1
|
Iftikhar R, DeFilipp Z, DeZern AE, Pulsipher MA, Bejanyan N, Burroughs LM, Kharfan-Dabaja MA, Arai S, Kassim A, Nakamura R, Saldaña BJD, Aljurf M, Hamadani M, Carpenter PA, Antin JH. Allogeneic Hematopoietic Cell Transplantation for the Treatment of Severe Aplastic Anemia: Evidence-Based Guidelines From the American Society for Transplantation and Cellular Therapy. Transplant Cell Ther 2024; 30:1155-1170. [PMID: 39307421 DOI: 10.1016/j.jtct.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024]
Abstract
Allogeneic hematopoietic cell transplantation (HCT) is a potentially curative treatment for severe aplastic anemia (SAA). Existing guidance about HCT in SAA is primarily derived from expert reviews, registry data and societal guidelines; however, transplant-specific guidelines for SAA are lacking. A panel of SAA experts, both pediatric and adult transplant physicians, developed consensus recommendations using Grading of Recommendation, Assessment, Development, and Evaluation (GRADE) methodology employing a GRADE guideline development tool. The panel agrees with previous recommendations for the preferential use of bone marrow as a graft source and the use of rabbit over horse antithymocyte globulin (ATG) for HCT conditioning. Fludarabine containing regimens are preferred for patients at high risk of graft failure and those receiving matched unrelated or haploidentical donor transplant. Given advancements in HCT, the panel does not endorse the historical 40-year age cut-off for considering upfront HCT in adults, acknowledging that fit older patients may also benefit from HCT. The panel also endorses increased utilization of HCT by prioritizing matched unrelated or haploidentical donor HCT over immunosuppressive therapy in children and adults who lack a matched related donor. Finally, the panel suggests either calcineurin inhibitor plus methotrexate or post-transplant cyclophosphamide-based graft-versus-host disease (GVHD) prophylaxis for matched related or matched unrelated donor recipients. These recommendations reflect a significant advancement in transplant strategies for SAA and highlight the importance of ongoing and further research to revisit current evidence in terms of donor choice, conditioning chemotherapy, GVHD prophylaxis and post-transplant immunosuppression.
Collapse
Affiliation(s)
- Raheel Iftikhar
- Armed Forces Bone Marrow Transplant Center, National University of Medical Sciences, Rawalpindi, Pakistan.
| | - Zachariah DeFilipp
- Hematopoietic Cell Transplant and Cell Therapy Program, Massachusetts General Hospital, Boston, Massachusetts
| | - Amy E DeZern
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Michael A Pulsipher
- Division of Pediatric Hematology and Oncology, Intermountain Primary Children's Hospital, Huntsman Cancer Institute, Spencer Fox Eccles School of Medicine at the University of Utah, Salt Lake City, UT
| | - Nelli Bejanyan
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, Florida
| | - Lauri M Burroughs
- Fred Hutchinson Cancer Center, Clinical Research Division and University of Washington, Seattle, Washington
| | - Mohamed A Kharfan-Dabaja
- Division of Hematology-Oncology, Blood and Marrow Transplantation and Cellular Therapy Program, Mayo Clinic, Jacksonville, Florida
| | - Sally Arai
- Division of BMT and Cell Therapy, Department of Medicine, Stanford University Medical Center, Stanford, California
| | - Adetola Kassim
- Division of Hematology/Oncology, The Vanderbilt Clinic, Nashville, Tennessee
| | - Ryotaro Nakamura
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Blachy J Dávila Saldaña
- Division of Blood and Marrow Transplantation, Children's National Hospital, Washington District of Columbia
| | - Mahmoud Aljurf
- Adult Hematology and Stem Cell Transplant, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mehdi Hamadani
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Paul A Carpenter
- Fred Hutchinson Cancer Center, Clinical Research Division and University of Washington, Seattle, Washington
| | - Joseph H Antin
- Dana-Farber Cancer Institute/Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
2
|
