1
|
Müller T, Alasfar L, Preuß F, Zimmermann L, Streitz M, Hundsdörfer P, Eggert A, Schulte J, von Stackelberg A, Oevermann L. Lower incidence of grade II-IV acute Graft-versus-Host-Disease in pediatric patients recovering with high Vδ2+ T cells after allogeneic stem cell transplantation with unmanipulated bone marrow grafts: a prospective single-center cohort study. Front Immunol 2024; 15:1433785. [PMID: 39136029 PMCID: PMC11317287 DOI: 10.3389/fimmu.2024.1433785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/11/2024] [Indexed: 08/15/2024] Open
Abstract
Gamma delta (γδ) T cells represent a minor fraction of human T cell repertoire but play an important role in mediating anti-infectious and anti-tumorous effects in the context of allogeneic hematopoietic stem cell transplantation (allo-HSCT). We performed a prospective study to analyze the effect of different transplant modalities on immune reconstitution of γδ T cells and subsets. CD3, CD4 and CD8 T cells were analyzed in parallel. Secondly, we examined the impact of γδ T cell reconstitution on clinical outcomes including acute Graft-versus-Host-Disease (aGvHD) and viral infections. Our cohort includes 49 pediatric patients who received unmanipulated bone marrow grafts from matched unrelated (MUD) or matched related (MRD) donors. The cohort includes patients with malignant as well as non-malignant diseases. Cell counts were measured using flow cytometry at 15, 30, 60, 100, 180 and 240 days after transplantation. Cells were stained for CD3, CD4, CD8, CD45, TCRαβ, TCRγδ, TCRVδ1, TCRVδ2, HLA-DR and combinations. Patients with a MRD showed significantly higher Vδ2+ T cells than those with MUD at timepoints +30, +60, +100 (p<0.001, respectively) and +180 (p<0.01) in univariate analysis. These results remained significant in multivariate analysis. Patients recovering with a high relative abundance of total γδ T cells and Vδ2+ T cells had a significantly lower cumulative incidence of grade II-IV aGvHD after transplantation (p=0.03 and p=0.04, respectively). A high relative abundance of Vδ2+ T cells was also associated with a lower incidence of EBV infection (p=0.02). Patients with EBV infection on the other hand showed higher absolute Vδ1+ T cell counts at days +100 and +180 after transplantation (p=0.046 and 0.038, respectively) than those without EBV infection. This result remained significant in a multivariate time-averaged analysis (q<0.1). Our results suggest a protective role of γδ T cells and especially Vδ2+ T cell subset against the development of aGvHD and EBV infection after pediatric HSCT. Vδ1+ T cells might be involved in the immune response after EBV infection. Our results encourage further research on γδ T cells as prognostic markers after HSCT and as possible targets of adoptive T cell transfer strategies.
Collapse
Affiliation(s)
- Thilo Müller
- Department of Pediatric Oncology and Hematology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Lina Alasfar
- Department of Pediatric Oncology and Hematology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Internal Medicine V: Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Friederike Preuß
- Department of Cardiology, Angiology and Intensive Care Medicine, German Heart Center Berlin, Berlin, Germany
| | - Lisa Zimmermann
- Department of Pediatric Oncology and Hematology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Mathias Streitz
- Department of Experimental Animal Facilities and Biorisk Management (ATB), Friedrich-Löffler-Institut, Greifswald, Germany
| | | | - Angelika Eggert
- Department of Pediatric Oncology and Hematology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Johannes Schulte
- Department of Pediatrics I – Haematology, Oncology, Gastroenterology, Nephrology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Arend von Stackelberg
- Department of Pediatric Oncology and Hematology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Lena Oevermann
- Department of Pediatric Oncology and Hematology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
2
|
Alexandersson A, Venäläinen MS, Heikkilä N, Huang X, Taskinen M, Huttunen P, Elo LL, Koskenvuo M, Kekäläinen E. Proteomics screening after pediatric allogenic hematopoietic stem cell transplantation reveals an association between increased expression of inhibitory receptor FCRL6 on γδ T cells and cytomegalovirus reactivation. Immunol Cell Biol 2024; 102:513-525. [PMID: 38726587 DOI: 10.1111/imcb.12762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 07/11/2024]
Abstract
We studied the associations between inflammation-related proteins in circulation and complications after pediatric allogenic hematopoietic stem cell transplantation (HSCT), to reveal proteomic signatures or individual soluble proteins associated with specific complications after HSCT. We used a proteomics method called Proximity Extension Assay to repeatedly measure 180 different proteins together with clinical variables, cellular immune reconstitution and blood viral copy numbers in 27 children (1-18 years of age) during a 2-year follow-up after allogenic HSCT. Protein profile analysis was performed using unsupervised hierarchical clustering and a regression-based method, while the Bonferroni-corrected Mann-Whitney U-test was used for time point-specific comparison of individual proteins against outcome. At 6 months after allogenic HSCT, we could identify a protein profile pattern associated with occurrence of the complications such as chronic graft-versus-host disease, viral infections, relapse and death. When protein markers were analyzed separately, the plasma concentration of the inhibitory and cytotoxic T-cell surface protein FCRL6 (Fc receptor-like 6) was higher in patients with cytomegalovirus (CMV) viremia [log2-fold change 1.5 (P = 0.00099), 2.5 (P = 0.00035) and 2.2 (P = 0.045) at time points 6, 12 and 24 months]. Flow cytometry confirmed that FCRL6 expression was higher in innate-like γδ T cells, indicating that these cells are involved in controlling CMV reactivation in HSCT recipients. In conclusion, the potentially druggable FCRL6 receptor on cytotoxic T cells appears to have a role in controlling CMV viremia after HSCT. Furthermore, our results suggest that system-level analysis is a useful addition to the studying of single biomarkers in allogenic HSCT.
