnostic and therapeutic purposes in lung transplantation. Cytokine monitoring pre- and post-transplant could be applied to the prevention and early diagnosis of injurious inflammatory events including primary graft dysfunction, acute cellular rejection, bronchiolitis obliterans syndrome, restrictive allograft syndrome, and infections. In addition, preoperative cytokine removal, specific inhibition of proinflammatory cytokines, and enhancement of anti-inflammatory cytokines gene expression could be considered therapeutic options to improve lung allograft survival. Therefore, it is essential to describe the cytokines alteration during inflammatory events to gain a better insight into their role in developing the abovementioned complications. Herein, cytokine fluctuations in lung tissue, bronchoalveolar fluid, peripheral blood, and exhaled breath condensate in different phases of lung transplantation have been reviewed; besides, cytokine gene polymorphisms with clinical significance have been summarized.
Collapse
Affiliation(s)
- Sara Assadiasl
- Molecular Immunology Research Center, Tehran University of Medical Sciences, No. 142, Nosrat St., Tehran, 1419733151, Iran.
| | - Mohammad Hossein Nicknam
- Molecular Immunology Research Center, Tehran University of Medical Sciences, No. 142, Nosrat St., Tehran, 1419733151, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Bos S, Milross L, Filby AJ, Vos R, Fisher AJ. Immune processes in the pathogenesis of chronic lung allograft dysfunction: identifying the missing pieces of the puzzle. Eur Respir Rev 2022; 31:31/165/220060. [PMID: 35896274 DOI: 10.1183/16000617.0060-2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/19/2022] [Indexed: 11/05/2022] Open
Abstract
Lung transplantation is the optimal treatment for selected patients with end-stage chronic lung diseases. However, chronic lung allograft dysfunction remains the leading obstacle to improved long-term outcomes. Traditionally, lung allograft rejection has been considered primarily as a manifestation of cellular immune responses. However, in reality, an array of complex, interacting and multifactorial mechanisms contribute to its emergence. Alloimmune-dependent mechanisms, including T-cell-mediated rejection and antibody-mediated rejection, as well as non-alloimmune injuries, have been implicated. Moreover, a role has emerged for autoimmune responses to lung self-antigens in the development of chronic graft injury. The aim of this review is to summarise the immune processes involved in the pathogenesis of chronic lung allograft dysfunction, with advanced insights into the role of innate immune pathways and crosstalk between innate and adaptive immunity, and to identify gaps in current knowledge.
Collapse
Affiliation(s)
- Saskia Bos
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK.,Institute of Transplantation, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, UK
| | - Luke Milross
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK
| | - Andrew J Filby
- Flow Cytometry Core and Innovation, Methodology and Application Research Theme, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Robin Vos
- Dept of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium.,University Hospitals Leuven, Dept of Respiratory Diseases, Leuven, Belgium
| | - Andrew J Fisher
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK .,Institute of Transplantation, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, UK
| |
Collapse
|
7
|
Kolaitis NA, Gao Y, Soong A, Greenland JR, Hays SR, Golden JA, Venado A, Leard LE, Shah RJ, Kleinhenz ME, Katz PP, Kukreja J, Blanc PD, Smith PJ, Singer JP. Depressive symptoms in lung transplant recipients: trajectory and association with mortality and allograft dysfunction. Thorax 2022; 77:891-899. [PMID: 35354643 DOI: 10.1136/thoraxjnl-2021-217612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 03/08/2022] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Most studies observing an association between depressive symptoms following lung transplantation and mortality are limited to depressive symptom measurement at a single time point, unrelated to allograft function. We aimed to test the association of depressive symptoms over multiple assessments with allograft dysfunction and with mortality. METHODS We assessed depressive symptoms before and serially up to 3 years after lung transplantation in lung transplant recipients. We quantified depressive symptoms with the Geriatric Depression Scale (GDS; range 0-15; minimally important difference (MID): 2). We quantified changes in GDS using linear mixed effects models and tested the association with mortality using Cox proportional hazards models with GDS as a time-dependent predictor. To determine if worsening in GDS preceded declines in lung function, we tested the association of GDS as a time-dependent predictor with the lagged outcome of FEV1 at the following study visit. RESULTS Among 266 participants, depressive symptoms improved early after transplantation. Worsening in post-transplant GDS by the MID was associated with mortality (HR 1.25, 95% CI 1.05 to 1.50), and in lagged outcome analyses with decreased per cent predicted FEV1 (Δ, -1.62%, 95% CI -2.49 to -0.76). Visual analyses of temporal changes in GDS demonstrated that worsening depressive symptoms could precede chronic lung allograft dysfunction. CONCLUSIONS Depressive symptoms generally improve after lung transplantation. When they worsen, however, there is an association with declines in lung function and mortality. Depression is one of the few, potentially modifiable, risk factors for chronic lung allograft dysfunction and death.