Zhao R, Ji D, Zhou Y, Qi L, Li F. Porcine Anti-Lymphocyte Globulin, Cyclosporine A Plus Thrombopoietin Receptor Agonists Achieved Similar Efficacy and Survival Compared to Allogeneic Hematopoietic Stem Cell Transplantation in Patients with Aplastic Anemia. Int J Gen Med 2024; 17:4025-4036. [PMID: 39290233 PMCID: PMC11407318 DOI: 10.2147/ijgm.s465184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/02/2024] [Indexed: 09/19/2024] Open
Abstract
Background Immunosuppressive therapy (IST) with horse or rabbit anti-human thymocyte immunoglobulin (h-/r-ATG) and hematopoietic stem cell transplantation (HSCT) are two baseline treatments for severe aplastic anemia (SAA) and transfusion-dependent non-severe aplastic anemia (TD-NSAA) patients. Addition of thrombopoietin receptor agonists (TPO-RAs) to standard IST therapy (h-/r-ATG) has greatly improved the survival of SAA, whereas porcine anti-lymphocyte globulin (p-ALG) combined with TPO-RAs still had a matter of debate. Methods We retrospectively compared the data of 48 AA patients in our center between 2020 and 2022, 23 AA patients received with p-ALG ± TPO-RAs, 25 AA patients underwent matched sibling donor (MSD-) or haploidentical (haplo-) HSCT. Results For patients in the HSCT group, the ORR was 90.9% which was significantly higher than that in the IST±TPO-RAs group (45.5%, P = 0.001) at 3 months; moreover, patients who underwent HSCT achieved faster transfusion independence, better CR rate, shorter time of recovery normal blood routine, and the percentage of normal blood routine (all P < 0.05) compared with IST±TPO-RAs group. However, the ORR were similary at 6 months in the two groups (95.5% vs 81.8% P = 0.342), with a median follow up of 19.8 months (range, 0.3-38.2 months), the 2-year FFS and OS in the two cohorts has no different. Subgroup analysis further indicated that the 2-year FFS and OS were similar between IST+TPO-RAs and haplo-HSCT subgroups, as well as in IST+TPO-RAs and MSD-HSCT cohorts. Moreover, the first-time hospitalizations were much more expensive in the HSCT group than in the IST±TPO-RAs group (402 756 vs. 292 902 yuan, P = 0.002). Conclusion P-ALG-based-IST±TPO-RAs is a good treatment option with similar FFS and OS compared to allo- HSCT for AA patients without the opportunity of HSCT.
Collapse
Affiliation(s)
- Ran Zhao
- Jiangxi Provincial Key Laboratory of Hematological Diseases, Department of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Dexiang Ji
- Jiangxi Provincial Key Laboratory of Hematological Diseases, Department of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Yulan Zhou
- Jiangxi Provincial Key Laboratory of Hematological Diseases, Department of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
- Jiangxi Clinical Research Center for Hematologic Disease, Nanchang, Jiangxi, People's Republic of China
| | - Ling Qi
- Jiangxi Provincial Key Laboratory of Hematological Diseases, Department of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
- Jiangxi Clinical Research Center for Hematologic Disease, Nanchang, Jiangxi, People's Republic of China
| | - Fei Li
- Jiangxi Provincial Key Laboratory of Hematological Diseases, Department of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
- Jiangxi Clinical Research Center for Hematologic Disease, Nanchang, Jiangxi, People's Republic of China
| |
Collapse
|
3
|
Shimano KA, Rothman JA, Allen SW, Castillo P, de Jong JLO, Dror Y, Geddis AE, Lau BW, McGuinn C, Narla A, Overholt K, Pereda MA, Sharathkumar A, Sasa G, Nakano TA, Myers K, Gloude NJ, Broglie L, Boklan J. Treatment of newly diagnosed severe aplastic anemia in children: Evidence-based recommendations. Pediatr Blood Cancer 2024; 71:e31070. [PMID: 38757488 DOI: 10.1002/pbc.31070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/18/2024]
Abstract
Severe aplastic anemia (SAA) is a rare potentially fatal hematologic disorder. Although overall outcomes with treatment are excellent, there are variations in management approach, including differences in treatment between adult and pediatric patients. Certain aspects of treatment are under active investigation in clinical trials. Because of the rarity of the disease, some pediatric hematologists may have relatively limited experience with the complex management of SAA. The following recommendations reflect an up-to-date evidence-based approach to the treatment of children with newly diagnosed SAA.