Collapse
Affiliation(s)
- Adam Alexandersson
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, New Children's Hospital, Helsinki University Hospital, Helsinki, Finland
- Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Children and Adolescents, Pediatric Research Center, New Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mikko S Venäläinen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Nelli Heikkilä
- Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Center of Vaccinology, University of Geneva, Geneva, Switzerland
| | - Xiaobo Huang
- Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mervi Taskinen
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, New Children's Hospital, Helsinki University Hospital, Helsinki, Finland
| | - Pasi Huttunen
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, New Children's Hospital, Helsinki University Hospital, Helsinki, Finland
- Children and Adolescents, Pediatric Research Center, New Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Laura L Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Minna Koskenvuo
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, New Children's Hospital, Helsinki University Hospital, Helsinki, Finland
| | - Eliisa Kekäläinen
- Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- HUS Diagnostic Center, Clinical microbiology, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
3
|
Jullien M, Guillaume T, Le Bourgeois A, Peterlin P, Garnier A, Eveillard M, Le Bris Y, Bouzy S, Tessoulin B, Gastinne T, Dubruille V, Touzeau C, Mahé B, Blin N, Lok A, Vantyghem S, Sortais C, Antier C, Moreau P, Scotet E, Béné MC, Chevallier P. Phase I study of zoledronic acid combined with escalated doses of interleukine-2 for early in vivo generation of Vγ9Vδ2 T-cells after haploidentical stem cell transplant with posttransplant cyclophosphamide. Am J Hematol 2024; 99:350-359. [PMID: 38165016 DOI: 10.1002/ajh.27191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024]
Abstract
The presence of donor Vγ9Vδ2 T-cells after haploidentical hematopoietic stem cell transplant (h-HSCT) has been associated with improved disease-free survival. These cells kill tumor cells in a non-MHC restricted manner, do not induce graft-versus-host disease (GVHD), and can be generated by stimulation with zoledronic acid (ZA) in combination with interleukin-2 (IL-2). This monocentric phase I, open-label, dose-escalating study (ClinicalTrials.gov: NCT03862833) aimed at evaluating the safety and possibility to generate Vγ9Vδ2 T-cells early after h-HSCT. It applied a standard 3 + 3 protocol to determine the maximum tolerated dose (MTD) of increasing low-doses of IL-2 (5 days [d] per week, 4 weeks) in combination with a single dose of ZA, starting both the first Monday after d + 15 posttransplant. Vγ9Vδ2 T-cell monitoring was performed by multiparameter flow cytometry on blood samples and compared with a control cohort of h-HSCT recipients. Twenty-six patients were included between April 2019 and September 2022, 16 of whom being ultimately treated and seven being controls who received h-HSCT only. At the three dose levels tested, 1, 0, and 1 dose-limiting toxicities were observed. MTD was not reached. A significantly higher number of Vγ9Vδ2 T-cells was observed during IL-2 treatment compared with controls. In conclusion, early in vivo generation of Vγ9Vδ2 T-cells is feasible after h-HSCT by using a combination of ZA and repeated IL-2 infusions. This study paves the way to a future phase 2 study, with the hope to document lesser posttransplant relapse with this particular adaptive immunotherapy.