Collapse
Affiliation(s)
- Nicholas A Kolaitis
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Ying Gao
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Allison Soong
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - John R Greenland
- Department of Medicine, University of California San Francisco, San Francisco, California, USA.,Medicine, San Francisco VA Medical Center, San Francisco, California, USA
| | - Steven R Hays
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Jeffrey A Golden
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Aida Venado
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Lorriana E Leard
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Rupal J Shah
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Mary Ellen Kleinhenz
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Patricia P Katz
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Jasleen Kukreja
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Paul D Blanc
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Patrick J Smith
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina, USA
| | - Jonathan Paul Singer
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
8
|
Miller CL, O JM, Allan JS, Madsen JC. Novel approaches for long-term lung transplant survival. Front Immunol 2022; 13:931251. [PMID: 35967365 PMCID: PMC9363671 DOI: 10.3389/fimmu.2022.931251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
Allograft failure remains a major barrier in the field of lung transplantation and results primarily from acute and chronic rejection. To date, standard-of-care immunosuppressive regimens have proven unsuccessful in achieving acceptable long-term graft and patient survival. Recent insights into the unique immunologic properties of lung allografts provide an opportunity to develop more effective immunosuppressive strategies. Here we describe advances in our understanding of the mechanisms driving lung allograft rejection and highlight recent progress in the development of novel, lung-specific strategies aimed at promoting long-term allograft survival, including tolerance.
Collapse
Affiliation(s)
- Cynthia L. Miller
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
| | - Jane M. O
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
| | - James S. Allan
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, United States
| | - Joren C. Madsen
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
- Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
9
|
Silva TD, Voisey J, Hopkins P, Apte S, Chambers D, O'Sullivan B. Markers of rejection of a lung allograft: state of the art. Biomark Med 2022; 16:483-498. [PMID: 35315284 DOI: 10.2217/bmm-2021-1013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chronic lung allograft dysfunction (CLAD) affects approximately 50% of all lung transplant recipients by 5 post-operative years and is the leading cause of death in lung transplant recipients. Early CLAD diagnosis or ideally prediction of CLAD is essential to enable early intervention before significant lung injury occurs. New technologies have emerged to facilitate biomarker discovery, including epigenetic modification and single-cell RNA sequencing. This review examines new and existing technologies for biomarker discovery and the current state of research on biomarkers for identifying lung transplant rejection.
Collapse
Affiliation(s)
- Tharushi de Silva
- School of Biomedical Sciences, Centre for Genomics & Personalised Heath, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Queensland, Australia.,Queensland Lung Transplant Service, Ground Floor, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Chermside, 4032, Brisbane, Queensland, Australia
| | - Joanne Voisey
- School of Biomedical Sciences, Centre for Genomics & Personalised Heath, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Peter Hopkins
- Queensland Lung Transplant Service, Ground Floor, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Chermside, 4032, Brisbane, Queensland, Australia.,Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, The University of Queensland, 4032, Brisbane, Queensland, Australia
| | - Simon Apte
- Queensland Lung Transplant Service, Ground Floor, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Chermside, 4032, Brisbane, Queensland, Australia.,Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, The University of Queensland, 4032, Brisbane, Queensland, Australia
| | - Daniel Chambers
- School of Biomedical Sciences, Centre for Genomics & Personalised Heath, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Queensland, Australia.,Queensland Lung Transplant Service, Ground Floor, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Chermside, 4032, Brisbane, Queensland, Australia.,Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, The University of Queensland, 4032, Brisbane, Queensland, Australia
| | - Brendan O'Sullivan
- School of Biomedical Sciences, Centre for Genomics & Personalised Heath, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Queensland, Australia.,Queensland Lung Transplant Service, Ground Floor, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Chermside, 4032, Brisbane, Queensland, Australia.,Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, The University of Queensland, 4032, Brisbane, Queensland, Australia
| |
Collapse
|
10
|
Bos S, Filby AJ, Vos R, Fisher AJ. Effector immune cells in Chronic Lung Allograft Dysfunction: a Systematic Review. Immunology 2022; 166:17-37. [PMID: 35137398 PMCID: PMC9426626 DOI: 10.1111/imm.13458] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/13/2022] [Accepted: 02/02/2022] [Indexed: 11/29/2022] Open
Abstract
Chronic lung allograft dysfunction (CLAD) remains the major barrier to long‐term survival after lung transplantation and improved insight into its underlying immunological mechanisms is critical to better understand the disease and to identify treatment targets. We systematically searched the electronic databases of PubMed and EMBASE for original research publications, published between January 2000 and April 2021, to comprehensively assess current evidence on effector immune cells in lung tissue and bronchoalveolar lavage fluid from lung transplant recipients with CLAD. Literature search revealed 1351 articles, 76 of which met the criteria for inclusion in our analysis. Our results illustrate significant complexity in both innate and adaptive immune cell responses in CLAD, along with presence of numerous immune cell products, including cytokines, chemokines and proteases associated with tissue remodelling. A clear link between neutrophils and eosinophils and CLAD incidence has been seen, in which eosinophils more specifically predisposed to restrictive allograft syndrome. The presence of cytotoxic and T‐helper cells in CLAD pathogenesis is well‐documented, although it is challenging to draw conclusions about their role in tissue processes from predominantly bronchoalveolar lavage data. In restrictive allograft syndrome, a more prominent humoral immune involvement with increased B cells, immunoglobulins and complement deposition is seen. Our evaluation of published studies over the last 20 years summarizes the complex multifactorial immunopathology of CLAD onset and progression. It highlights the phenotype of several key effector immune cells involved in CLAD pathogenesis, as well as the paucity of single cell resolution spatial studies in lung tissue from patients with CLAD.