Collapse
Affiliation(s)
- Kristin A Shimano
- Department of Pediatrics, Division of Allergy, Immunology, and Bone Marrow Transplant, University of California San Francisco Benioff Children's Hospital, San Francisco, California, USA
| | - Jennifer A Rothman
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Duke University Medical Center, Durham, North Carolina, USA
| | - Steven W Allen
- Department of Pediatrics, Pediatric Hematology/Oncology, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Paul Castillo
- Department of Pediatrics, Division of Pediatric Hematology Oncology, UF Health Shands Children's Hospital, Gainesville, Florida, USA
| | - Jill L O de Jong
- Department of Pediatrics, Section of Hematology/Oncology/Stem Cell Transplantation, University of Chicago, Chicago, Illinois, USA
| | - Yigal Dror
- Department of Pediatrics, Marrow Failure and Myelodysplasia Program, Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, Canada
| | - Amy E Geddis
- Department of Pediatrics, Cancer and Blood Disorders Center, Seattle Children's Hospital, Seattle, Washington, USA
| | - Bonnie W Lau
- Department of Pediatrics, Pediatric Hematology-Oncology, Dartmouth-Hitchcock, Lebanon, New Hampshire, USA
| | - Catherine McGuinn
- Department of Pediatrics, Division of Pediatric Hematology Oncology, Weill Cornell Medicine, New York, New York, USA
| | - Anupama Narla
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Kathleen Overholt
- Department of Pediatrics, Pediatric Hematology/Oncology, Riley Hospital for Children at Indiana University, Indianapolis, Indiana, USA
| | - Maria A Pereda
- Department of Pediatrics, Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Anjali Sharathkumar
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Ghadir Sasa
- Sarah Cannon Transplant and Cellular Therapy Network, San Antonio, Texas, USA
| | - Taizo A Nakano
- Department of Pediatrics, Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Kasiani Myers
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Nicholas J Gloude
- Department of Pediatrics, University of California San Diego, Rady Children's Hospital, San Diego, California, USA
| | - Larisa Broglie
- Department of Pediatric Hematology/Oncology/Blood and Marrow Transplantation, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jessica Boklan
- Department of Pediatrics, Center for Cancer and Blood Disorders, Phoenix Children's Hospital, Phoenix, Arizona, USA
| |
Collapse
|
4
|
Chen X, Liu F, Ren Y, Zhang L, Wan Y, Yang W, Chen X, Zhang L, Zou Y, Chen Y, Zhu X, Guo Y. Outcome of first or second transplantation using unrelated umbilical cord blood without ATG conditioning regimen for pediatric bone marrow failure disorders. Blood Cells Mol Dis 2024; 104:102793. [PMID: 37659255 DOI: 10.1016/j.bcmd.2023.102793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/03/2023] [Accepted: 08/17/2023] [Indexed: 09/04/2023]
Abstract
BACKGROUND Unrelated umbilical cord blood transplantation (UCBT) for bone marrow failure (BMF) disorders using conditioning regimens without Anti-Thymocyte Globulin (ATG) has been used as an alternative transplantation for emerging patients without matched-sibling donors. Experience with this transplant modality in children is limited, especially as a secondary treatment for transplant failure patients. PROCEDURE We retrospectively reviewed 17 consecutive bone marrow failure patients who underwent unrelated umbilical cord blood transplantation in our center and received conditioning regimens of Total Body Irradiation (TBI) or Busulfan (BU) + Fludarabine (FLU) + Cyclophosphamide (CY). RESULTS Among the 17 BMF patients, 15 patients were treated with first cord blood transplantation and another 2 with secondary cord blood transplantation because of graft failure after first haploidentical stem cell transplantation at days +38 and +82. All patients engrafted with a median donor cell chimerism of 50 % at days +7 (range, 16 %-99.95 %) and finally rose to 100 % at days +30. Median time to neutrophil engraftment was 19 days (range, 12-30) and time to platelet engraftment was 32 days (range, 18-61). Pre-engraftment syndrome (PES) was found in 16 patients (94.11 %, 16/17). Cumulative incidence of grades II to IV acute GVHD was 58.8 % (95 % CI: 32.7-84.9 %), and 17.6 % (95 % CI: 2.6-37.9 %) of patients developed chronic GVHD. The 3-year overall survival (OS) and failure-free survival (FFS) rates were 92.86 ± 6.88 %. CONCLUSION UCBT is an effective alternative treatment for bone marrow failure pediatric patients. TBI/BU + FLU + CY regimen ensure a high engraftment rate for unrelated umbilical cord blood transplantation, which overcomes the difficulty of graft failure. Secondary salvage use of cord blood transplantation may still be useful for patients who have failed after other transplantation.