Collapse
Affiliation(s)
- Maxime Jullien
- Hematology Department, Nantes University Hospital, Nantes, France
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, Nantes, France
- LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Thierry Guillaume
- Hematology Department, Nantes University Hospital, Nantes, France
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, Nantes, France
- LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | | | - Pierre Peterlin
- Hematology Department, Nantes University Hospital, Nantes, France
| | - Alice Garnier
- Hematology Department, Nantes University Hospital, Nantes, France
| | - Marion Eveillard
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, Nantes, France
- LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
- Hematology Biology, Nantes University Hospital, Nantes, France
| | - Yannick Le Bris
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, Nantes, France
- LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
- Hematology Biology, Nantes University Hospital, Nantes, France
| | - Simon Bouzy
- Hematology Biology, Nantes University Hospital, Nantes, France
| | - Benoît Tessoulin
- Hematology Department, Nantes University Hospital, Nantes, France
| | - Thomas Gastinne
- Hematology Department, Nantes University Hospital, Nantes, France
| | | | - Cyrille Touzeau
- Hematology Department, Nantes University Hospital, Nantes, France
| | - Béatrice Mahé
- Hematology Department, Nantes University Hospital, Nantes, France
| | - Nicolas Blin
- Hematology Department, Nantes University Hospital, Nantes, France
| | - Anne Lok
- Hematology Department, Nantes University Hospital, Nantes, France
| | - Sophie Vantyghem
- Hematology Department, Nantes University Hospital, Nantes, France
| | - Clara Sortais
- Hematology Department, Nantes University Hospital, Nantes, France
| | - Chloé Antier
- Hematology Department, Nantes University Hospital, Nantes, France
| | - Philippe Moreau
- Hematology Department, Nantes University Hospital, Nantes, France
| | - Emmanuel Scotet
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, Nantes, France
- LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Marie C Béné
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, Nantes, France
- LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
- Hematology Biology, Nantes University Hospital, Nantes, France
| | - Patrice Chevallier
- Hematology Department, Nantes University Hospital, Nantes, France
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, Nantes, France
- LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| |
Collapse
|
4
|
Di Ianni M, Liberatore C, Santoro N, Ranalli P, Guardalupi F, Corradi G, Villanova I, Di Francesco B, Lattanzio S, Passeri C, Lanuti P, Accorsi P. Cellular Strategies for Separating GvHD from GvL in Haploidentical Transplantation. Cells 2024; 13:134. [PMID: 38247827 PMCID: PMC10814899 DOI: 10.3390/cells13020134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
GvHD still remains, despite the continuous improvement of transplantation platforms, a fearful complication of transplantation from allogeneic donors. Being able to separate GvHD from GvL represents the greatest challenge in the allogeneic transplant setting. This may be possible through continuous improvement of cell therapy techniques. In this review, current cell therapies are taken into consideration, which are based on the use of TCR alpha/beta depletion, CD45RA depletion, T regulatory cell enrichment, NK-cell-based immunotherapies, and suicide gene therapies in order to prevent GvHD and maximally amplify the GvL effect in the setting of haploidentical transplantation.
Collapse
Affiliation(s)
- Mauro Di Ianni
- Hematology Unit, Pescara Hospital, 65124 Pescara, Italy; (C.L.); (N.S.); (P.R.)
- Department of Medicine and Aging Sciences, University of Chieti-Pescara, 66100 Chieti, Italy; (F.G.); (G.C.); (S.L.); (P.L.)
- Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara, 66100 Chieti, Italy
| | - Carmine Liberatore
- Hematology Unit, Pescara Hospital, 65124 Pescara, Italy; (C.L.); (N.S.); (P.R.)
| | - Nicole Santoro
- Hematology Unit, Pescara Hospital, 65124 Pescara, Italy; (C.L.); (N.S.); (P.R.)
| | - Paola Ranalli
- Hematology Unit, Pescara Hospital, 65124 Pescara, Italy; (C.L.); (N.S.); (P.R.)
- Department of Medicine and Aging Sciences, University of Chieti-Pescara, 66100 Chieti, Italy; (F.G.); (G.C.); (S.L.); (P.L.)
- Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara, 66100 Chieti, Italy
| | - Francesco Guardalupi
- Department of Medicine and Aging Sciences, University of Chieti-Pescara, 66100 Chieti, Italy; (F.G.); (G.C.); (S.L.); (P.L.)
- Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara, 66100 Chieti, Italy
| | - Giulia Corradi
- Department of Medicine and Aging Sciences, University of Chieti-Pescara, 66100 Chieti, Italy; (F.G.); (G.C.); (S.L.); (P.L.)
- Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara, 66100 Chieti, Italy
| | - Ida Villanova
- Blood Bank Unit, Pescara Hospital, 65124 Pescara, Italy; (I.V.); (B.D.F.); (C.P.); (P.A.)
| | - Barbara Di Francesco
- Blood Bank Unit, Pescara Hospital, 65124 Pescara, Italy; (I.V.); (B.D.F.); (C.P.); (P.A.)
| | - Stefano Lattanzio
- Department of Medicine and Aging Sciences, University of Chieti-Pescara, 66100 Chieti, Italy; (F.G.); (G.C.); (S.L.); (P.L.)
- Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara, 66100 Chieti, Italy
| | - Cecilia Passeri
- Blood Bank Unit, Pescara Hospital, 65124 Pescara, Italy; (I.V.); (B.D.F.); (C.P.); (P.A.)
| | - Paola Lanuti
- Department of Medicine and Aging Sciences, University of Chieti-Pescara, 66100 Chieti, Italy; (F.G.); (G.C.); (S.L.); (P.L.)
- Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara, 66100 Chieti, Italy
| | - Patrizia Accorsi
- Blood Bank Unit, Pescara Hospital, 65124 Pescara, Italy; (I.V.); (B.D.F.); (C.P.); (P.A.)
| |
Collapse
|
5
|
Gaballa A, Arruda LCM, Uhlin M. Gamma delta T-cell reconstitution after allogeneic HCT: A platform for cell therapy. Front Immunol 2022; 13:971709. [PMID: 36105821 PMCID: PMC9465162 DOI: 10.3389/fimmu.2022.971709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Allogeneic Hematopoietic stem cell transplantation (allo-HCT) is a curative platform for several hematological diseases. Despite its therapeutic benefits, the profound immunodeficiency associated with the transplant procedure remains a major challenge that renders patients vulnerable to several complications. Today, It is well established that a rapid and efficient immune reconstitution, particularly of the T cell compartment is pivotal to both a short-term and a long-term favorable outcome. T cells expressing a TCR heterodimer comprised of gamma (γ) and delta (δ) chains have received particular attention in allo-HCT setting, as a large body of evidence has indicated that γδ T cells can exert favorable potent anti-tumor effects without inducing severe graft versus host disease (GVHD). However, despite their potential role in allo-HCT, studies investigating their detailed reconstitution in patients after allo-HCT are scarce. In this review we aim to shed lights on the current literature and understanding of γδ T cell reconstitution kinetics as well as the different transplant-related factors that may influence γδ reconstitution in allo-HCT. Furthermore, we will present data from available reports supporting a role of γδ cells and their subsets in patient outcome. Finally, we discuss the current and future strategies to develop γδ cell-based therapies to exploit the full immunotherapeutic potential of γδ cells in HCT setting.
Collapse
Affiliation(s)
- Ahmed Gaballa
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Chemistry, National Liver Institute, Menoufia University, Menoufia, Egypt
| | - Lucas C. M. Arruda
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Michael Uhlin
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
6
|
Luo XH, Zhu Y, Chen YT, Shui LP, Liu L. CMV Infection and CMV-Specific Immune Reconstitution Following Haploidentical Stem Cell Transplantation: An Update. Front Immunol 2021; 12:732826. [PMID: 34777342 PMCID: PMC8580860 DOI: 10.3389/fimmu.2021.732826] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/14/2021] [Indexed: 02/05/2023] Open
Abstract
Haploidentical stem cell transplantation (haploSCT) has advanced to a common procedure for treating patients with hematological malignancies and immunodeficiency diseases. However, cure is seriously hampered by cytomegalovirus (CMV) infections and delayed immune reconstitution for the majority of haploidentical transplant recipients compared to HLA-matched stem cell transplantation. Three major approaches, including in vivo T-cell depletion (TCD) using antithymocyte globulin for haploSCT (in vivo TCD-haploSCT), ex vivo TCD using CD34 + positive selection for haploSCT (ex vivo TCD-haploSCT), and T-cell replete haploSCT using posttransplant cyclophosphamide (PTCy-haploSCT), are currently used worldwide. We provide an update on CMV infection and CMV-specific immune recovery in this fast-evolving field. The progress made in cellular immunotherapy of CMV infection after haploSCT is also addressed. Groundwork has been prepared for the creation of personalized avenues to enhance immune reconstitution and decrease the incidence of CMV infection after haploSCT.
Collapse
Affiliation(s)
- Xiao-Hua Luo
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Zhu
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yu-Ting Chen
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li-Ping Shui
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lin Liu
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
7
|
Maeda Y. Immune reconstitution after T-cell replete HLA haploidentical hematopoietic stem cell transplantation using high-dose post-transplant cyclophosphamide. J Clin Exp Hematop 2021; 61:1-9. [PMID: 33551435 PMCID: PMC8053574 DOI: 10.3960/jslrt.20040] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/08/2020] [Accepted: 10/16/2020] [Indexed: 12/30/2022] Open
Abstract
As HLA haploidentical related donors are quickly available, HLA haploidentical hematopoietic stem cell transplantation (haploHSCT) using high-dose post-transplant cyclophosphamide (PTCy) is now widely used. Recent basic and clinical studies revealed the details of immune reconstitution after T-cell replete haploHSCT using PTCy. T cells and NK cells in the graft proliferate abundantly at day 3 post-haploHSCT, and the PTCy eliminates these proliferating cells. After ablation of proliferating mature cells, donor-derived NK cell reconstitution occurs after the second week; however, recovering NK cells remain functionally impaired for at least several months after haploHSCT. PTCy depletes proliferating cells, resulting in the preferential accumulation of Treg and CD4+ T cells, especially the memory stem T cell (TSCM) phenotype. TSCM capable of both self-renewal and differentiation into effector T cells may play an important role in the first month of immune reconstitution. Subsequently, de novo T cells progressively recover but their levels remain well below those of donor CD4+ T cells at the first year after haploHSCT. The phenotype of recovering T cells after HSCT is predominantly effector memory, whereas B cells are predominantly phenotypically naive throughout the first year after haploHSCT. B cell recovery depends on de novo generation and they are not detected until week 4 after haploHSCT. At week 5, recovering B cells mostly exhibit an unconventional transitional cell phenotype and the cell subset undergoes maturation. Recent advances in immune reconstitution have improved our understanding of the relationship between haploHSCT with PTCy and the clinical outcome.