Collapse
Affiliation(s)
- Saskia Bos
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom.,Institute of Transplantation, The Newcastle Upon Tyne Hospital NHS Foundation Trust, Newcastle Upon Tyne, United Kingdom
| | - Andrew J Filby
- Flow Cytometry Core and Innovation, Methodology and Application Research Theme, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Robin Vos
- Department of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium.,University Hospitals Leuven, Dept. of Respiratory Diseases, Leuven, Belgium
| | - Andrew J Fisher
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom.,Institute of Transplantation, The Newcastle Upon Tyne Hospital NHS Foundation Trust, Newcastle Upon Tyne, United Kingdom
| |
Collapse
|
11
|
Abstract
Background Galectins are proteins that bind β-galactosides such as N-acetyllactosamine present in N-linked and O-linked glycoproteins and that seem to be implicated in inflammatory and immune responses as well as fibrotic mechanisms. This preliminary study investigated serum galectins as clinical biomarkers in lung transplant patients with chronic lung allograft dysfunction (CLAD), phenotype bronchiolitis obliterans syndrome (BOS). Materials and Methods Nineteen lung transplant patients [median age (IQR), 55 (45–62) years; 53% males] were enrolled in the study. Peripheral blood concentrations of galectins-1, 3 and 9 were determined with commercial ELISA kits. Results Galectin-1 concentrations were higher in BOS than in stable LTX patients (p = 0.0394). In logistic regression analysis, testing BOS group as dependent variable with Gal-1 and 3 as independent variables, area under the receiver operating characteristics (AUROC) curve was 98.9% (NPV 90% and PPV 88.9%, p = 0.0003). With the stable LTX group as dependent variable and Gal-1, 3 and 9 as independent variables, AUROC was 92.6% (NPV 100% and PPV 90%, p = 0.0023). In stable patients were observed an inverse correlation of Gal-3 with DLCO% and KCO%, and between Gal-9 and KCO%. Conclusion Galectins-1, 3 and 9 are possible clinical biomarkers in lung transplant patients with diagnostic and prognostic meaning. These molecules may be directly implicated in the pathological mechanisms of BOS. The hypothesis that they could be new therapeutic targets in BOS patients is intriguing and also worth exploring.
Collapse
|
12
|
Klouda T, Vargas SO, Midyat L. Restrictive allograft syndrome after lung transplantation. Pediatr Transplant 2021; 25:e14000. [PMID: 33728767 DOI: 10.1111/petr.14000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/07/2021] [Accepted: 02/22/2021] [Indexed: 11/29/2022]
Abstract
Despite recent advances over the past decade in lung transplantation including improved surgical technique and immunotherapy, the diagnosis and treatment of chronic lung allograft dysfunction remains a significant barrier to recipient survival. Aside from bronchiolitis obliterans syndrome, a restrictive phenotype called restrictive allograft syndrome has recently been recognized and affects up to 35% of all patients with CLAD. The main characteristics of RAS include a persistent and unexplained decline in lung function compared to baseline and persistent parenchymal infiltrates on imaging. The median survival after diagnosis of RAS is 6 to 18 months, significantly shorter than other forms of CLAD. Treatment options are limited, as therapies used for BOS are typically ineffective at halting disease progression. Specific medications such as fibrinolytics are lacking large, multicenter prospective studies. In this manuscript, we discuss the definition, mechanism, and characteristics of RAS while highlighting the similarities and differences between other forms of CLAD. We also review the diagnoses along with current and potential treatment options that are available for patients. Finally, we discuss the existing knowledge gaps and areas for future research to improve patient outcomes and understanding of RAS.