Collapse
Affiliation(s)
- Xia Chen
- Department of Pediatrics, State Key Laboratory of Experimental Haematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Fang Liu
- Department of Pediatrics, State Key Laboratory of Experimental Haematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yuanyuan Ren
- Department of Pediatrics, State Key Laboratory of Experimental Haematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Luyang Zhang
- Department of Pediatrics, State Key Laboratory of Experimental Haematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yang Wan
- Department of Pediatrics, State Key Laboratory of Experimental Haematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Wenyu Yang
- Department of Pediatrics, State Key Laboratory of Experimental Haematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiaojuan Chen
- Department of Pediatrics, State Key Laboratory of Experimental Haematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Li Zhang
- Department of Pediatrics, State Key Laboratory of Experimental Haematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yao Zou
- Department of Pediatrics, State Key Laboratory of Experimental Haematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yumei Chen
- Department of Pediatrics, State Key Laboratory of Experimental Haematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiaofan Zhu
- Department of Pediatrics, State Key Laboratory of Experimental Haematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Ye Guo
- Department of Pediatrics, State Key Laboratory of Experimental Haematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
| |
Collapse
|
5
|
Zhao J, Ma L, Zheng M, Su L, Guo X. Meta-analysis of the results of haploidentical transplantation in the treatment of aplastic anemia. Ann Hematol 2023; 102:2565-2587. [PMID: 37442821 DOI: 10.1007/s00277-023-05339-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 06/24/2023] [Indexed: 07/15/2023]
Abstract
This meta-analysis was to evaluate the outcome of haploidentical hematopoietic stem cell transplantation (Haplo-HSCT) for aplastic anemia (AA) compared with matched related donor (MRD)-HSCT, matched unrelated donor (MUD)-HSCT, and immunosuppressive therapy (IST). Pubmed, Embase, Cochrane Library, Web of Science, CNKI, WanFang, and VIP databases were searched for relevant studies from inception to 22 June 2022. Relative risk (RR) was used to indicate the effect indicator, with a 95% confidence interval (CI) being applied to express the effect size. A subgroup analysis based on the literature quality (low, fair, and high) was applied. Totally, 25 studies were included in this study, comprising 2252 patients. Our findings demonstrated no difference between Haplo-HSCT and MRD-HSCT in 1-, 2-, and 3-year overall survival (OS), failure-free survival (FFS), and engraftment. However, Haplo-HSCT had higher incidences of II-IV acute graft-versus-host disease (aGVHD), chronic GVHD (cGVHD), and cytomegalovirus infection. There were no differences in 3- and 5-year OS, 3-year FFS, platelet engraftment, graft failure (GF), II-IV grade of aGVHD, and complication between Haplo-HSCT and MUD-HSCT; however, Haplo-HSCT had a lower incidence of cGVHD. Compared with IST, Haplo-HSCT had a higher 3-year FFS and 3- and 6-month response rate. However, there were no differences in 3- and 5-year OS, and 12-month response rate between Haplo-HSCT and IST. This study suggests that Haplo-HSCT may be a realistic therapeutic option for AA, which may provide a reference for decision-making.