Collapse
Affiliation(s)
- Yoshinobu Maeda
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
| |
Collapse
|
8
|
Andrlová H, van den Brink MRM, Markey KA. An Unconventional View of T Cell Reconstitution After Allogeneic Hematopoietic Cell Transplantation. Front Oncol 2021; 10:608923. [PMID: 33680931 PMCID: PMC7930482 DOI: 10.3389/fonc.2020.608923] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/31/2020] [Indexed: 01/02/2023] Open
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) is performed as curative-intent therapy for hematologic malignancies and non-malignant hematologic, immunological and metabolic disorders, however, its broader implementation is limited by high rates of transplantation-related complications and a 2-year mortality that approaches 50%. Robust reconstitution of a functioning innate and adaptive immune system is a critical contributor to good long-term patient outcomes, primarily to prevent and overcome post-transplantation infectious complications and ensure adequate graft-versus-leukemia effects. There is increasing evidence that unconventional T cells may have an important immunomodulatory role after allo-HCT, which may be at least partially dependent on the post-transplantation intestinal microbiome. Here we discuss the role of immune reconstitution in allo-HCT outcome, focusing on unconventional T cells, specifically mucosal-associated invariant T (MAIT) cells, γδ (gd) T cells, and invariant NK T (iNKT) cells. We provide an overview of the mechanistic preclinical and associative clinical studies that have been performed. We also discuss the emerging role of the intestinal microbiome with regard to hematopoietic function and overall immune reconstitution.
Collapse
Affiliation(s)
- Hana Andrlová
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Marcel R. M. van den Brink
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Division of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Kate A. Markey
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Division of Medicine, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
9
|
Impact of γδ T cells on clinical outcome of hematopoietic stem cell transplantation: systematic review and meta-analysis. Blood Adv 2020; 3:3436-3448. [PMID: 31714966 DOI: 10.1182/bloodadvances.2019000682] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/30/2019] [Indexed: 12/19/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) using αβ T-/B-cell-depleted grafts recently emerged as a transplant strategy and highlighted the potential role of γδ T cells on HSCT outcomes. Our aim was to scrutinize available evidence of γδ T-cell impact on relapse, infections, survival, and acute graft-versus-host disease (aGVHD). We performed a systematic review and meta-analysis of studies assessing γδ T cells in HSCT. We searched PubMed, Web of Science, Scopus, and conference abstracts from inception to March 2019 for relevant studies. We included all studies that assessed γδ T cells associated with HSCT. Data were extracted independently by 2 investigators based on strict selection criteria. A random-effects model was used to pool outcomes across studies. Primary outcome was disease relapse. We also assessed infections, survival, and aGVHD incidence. The review was registered with PROSPERO (CRD42019133344). Our search returned 2412 studies, of which 11 (919 patients) were eligible for meta-analysis. Median follow-up was 30 months (interquartile range, 22-32). High γδ T-cell values after HSCT were associated with less disease relapse (risk ratio [RR], 0.58; 95% confidence interval [95% CI], 0.40-0.84; P = .004; I2 = 0%), fewer viral infections (RR, 0.59; 95% CI, 0.43-0.82; P = .002; I2 = 0%) and higher overall (HR, 0.28; 95% CI, 0.18-0.44; P < .00001; I2 = 0%) and disease-free survivals (HR 0.29; 95% CI, 0.18-0.48; P < .00001; I2 = 0%). We found no association between high γδ T-cell values and aGVHD incidence (RR, 0.72; 95% CI, 0.41-1.27; P = .26; I2 = 0%). In conclusion, high γδ T cells after HSCT is associated with a favorable clinical outcome but not with aGVHD development, suggesting that γδ T cells have a significant effect on the success of HSCT. This study was registered with PROSPERO as #CRD42019133344.
Collapse
|
10
|
Zaghi E, Calvi M, Di Vito C, Mavilio D. Innate Immune Responses in the Outcome of Haploidentical Hematopoietic Stem Cell Transplantation to Cure Hematologic Malignancies. Front Immunol 2019; 10:2794. [PMID: 31849972 PMCID: PMC6892976 DOI: 10.3389/fimmu.2019.02794] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/14/2019] [Indexed: 12/30/2022] Open
Abstract
In the context of allogeneic transplant platforms, human leukocyte antigen (HLA)-haploidentical hematopoietic stem cell transplantation (haplo-HSCT) represents one of the latest and most promising curative strategies for patients affected by high-risk hematologic malignancies. Indeed, this platform ensures a suitable stem cell source immediately available for virtually any patents in need. Moreover, the establishment in recipients of a state of immunologic tolerance toward grafted hematopoietic stem cells (HSCs) remarkably improves the clinical outcome of this transplant procedure in terms of overall and disease free survival. However, the HLA-mismatch between donors and recipients has not been yet fully exploited in order to optimize the Graft vs. Leukemia effect. Furthermore, the efficacy of haplo-HSCT is currently hampered by several life-threatening side effects including the onset of Graft vs. Host Disease (GvHD) and the occurrence of opportunistic viral infections. In this context, the quality and the kinetic of the immune cell reconstitution (IR) certainly play a major role and several experimental efforts have been greatly endorsed to better understand and accelerate the post-transplant recovery of a fully competent immune system in haplo-HSCT. In particular, the IR of innate immune system is receiving a growing interest, as it recovers much earlier than T and B cells and it is able to rapidly exert protective effects against both tumor relapses, GvHD and the onset of life-threatening opportunistic infections. Herein, we review our current knowledge in regard to the kinetic and clinical impact of Natural Killer (NK), γδ and Innate lymphoid cells (ILCs) IRs in both allogeneic and haplo-HSCT. The present paper also provides an overview of those new therapeutic strategies currently being implemented to boost the alloreactivity of the above-mentioned innate immune effectors in order to ameliorate the prognosis of patients affected by hematologic malignancies and undergone transplant procedures.