Collapse
Affiliation(s)
- Timothy Klouda
- Division of Pulmonary Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sara O Vargas
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Levent Midyat
- Division of Pulmonary Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Ramos KJ, Pilewski JM, Taylor-Cousar JL. Challenges in the use of highly effective modulator treatment for cystic fibrosis. J Cyst Fibros 2021; 20:381-387. [PMID: 33531206 DOI: 10.1016/j.jcf.2021.01.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 12/23/2022]
Abstract
The last decade has seen development of oral, small molecule therapies that address the basic cystic fibrosis transmembrane conductance regulator (CFTR) protein defect. Highly effective modulator treatment (HEMT) that is efficacious for a large majority of people living with cystic fibrosis (CF) promises to change the landscape of this chronic life-limiting disease. Some people living with CF have a CFTR genotype that renders them eligible for HEMT, but also have comorbidities that excluded them from the original Phase III clinical trials that led to US Food and Drug Administration approval. The purpose of this review is to address the use of HEMT in challenging situations, including initiation for those with advanced CF lung disease, and use after solid organ transplant, during pregnancy, and for individuals with CFTR-related disorders without a definitive diagnosis of CF.
Collapse
Affiliation(s)
- Kathleen J Ramos
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, USA.
| | - Joseph M Pilewski
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jennifer L Taylor-Cousar
- Divisions of Pulmonary, Critical Care and Sleep Medicine and Pediatric Pulmonary Medicine, National Jewish Health, Denver, CO, USA
| |
Collapse
|
14
|
Dong M, Wang X, L T, Wang J, Yang Y, Liu Y, Jing Y, Zhao H, Chen J. Mir-27a-3p attenuates bronchiolitis obliterans in vivo via the regulation of dendritic cells' maturation and the suppression of myofibroblasts' differentiation. Clin Transl Med 2020; 10:e140. [PMID: 32898329 PMCID: PMC7423186 DOI: 10.1002/ctm2.140] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 01/02/2023] Open
Abstract
Bronchiolitis obliterans (BO), is a chronic rejection phenotype characterized by chronic small airway fibrous obliteration, hinders the patients who suffer from lung transplanting for surviving longer. Cell-based therapies using dendritic cells (DCs) and T regulatory cells (Tregs) have been developed to regulate allograft rejection, and to induce and maintain immune tolerance. In the present study, the effects of mir-27a-3p on regulating DCs as well as resulting effects on BO attenuation have been investigated. According to our reporter assays, the potential targets of mir-27a-3p were Smad2, sprouty2, and Smad4, respectively. Furthermore, sprouty2 inhibition by mir-27-3p indirectly activated extracellular regulated protein kinases (ERK) and increased IL-10 production in DCs. This led to a positive feedback loop that maintained the immature state of DCs via IL-10/JAK/STAT3 pathway, and caused an increase in Foxp3+ CD4+ T cells amount as well as TGF-β level. Furthermore, mir-27a-3p regulated TGF-β function, inhibited TGF-β/Smad pathway, and suppressed myofibroblast differentiation through influencing the function of Smad2 and Smad4. In short, the study indicated the effect of mir-27a-3p on suppressing DC maturation, which implicated the potential clinical application in treating postlung transplant BO.
Collapse
Affiliation(s)
- Ming Dong
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, P. R. China
| | - Xin Wang
- Department of Pediatric Surgery, Tianjin Children's Hospital, Tianjin, P. R. China
| | - Tong L
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, P. R. China
| | - Jing Wang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, P. R. China
| | - Yunwei Yang
- School of Basic Medical Sciences, Tianjin Medical University, Tianjin, P. R. China
| | - Yi Liu
- School of Basic Medical Sciences, Tianjin Medical University, Tianjin, P. R. China
| | - Yaqing Jing
- School of Basic Medical Sciences, Tianjin Medical University, Tianjin, P. R. China
| | - Honglin Zhao
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, P. R. China
| | - Jun Chen
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, P. R. China
| |
Collapse
|
15
|
Yang S, Abuduwufuer A, Lv W, Bao F, Hu J. [Predictors for the Bronchiolitis Obliterans Syndrome in Lung Transplant Patient]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2020; 23:496-502. [PMID: 32517455 PMCID: PMC7309540 DOI: 10.3779/j.issn.1009-3419.2020.101.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
肺移植是治疗终末期肺病的有效方法。目前,肺移植术后1年生存率已达到80%,由于闭塞性细支气管炎综合症(bronchiolitis obliterans syndrome, BOS)的发生,5年生存率维持在50%左右。BOS是一个纤维化的过程,最终导致不可逆的气道闭塞。缺血-再灌注损伤、感染、氧化应激以及急性排斥反应等多个因素参与了BOS的发生。研究证实BOS的早期诊断与预后良好相关。因此,寻找灵敏、特异的BOS预测标记物对于提高肺移植患者长期生存具有重要的科学和临床意义。本文就与BOS发生发展相关的免疫调节细胞、分泌性蛋白质、细胞膜蛋白等指标的变化在BOS早期诊断中的作用进行综述。
Collapse
Affiliation(s)
- Sijia Yang
- The First Affiliated Hospital, Collage of Medicine, Zhejiang University, Hangzhou 310003, China
| | | | - Wang Lv
- The First Affiliated Hospital, Collage of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Feichao Bao
- The First Affiliated Hospital, Collage of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jian Hu
- The First Affiliated Hospital, Collage of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
16
|
Abstract
Introduction: Lung transplantation remains an important treatment for patients with end stage lung disease. Chronic lung allograft dysfunction (CLAD) remains the greatest limiting factor for long term survival. As the diagnosis of CLAD is based on pulmonary function tests, significant lung injury is required before a diagnosis is feasible, likely when irreversible damage has already occurred. Therefore, research is ongoing for early CLAD recognition, with biomarkers making up a substantial amount of this research.Areas covered: The purpose of this review is to describe available biomarkers, focusing on those which aid in predicting CLAD and distinguishing between different CLAD phenotypes. We describe biomarkers presenting in bronchial alveolar lavage (BAL) as well as circulating in peripheral blood, both of which offer an appealing alternative to lung biopsy.Expert opinion: Development of CLAD involves complex, multiple immune and nonimmune mechanisms. Therefore, evaluation of potential CLAD biomarkers serves a dual purpose: clinically, the goal remains early detection and identification of patients at increased risk. Simultaneously, biomarkers offer insight into the different mechanisms involved in the pathophysiology of CLAD, leading to the development of possible interventions. The ultimate goal is the development of both preventive and early intervention strategies for CLAD to improve the overall survival of our lung transplant recipients.