Collapse
Affiliation(s)
- Jin Zhao
- Department of Hematology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, 3 Zhigongxinjie Street, Taiyuan, 030013, People's Republic of China
| | - Li Ma
- Department of Hematology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, 3 Zhigongxinjie Street, Taiyuan, 030013, People's Republic of China
| | - Meijing Zheng
- Department of Hematology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, 3 Zhigongxinjie Street, Taiyuan, 030013, People's Republic of China
| | - Liping Su
- Department of Hematology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, 3 Zhigongxinjie Street, Taiyuan, 030013, People's Republic of China.
| | - Xiaojing Guo
- Department of Hematology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, 3 Zhigongxinjie Street, Taiyuan, 030013, People's Republic of China.
| |
Collapse
|
6
|
Kharya G, Jaiswal SR, Bhat S, Raj R, Yadav SP, Dua V, Sen S, Bakane A, Badiger S, Uppuluri R, Rastogi N, Sachdev M, Sharma B, Saifullah A, Chakrabarti S. Impact of Conditioning Regimen and Graft-versus-Host Disease Prophylaxis on The Outcome of Haploidentical Peripheral Blood Stem Cell Transplantation for High-Risk Severe Aplastic Anemia in Children and Young Adults: A Report from the Pediatric Severe Aplastic Anemia Consortium of India. Transplant Cell Ther 2023; 29:199.e1-199.e10. [PMID: 36572385 DOI: 10.1016/j.jtct.2022.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/16/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Allogenic hematopoietic cell transplantation (HCT) is the best curative approach for patients with severe aplastic anemia (SAA). The outcomes of HCT from haploidentical family donors (HFDs) have improved, making it a feasible option for patients lacking an HLA-identical donor. However, data on HFD-HCT for younger patients with SAA is sparse. In this multicenter retrospective study, we evaluated the outcomes of 79 patients undergoing HFD-HCT for SAA. All the patients were heavily pretransfused, the median time to HCT was >12 months, and 67% had failed previous therapies. Conditioning was based on fludarabine (Flu)-cyclophosphamide (Cy)-antithymocyte globulin (ATG)/total body irradiation (TBI) with or without thiotepa/melphalan (TT/Mel). Post-transplantation Cy (PTCy) and calcineurin inhibitors (CNIs)/sirolimus were used as graft-versus-host disease (GVHD) prophylaxis with or without abatacept. The rate of primary graft failure (PGF) was 16.43% overall, lower in patients conditioned with TT/Mel. The incidences of acute and chronic GVHD were 26.4% and 18.9%, respectively. At a median follow-up of 48 months, the overall survival (OS) and event-free survival (EFS) were 61.6% and 58.1%, respectively. Both OS and EFS were better in the TT/Mel recipients and with abatacept as GVHD prophylaxis. On multivariate analysis, the use of abatacept was found to favorably impact the outcome variables, including GVHD and EFS. Our study suggests that PTCy-based HFD-HCT is a reasonable option for young patients with high-risk SAA, in whom optimization of conditioning and GVHD prophylaxis might further improve outcomes.
Collapse
Affiliation(s)
- Gaurav Kharya
- Centre For Bone Marrow Transplant & Cellular Therapy, Indrprastha Apollo Hospital, New Delhi, India.