Collapse
Affiliation(s)
- Elisa Zaghi
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy
| | - Michela Calvi
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| | - Clara Di Vito
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| |
Collapse
|
11
|
Diaz MA, Zubicaray J, Molina B, Abad L, Castillo A, Sebastian E, Galvez E, Ruiz J, Vicario JL, Ramirez M, Sevilla J, González-Vicent M. Haploidentical Stem Cell Transplantation in Children With Hematological Malignancies Using αβ + T-Cell Receptor and CD19 + Cell Depleted Grafts: High CD56 dim/CD56 bright NK Cell Ratio Early Following Transplantation Is Associated With Lower Relapse Incidence and Better Outcome. Front Immunol 2019; 10:2504. [PMID: 31736949 PMCID: PMC6831520 DOI: 10.3389/fimmu.2019.02504] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/07/2019] [Indexed: 12/13/2022] Open
Abstract
We prospectively analyzed outcomes of haploidentical hematopoietic stem cell transplantation using αβ+ T-cell receptor/CD19+ depleted grafts. Sixty-three transplantations were performed in 60 patients. Twenty-eight patients were diagnosed with acute lymphoblastic leukemia (ALL), 27 patients were diagnosed with acute myelogenous leukemia, and in eight other hematological malignancies were diagnosed. Twenty-three were in first complete remission (CR), 20 in second CR, 20 beyond second CR. Four patients developed graft failure. Median time to neutrophil and platelet recovery was 14 (range 9–25) and 10 days (range 7–30), respectively. The probability of non-relapse mortality (NRM) by day +100 after transplantation was 10 ± 4%. With a median follow-up of 28 months, the probability of relapse was 32 ± 6% and disease-free survival was 52 ± 6%. Immune reconstitution was leaded by NK cells. As such, a high CD56dim/CD56bright NK cell ratio early after transplantation was associated with better disease-free survival (DFS) (≥3.5; 77 ± 8% vs. <3.5; 28 ± 5%; p = 0.001) due to lower relapse incidence (≥3.5; 15 ± 7% vs. <3.5; 37 ± 9%; p = 0.04). T-cell reconstitution was delayed and associated with severe infections after transplant. Viral reactivation/disease and presence of venooclusive disease of liver in the non-caucasian population had a significant impact on NRM. αβ+ T-cell receptor/CD19+ cell-depleted haploidentical transplant is associated with good outcomes especially in patients in early phase of disease. A rapid expansion of “mature” natural killer cells early after transplantation resulted on lower probability of relapse, suggesting a graft vs. leukemia effect independent from graft-vs.-host reactions.