Collapse
Affiliation(s)
- Osnat Shtraichman
- Division of Pulmonary, Allergy & Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Pulmonary institute, Rabin Medical Center, Petach Tikva, Israel; Sackler School of Medicine, Tel Aviv, Israel
| | - Joshua M Diamond
- Division of Pulmonary, Allergy & Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
17
|
Sato M. Bronchiolitis obliterans syndrome and restrictive allograft syndrome after lung transplantation: why are there two distinct forms of chronic lung allograft dysfunction? ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:418. [PMID: 32355862 PMCID: PMC7186721 DOI: 10.21037/atm.2020.02.159] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Bronchiolitis obliterans syndrome (BOS) had been considered to be the representative form of chronic rejection or chronic lung allograft dysfunction (CLAD) after lung transplantation. In BOS, small airways are affected by chronic inflammation and obliterative fibrosis, whereas peripheral lung tissue remains relatively intact. However, recognition of another form of CLAD involving multiple tissue compartments in the lung, termed restrictive allograft syndrome (RAS), raised a fundamental question: why there are two phenotypes of CLAD? Increasing clinical and experimental data suggest that RAS may be a prototype of chronic rejection after lung transplantation involving both cellular and antibody-mediated alloimmune responses. Some cases of RAS are also induced by fulminant general inflammation in lung allografts. However, BOS involves alloimmune responses and the airway-centered disease process can be explained by multiple mechanisms such as external alloimmune-independent stimuli (such as infection, aspiration and air pollution), exposure of airway-specific autoantigens and airway ischemia. Localization of immune responses in different anatomical compartments in different phenotypes of CLAD might be associated with lymphoid neogenesis or the de novo formation of lymphoid tissue in lung allografts. Better understanding of distinct mechanisms of BOS and RAS will facilitate the development of effective preventive and therapeutic strategies of CLAD.
Collapse
Affiliation(s)
- Masaaki Sato
- Department of Thoracic Surgery, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
18
|
Berastegui C, Gómez-Ollés S, Mendoza-Valderrey A, Pereira-Veiga T, Culebras M, Monforte V, Saez B, López-Meseguer M, Sintes-Permanyer H, Ruiz de Miguel V, Bravo C, Sacanell J, Ramon MA, Romero L, Deu M, Román A. Use of serum KL-6 level for detecting patients with restrictive allograft syndrome after lung transplantation. PLoS One 2020; 15:e0226488. [PMID: 31929536 PMCID: PMC6957146 DOI: 10.1371/journal.pone.0226488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 11/27/2019] [Indexed: 11/24/2022] Open
Abstract
KL-6 is an antigen produced mainly by damaged type II pneumocytes that is involved in interstitial lung disease. Chronic lung allograft dysfunction (CLAD) after lung transplantation (LT) is a major concern for LT clinicians, especially in patients with restrictive allograft syndrome (RAS). We investigated KL-6 levels in serum and bronchoalveolar lavage fluid (BALF) as a potential biomarker of the RAS phenotype. Levels of KL-6 in serum and BALF were measured in 73 bilateral LT recipients, and patients were categorized into 4 groups: stable (ST), infection (LTI), bronchiolitis obliterans syndrome (BOS), and RAS. We also studied a healthy cohort to determine reference values for serum KL-6. The highest levels of KL-6 were found in the serum of patients with RAS (918 [487.8–1638] U/mL). No differences were found for levels of KL-6 in BALF. Using a cut-off value of 465 U/mL serum KL-6 levels was able to differentiate RAS patients from BOS patients with a sensitivity of 100% and a specificity of 75%. Furthermore, higher serum KL-6 levels were associated with a decline in Forced Vital Capacity (FVC) at 6 months after sample collection. Therefore, KL-6 in serum may well be a potential biomarker for differentiating between the BOS and RAS phenotypes of CLAD in LT recipients.
Collapse
Affiliation(s)
- Cristina Berastegui
- Servei de Pneumologia, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Susana Gómez-Ollés
- Servei de Pneumologia, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
- Ciber Enfermedades Respiratorias (Ciberes)
- * E-mail:
| | - Alberto Mendoza-Valderrey
- Servei de Pneumologia, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Thais Pereira-Veiga
- Servei de Pneumologia, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mario Culebras
- Servei de Pneumologia, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Victor Monforte
- Servei de Pneumologia, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
- Ciber Enfermedades Respiratorias (Ciberes)
| | - Berta Saez
- Servei de Pneumologia, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Manuel López-Meseguer
- Servei de Pneumologia, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Helena Sintes-Permanyer
- Servei de Pneumologia, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Victoria Ruiz de Miguel
- Servei de Pneumologia, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carlos Bravo
- Servei de Pneumologia, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
- Ciber Enfermedades Respiratorias (Ciberes)
| | - Judit Sacanell
- Servei de Medicina Intensiva, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - María-Antonia Ramon
- Servei de Pneumologia, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Romero
- Servei de Cirurgia Toràcica, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - María Deu
- Servei de Cirurgia Toràcica, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Antonio Román
- Servei de Pneumologia, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
- Ciber Enfermedades Respiratorias (Ciberes)
| |
Collapse
|
19
|
Speck NE, Probst-Müller E, Haile SR, Benden C, Kohler M, Huber LC, Robinson CA. Bronchoalveolar lavage cytokines are of minor value to diagnose complications following lung transplantation. Cytokine 2019; 125:154794. [PMID: 31400641 PMCID: PMC7128992 DOI: 10.1016/j.cyto.2019.154794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/18/2022]
Abstract
Early diagnosis and treatment of acute cellular rejection (ACR) may improve long-term outcome for lung transplant recipients (LTRs). Cytokines have become valuable diagnostic tools in many medical fields. The role of bronchoalveolar lavage (BAL) cytokines is of unknown value to diagnose ACR and distinguish rejection from infection. We hypothesized that distinct cytokine patterns obtained by surveillance bronchoscopies during the first year after transplantation are associated with ACR and microbiologic findings. We retrospectively analyzed data from 319 patients undergoing lung transplantation at University Hospital Zurich from 1998 to 2016. We compared levels of IL-6, IL-8, IFN-γ and TNF-α in 747 BAL samples with transbronchial biopsies (TBB) and microbiologic results from surveillance bronchoscopies. We aimed to define reference values that would allow distinction between four specific groups “ACR”, “infection”, “combined ACR and infection” and “no pathologic process”. No definitive pattern was identified. Given the overlap between groups, these four cytokines are not suitable diagnostic markers for ACR or infection after lung transplantation.
Collapse
Affiliation(s)
- Nicole E Speck
- Division of Pulmonology, University Hospital Zurich, Rämistrasse 100, CH-8091 Zurich, Switzerland.
| | - Elisabeth Probst-Müller
- Clinic of Immunology, University Hospital Zurich, Gloriastrasse 23, CH-8091 Zurich, Switzerland.
| | - Sarah R Haile
- Epidemiology, Biostatistics and Prevention Institute, Department of Epidemiology, University of Zurich, Hirschengraben 84, CH-8001 Zurich, Switzerland.
| | - Christian Benden
- Division of Pulmonology, University Hospital Zurich, Rämistrasse 100, CH-8091 Zurich, Switzerland.
| | - Malcolm Kohler
- Division of Pulmonology, University Hospital Zurich, Rämistrasse 100, CH-8091 Zurich, Switzerland.
| | - Lars C Huber
- Department of Internal Medicine, City Hospital Triemli, Birmensdorferstrasse 497, CH-8063 Zurich, Switzerland.
| | - Cécile A Robinson
- Division of Pulmonology, University Hospital Zurich, Rämistrasse 100, CH-8091 Zurich, Switzerland.