Collapse
Affiliation(s)
- Miguel A Diaz
- Hematopoietic Stem Cell Transplantation and Cellular Therapy Unit, Department of Pediatrics, Hospital Infantil Universitario "Niño Jesus", Madrid, Spain
| | - Josune Zubicaray
- Blood Bank and Graft Manipulation Unit, Division of Hematology, Hospital Infantil Universitario "Niño Jesus", Madrid, Spain
| | - Blanca Molina
- Hematopoietic Stem Cell Transplantation and Cellular Therapy Unit, Department of Pediatrics, Hospital Infantil Universitario "Niño Jesus", Madrid, Spain
| | - Lorea Abad
- Oncology/Hematology Laboratory, Hospital Infantil Universitario "Niño Jesus", Madrid, Spain
| | - Ana Castillo
- Oncology/Hematology Laboratory, Hospital Infantil Universitario "Niño Jesus", Madrid, Spain
| | - Elena Sebastian
- Blood Bank and Graft Manipulation Unit, Division of Hematology, Hospital Infantil Universitario "Niño Jesus", Madrid, Spain
| | - Eva Galvez
- Blood Bank and Graft Manipulation Unit, Division of Hematology, Hospital Infantil Universitario "Niño Jesus", Madrid, Spain
| | - Julia Ruiz
- Hematopoietic Stem Cell Transplantation and Cellular Therapy Unit, Department of Pediatrics, Hospital Infantil Universitario "Niño Jesus", Madrid, Spain
| | - Jose Luis Vicario
- Histocompatibility Laboratory, Community Transfusion Center of Madrid, Madrid, Spain
| | - Manuel Ramirez
- Oncology/Hematology Laboratory, Hospital Infantil Universitario "Niño Jesus", Madrid, Spain
| | - Julian Sevilla
- Blood Bank and Graft Manipulation Unit, Division of Hematology, Hospital Infantil Universitario "Niño Jesus", Madrid, Spain
| | - Marta González-Vicent
- Hematopoietic Stem Cell Transplantation and Cellular Therapy Unit, Department of Pediatrics, Hospital Infantil Universitario "Niño Jesus", Madrid, Spain
| |
Collapse
|
12
|
Pierri F, Dufour C. Management of aplastic anemia after failure of frontline immunosuppression. Expert Rev Hematol 2019; 12:809-819. [PMID: 31311355 DOI: 10.1080/17474086.2019.1645003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: About 60% of aplastic anemia (AA) patients are in need of further treatment after frontline standard immunosuppressive therapy (IST). This along with the prolonged survival of AA subjects who do not respond to or relapse after this treatment makes management of these patients a rising and very challenging issue. Areas covered: Literature research, carried out from the most commonly used databases, included the following keywords: aplastic anemia, immunosuppressive treatment, antithymocyte globuline, ciclosporine A, refractory aplastic anemia, relapsing aplastic anemia, hematopoietic stem cell transplantation including haploidentical and cord blood transplantations thrombopoietin mimetics, supportive treatment, chelation and infections. Studies on the treatment of aplastic anemia with different levels of evidence were included. Top level of evidence studies (metanalyses and randomized prospective controlled trials) were a minority because severe AA, particularly in the subset of patients who fail upfront IST, is an extremely rare disease. Guidelines from National Societies and review articles were also included. Expert opinion: The most commonly used treatments after failure of upfront immunosuppression are hematopoietic stem cell transplantation, a second course of immunosuppression and thrombopoietin mimetics alone or in combination with immunosuppression. Other potential options are alemtuzumab, androgens, oral cyclosporine A in monotherapy. Not many comparative studies exist to clearly establish the superiority of one over another strategy. Therefore, the choice of the best treatment for these patients should rely on major driving factors like patient's age and comorbidities, availability of a matched unrelated donor, donor's characteristics and drug-availability.
Collapse
Affiliation(s)
- Filomena Pierri
- Hematology Unit, G. Gaslini Children's Research Hospital , Genova , Italy
| | - Carlo Dufour
- Hematology Unit, G. Gaslini Children's Research Hospital , Genova , Italy
| |
Collapse
|
13
|
Lee JB, Chen B, Vasic D, Law AD, Zhang L. Cellular immunotherapy for acute myeloid leukemia: How specific should it be? Blood Rev 2019; 35:18-31. [PMID: 30826141 DOI: 10.1016/j.blre.2019.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 02/05/2019] [Accepted: 02/22/2019] [Indexed: 12/25/2022]
Abstract
Significant improvements in the survival of patients with hematological cancers following hematopoietic stem cell transplantation provide evidence supporting the potency of immune cell-mediated anti-leukemic effects. Studies focusing on immune cell-based cancer therapies have made significant breakthroughs in the last few years. Adoptive cellular therapy (ACT), and chimeric antigen receptor (CAR) T cell therapy, in particular, has significantly increased the survival of patients with B cell acute lymphoblastic leukemia and aggressive B cell lymphoma. Despite antigen-negative relapses and severe toxicities such as cytokine release syndrome after treatment, CAR-T cell therapies have been approved by the FDA in some conditions. Although a number of studies have tried to achieve similar results for acute myeloid leukemia (AML), clinical outcomes have not been as promising. In this review, we summarize recent and ongoing studies on cellular therapies for AML patients, with a focus on antigen-specific versus -nonspecific approaches.
Collapse
Affiliation(s)
- Jong Bok Lee
- Toronto General Research Institute, University Health Network, 2-207 101 College St., Toronto, Ontario M5G 1L7, Canada; Department of Immunology, University of Toronto, Toronto, Ontario, Canada.
| | - Branson Chen
- Toronto General Research Institute, University Health Network, 2-207 101 College St., Toronto, Ontario M5G 1L7, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| | - Daniel Vasic
- Toronto General Research Institute, University Health Network, 2-207 101 College St., Toronto, Ontario M5G 1L7, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| | - Arjun D Law
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, 6-711 700 University Ave., Toronto, Ontario M5G 1Z5, Canada.