| |
Collapse
|
20
|
Chronic lung allograft dysfunction: Definition, diagnostic criteria, and approaches to treatment-A consensus report from the Pulmonary Council of the ISHLT. J Heart Lung Transplant 2019; 38:493-503. [PMID: 30962148 DOI: 10.1016/j.healun.2019.03.009] [Citation(s) in RCA: 595] [Impact Index Per Article: 99.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 03/18/2019] [Indexed: 02/06/2023] Open
|
21
|
Glanville AR, Verleden GM, Todd JL, Benden C, Calabrese F, Gottlieb J, Hachem RR, Levine D, Meloni F, Palmer SM, Roman A, Sato M, Singer LG, Tokman S, Verleden SE, von der Thüsen J, Vos R, Snell G. Chronic lung allograft dysfunction: Definition and update of restrictive allograft syndrome-A consensus report from the Pulmonary Council of the ISHLT. J Heart Lung Transplant 2019; 38:483-492. [PMID: 31027539 DOI: 10.1016/j.healun.2019.03.008] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 03/18/2019] [Indexed: 02/07/2023] Open
Affiliation(s)
- Allan R Glanville
- Lung Transplant Unit, St. Vincent's Hospital, Sydney, New South Wales, Australia
| | | | - Jamie L Todd
- Division of Pulmonary, Allergy and Critical Care Medicine, Duke University, Durham, North Carolina, USA
| | | | - Fiorella Calabrese
- Department of Cardiothoracic and Vascular Sciences, University of Padova Medical School, Padova, Italy
| | - Jens Gottlieb
- Department of Respiratory Medicine, Hannover Medical School, Member of the German Center for Lung Research, Hannover, Germany
| | - Ramsey R Hachem
- Division of Pulmonary & Critical Care, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Deborah Levine
- Pulmonary Disease and Critical Care Medicine, University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
| | - Federica Meloni
- Department of Respiratory Diseases Policlinico San Matteo Foundation & University of Pavia, Pavia, Italy
| | - Scott M Palmer
- Division of Pulmonary, Allergy and Critical Care Medicine, Duke University, Durham, North Carolina, USA
| | - Antonio Roman
- Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Masaaki Sato
- Department of Thoracic Surgery, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Lianne G Singer
- Toronto Lung Transplant Program, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Sofya Tokman
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | | | - Jan von der Thüsen
- Department of Pathology, University Medical Center, Rotterdam, The Netherlands
| | - Robin Vos
- University Hospital Gasthuisberg, Leuven, Belgium
| | - Gregory Snell
- Lung Transplant Service, The Alfred Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
22
|
Transplant arteriosclerosis in humanized mice reflects chronic lung allograft dysfunction and is controlled by regulatory T cells. J Thorac Cardiovasc Surg 2019; 157:2528-2537. [PMID: 30955963 DOI: 10.1016/j.jtcvs.2019.01.134] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 01/04/2019] [Accepted: 01/06/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Chronic lung allograft dysfunction (CLAD) is a severe complication of lung transplantation limiting long-term survival. We studied correlations between CLAD after clinical lung transplantation and leukocyte-mediated development of transplant arteriosclerosis (TA) in a humanized mouse model. The pericardiophrenic artery was procured from surplus tissue of donor lungs (n = 22) transplanted in our clinical program and was implanted into the abdominal aorta of immune-deficient mice. METHODS Allogeneic human peripheral blood mononuclear cells (PBMCs) had been procured 1 day after lung transplantation from the respective recipients with or without enriching for CD4+CD25high T cells were used. TA was assessed in mice 28 days later by histology. The respective clinical lung recipients were later divided into 2 groups. Eight patients (36.3%) had developed CLAD 23 ± 5 months after lung transplantation, whereas the remaining 14 (63.6%) did not develop CLAD within 25 ± 5 months. RESULTS In the PBMC CLAD+ group of mouse experiments, TA was significantly more severe than in the PBMC CLAD- group (39.9% ± 13% vs 14.9% ± 4% intimal thickening; P = .0081). Then, intimal thickening was significantly inhibited in the PBMC+ regulatory T cells CLAD+ group compared with the PBMC CLAD+ group (0.4% ± 4% vs 39.9% ± 13%; P = .003). In the experiments using PBMCs from lung recipients without CLAD, enriching regulatory T cells also suppressed the development of TA (0.9% ± 3% PBMC CLAD- vs 14.9% ± 4% PBMC+ regulatory T cells CLAD-; P = .001). CONCLUSIONS Lung transplant recipients who later develop CLAD have peripheral leukocytes already at the time of transplant that transfer proinflammatory properties leading to TA in a humanized mouse model. TA remains sensitive to inhibition by autologous regulatory T cells, suggesting a cell therapy-based approach for the prevention of CLAD after lung transplantation.