| | - Li Zhang
- Toronto General Research Institute, University Health Network, 2-207 101 College St., Toronto, Ontario M5G 1L7, Canada; Department of Immunology, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
14
|
T-cell frequencies of CD8 + γδ and CD27 + γδ cells in the stem cell graft predict the outcome after allogeneic hematopoietic cell transplantation. Bone Marrow Transplant 2019; 54:1562-1574. [PMID: 30723262 DOI: 10.1038/s41409-019-0462-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 01/03/2019] [Accepted: 01/20/2019] [Indexed: 11/08/2022]
Abstract
The impact of intra-graft T cells on the clinical outcome after allogeneic hematopoietic cell transplantation has been investigated. Most previous studies have focused on the role of αβ cells while γδ cells have received less attention. It has been an open question whether γδ cells are beneficial or not for patient outcome, especially with regards to graft versus host disease. In this study, graft composition of γδ cell subsets was analyzed and correlated to clinical outcome in 105 recipients who underwent allogeneic hematopoietic cell transplantation between 2013 and 2016. We demonstrate for the first time that grafts containing higher T-cell proportions of CD8+γδ cells were associated with increased cumulative incidence of acute graft versus host disease grade II-III (50% vs 22.6%; P = 0.008). Additionally, graft T-cell frequency of CD27+γδ cells was inversely correlated with relapse (P = 0.006) and CMV reactivation (P = 0.05). We conclude that clinical outcome after allogeneic hematopoietic cell transplantation is influenced by the proportions of distinct γδ cell subsets in the stem cell graft. We also provide evidence that CD8+γδ cells are potentially alloreactive and may play a role in acute graft versus host disease. This study illustrates the importance of better understanding of the role of distinct subsets of γδ cells in allogeneic hematopoietic cell transplantation.
Collapse
|
15
|
Kim H, Im HJ, Koh KN, Kang SH, Yoo JW, Choi ES, Cho YU, Jang S, Park CJ, Seo JJ. Comparable Outcome with a Faster Engraftment of Optimized Haploidentical Hematopoietic Stem Cell Transplantation Compared with Transplantations from Other Donor Types in Pediatric Acquired Aplastic Anemia. Biol Blood Marrow Transplant 2019; 25:965-974. [PMID: 30639824 DOI: 10.1016/j.bbmt.2019.01.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 01/04/2019] [Indexed: 01/31/2023]
Abstract
Haploidentical family donors have been used as an alternative source in hematopoietic cell transplantation for patients with severe aplastic anemia. We evaluated and compared the outcomes of transplantation in pediatric acquired severe aplastic anemia based on donor type. Sixty-seven patients who underwent transplantation between 1998 and 2017 were included. Fourteen patients received grafts from matched sibling donors, 21 from suitable unrelated donors, and 32 from haploidentical family donors. Ex vivo CD3+ or αβ+ T cell-depleted grafts were used for haploidentical transplantation. Sixty-five patients (97.0%) achieved neutrophil engraftment at a median of 11 days. Haploidentical transplantation resulted in significantly faster neutrophil engraftment at a median of 10 days, compared with 14 days in cases of matched sibling donors and 12 days in cases of unrelated donor recipients. Nine patients experienced graft failure, and 5 of 7 who underwent a second transplantation are alive. There was no difference in the incidence of acute or chronic graft-versus-host disease based on donor type. The 5-year overall survival and failure-free survival rates were 93.8% ± 3.0% and 83.3% ± 4.6%, respectively, and there was no significant survival difference based on donor type. The survival outcomes of haploidentical transplantation in patients were comparable with those of matched sibling or unrelated donor transplantation. Optimized haploidentical transplantation using selective T cell depletion and conditioning regimens including low-dose total body irradiation for enhancing engraftment may be a realistic therapeutic option for pediatric patients with severe aplastic anemia.
Collapse
Affiliation(s)
- Hyery Kim
- Department of Pediatrics, University of Ulsan College of Medicine, Asan Medical Center Children's Hospital, Seoul, Korea
| | - Ho Joon Im
- Department of Pediatrics, University of Ulsan College of Medicine, Asan Medical Center Children's Hospital, Seoul, Korea.
| | - Kyung-Nam Koh
- Department of Pediatrics, University of Ulsan College of Medicine, Asan Medical Center Children's Hospital, Seoul, Korea
| | - Sung Han Kang
- Department of Pediatrics, University of Ulsan College of Medicine, Asan Medical Center Children's Hospital, Seoul, Korea; Department of Pediatrics, Korea University College of Medicine, Seoul, Korea
| | - Jae Won Yoo
- Department of Pediatrics, University of Ulsan College of Medicine, Asan Medical Center Children's Hospital, Seoul, Korea; Department of Pediatrics, Chungnam National University School of Medicine, Daejeon, Korea
| | - Eun Seok Choi
- Department of Pediatrics, University of Ulsan College of Medicine, Asan Medical Center Children's Hospital, Seoul, Korea
| | - Young-Uk Cho
- Department of Laboratory Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Seongsoo Jang
- Department of Laboratory Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Chan-Jeoung Park
- Department of Laboratory Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Jong Jin Seo
- Department of Pediatrics, University of Ulsan College of Medicine, Asan Medical Center Children's Hospital, Seoul, Korea
| |
Collapse
|