Collapse
|
23
|
Yang JYC, Verleden SE, Zarinsefat A, Vanaudenaerde BM, Vos R, Verleden GM, Sarwal RD, Sigdel TK, Liberto JM, Damm I, Watson D, Sarwal MM. Cell-Free DNA and CXCL10 Derived from Bronchoalveolar Lavage Predict Lung Transplant Survival. J Clin Med 2019; 8:jcm8020241. [PMID: 30781765 PMCID: PMC6406976 DOI: 10.3390/jcm8020241] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/05/2019] [Accepted: 02/08/2019] [Indexed: 12/22/2022] Open
Abstract
Standard methods for detecting chronic lung allograft dysfunction (CLAD) and rejection have poor sensitivity and specificity and have conventionally required bronchoscopies and biopsies. Plasma cell-free DNA (cfDNA) has been shown to be increased in various types of allograft injury in transplant recipients and CXCL10 has been reported to be increased in the lung tissue of patients undergoing CLAD. This study used a novel cfDNA and CXCL10 assay to evaluate the noninvasive assessment of CLAD phenotype and prediction of survival from bronchoalveolar lavage (BAL) fluid. A total of 60 BAL samples (20 with bronchiolitis obliterans (BOS), 20 with restrictive allograft syndrome (RAS), and 20 with stable allografts (STA)) were collected from 60 unique lung transplant patients; cfDNA and CXCL10 were measured by the ELISA-based KIT assay. Median cfDNA was significantly higher in BOS patients (6739 genomic equivalents (GE)/mL) versus STA (2920 GE/mL) and RAS (4174 GE/mL) (p < 0.01 all comparisons). Likelihood ratio tests revealed a significant association of overall survival with cfDNA (p = 0.0083), CXCL10 (p = 0.0146), and the interaction of cfDNA and CXCL10 (p = 0.023) based on multivariate Cox proportional hazards regression. Dichotomizing patients based on the median cfDNA level controlled for the mean level of CXCL10 revealed an over two-fold longer median overall survival time in patients with low levels of cfDNA. The KIT assay could predict allograft survival with superior performance compared with traditional biomarkers. These data support the pursuit of larger prospective studies to evaluate the predictive performance of cfDNA and CXCL10 prior to lung allograft failure.
Collapse
Affiliation(s)
- Joshua Y C Yang
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA.
- KIT Bio, 2000 University Avenue, Palo Alto, CA 94303, USA.
| | - Stijn E Verleden
- Leuven Lung Transplant Unit, Department of Chronic Diseases, Metabolism, and Ageing (CHROMETA), KU Leuven, 3000 Leuven, Belgium.
| | - Arya Zarinsefat
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA.
| | - Bart M Vanaudenaerde
- Leuven Lung Transplant Unit, Department of Chronic Diseases, Metabolism, and Ageing (CHROMETA), KU Leuven, 3000 Leuven, Belgium.
| | - Robin Vos
- Leuven Lung Transplant Unit, Department of Chronic Diseases, Metabolism, and Ageing (CHROMETA), KU Leuven, 3000 Leuven, Belgium.
| | - Geert M Verleden
- Leuven Lung Transplant Unit, Department of Chronic Diseases, Metabolism, and Ageing (CHROMETA), KU Leuven, 3000 Leuven, Belgium.
| | - Reuben D Sarwal
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA.
| | - Tara K Sigdel
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA.
| | - Juliane M Liberto
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA.
| | - Izabella Damm
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA.
| | - Drew Watson
- KIT Bio, 2000 University Avenue, Palo Alto, CA 94303, USA.
| | - Minnie M Sarwal
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA.
- KIT Bio, 2000 University Avenue, Palo Alto, CA 94303, USA.
| |
Collapse
|
24
|
SOCS3 overexpression in T cells ameliorates chronic airway obstruction in a murine heterotopic tracheal transplantation model. Surg Today 2019; 49:443-450. [PMID: 30617600 DOI: 10.1007/s00595-018-1753-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 11/30/2018] [Indexed: 10/27/2022]
Abstract
PURPOSE Suppressor of cytokine signaling-3 (SOCS3) is a negative feedback inhibitor of cytokine signaling with T-cell-mediated immunosuppressive effects on obliterative bronchiolitis (OB). In this study, we aimed to investigate the impact of T-cell-specific overexpression of SOCS3 using a murine heterotopic tracheal transplantation (HTT) model. METHODS Tracheal allografts from BALB/c mice were subcutaneously transplanted into wild-type C57BL/6J (B6; WT) mice and SOCS3 transgenic B6 (SOCS3TG) mice. Tracheal allografts were analyzed by immunohistochemistry and quantitative polymerase chain reaction assays at days 7 and 21. RESULTS At day 21, allografts in SOCS3TG mice showed significant amelioration of airway obstruction and epithelial loss compared with allografts in WT mice. The intragraft expression of IFN-γ and CXCL10 was suppressed, while that of IL-4 was enhanced in SOCS3TG mice at day 7. The T-bet levels were lower in SOCS3TG allografts than in WT allografts at day 7. CONCLUSION We revealed that the overexpression of SOCS3 in T cells effectively ameliorates OB development in a murine HTT model by inhibiting the Th1 phenotype in the early phase. Our results suggest that the regulation of the T-cell response, through the modulation of SOCS expression, has potential as a new therapeutic strategy for chronic lung allograft dysfunction.
Collapse
|
25
|
Abstract
Chronic lung allograft dysfunction (CLAD) is the major limitation to posttransplant survival. This review highlights the evolving definition of CLAD, risk factors, treatment, and expected outcomes after the development of CLAD.
Collapse
|