| | - Sarita R Jaiswal
- Department of Hematology and Bone Marrow Transplant, Dharamshilla Narayana Superspeciality Hospital, New Delhi, India
| | - Sunil Bhat
- Department of Pediatric Hematology Oncology & Bone Marrow Transplant, Narayana Health City, Bangalore, Karnataka, India
| | - Revathi Raj
- Apollo Cancer Centre, Chennai, Tamil Nadu, India
| | - Satya P Yadav
- Department of Pediatric Hematology Oncology and Bone Marrow Transplant, Medanta-The Medicity, Gurugram, Harayana, India
| | - Vikas Dua
- Department of Pediatric Hematology Oncology and Bone Marrow Transplant, Fortis Memorial Research Hospital, Gurugram, Haryana, India
| | - Santanu Sen
- Department of Pediatric Hematology Oncology and Bone Marow Transplant, Kokilaben Dhirubhai Ambani Hospital & Medical Research Institute, Mumbai, India
| | - Atish Bakane
- Centre For Bone Marrow Transplant & Cellular Therapy, Indrprastha Apollo Hospital, New Delhi, India
| | - Shobha Badiger
- Department of Pediatric Hematology Oncology & Bone Marrow Transplant, Narayana Health City, Bangalore, Karnataka, India
| | | | - Neha Rastogi
- Department of Pediatric Hematology Oncology and Bone Marrow Transplant, Medanta-The Medicity, Gurugram, Harayana, India
| | - Mansi Sachdev
- Department of Pediatric Hematology Oncology and Bone Marrow Transplant, Fortis Memorial Research Hospital, Gurugram, Haryana, India
| | - Bharti Sharma
- Centre For Bone Marrow Transplant & Cellular Therapy, Indrprastha Apollo Hospital, New Delhi, India
| | - Ashraf Saifullah
- Department of Hematology and Bone Marrow Transplant, Dharamshilla Narayana Superspeciality Hospital, New Delhi, India
| | - Suparno Chakrabarti
- Department of Hematology and Bone Marrow Transplant, Dharamshilla Narayana Superspeciality Hospital, New Delhi, India
| |
Collapse
|
7
|
Lu Y, Xiong M, Sun RJ, Zhang JP, Zhao YL, Wei ZJ, Cao XY, Zhou JR, Liu DY, Lu DP. Comparisons of unmanipulated haploidentical donor, unrelated cord blood donor and matched unrelated donor hematopoietic stem cell transplantation in pediatric acquired severe aplastic anemia: a single center study. Leuk Lymphoma 2022; 63:3307-3316. [PMID: 36067518 DOI: 10.1080/10428194.2022.2118527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We retrospectively analyzed the outcomes of 240 pediatric SAA patients who underwent unmanipulated alternative HSCT between September 2012 and November 2020 at our center. The incidence of GF (PGF + SGF) was higher in the UCBD cohort compared to the MUD and HID cohorts [(13.5% ± 6.5%) vs (0%), and (1.6% ± 5.3%), respectively, p = .0001]. The incidence of platelet engraftment within 180 days post-HSCT was lower in the UCBD cohort (82.4% ± 2.3%) compared to the HID group (96.2% ± 1.3%) and the MUD group (97.4% ± 0.5%) (p = .020). the median duration time for platelet engraftment in the UCBD cohort was 29 days, longer than in HID cohort 14 days and the MUD cohort 13 days (p = .005). UCBD cohort had a lower 3-year failure-free survival (FFS) (70.5% ± 8.4%) compared to the HID cohort (81.1% ± 4.3%) and the MUD cohort (92.5% ± 3.1%) (p = .030) and lower 3-year GVHD/relapse free survival (GRFS) (63.3% ± 9.5.4%) compared to the HID cohort (75.5% ± 6.8%) and MUD cohort (87.9% ± 4.5%) (p = .002). UCBD-HSCT had inferior FFS and GRFS compared to an HSCT with an HID or MUD in pediatric patients with acquired SAA. A UCBD-HSCT had a higher GF and lower incidence of platelet engraftment and longer platelet engraftment time.
Collapse
Affiliation(s)
- Yue Lu
- Department of Bone Marrow Transplantation, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Min Xiong
- Department of Bone Marrow Transplantation, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Rui-Juan Sun
- Department of Bone Marrow Transplantation, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Jian-Ping Zhang
- Department of Bone Marrow Transplantation, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Yan-Li Zhao
- Department of Bone Marrow Transplantation, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Zhi-Jie Wei
- Department of Bone Marrow Transplantation, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Xing-Yu Cao
- Department of Bone Marrow Transplantation, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Jia-Rui Zhou
- Department of Bone Marrow Transplantation, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - De-Yan Liu
- Department of Bone Marrow Transplantation, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Dao-Pei Lu
- Department of Bone Marrow Transplantation, Hebei Yanda Lu Daopei Hospital, Langfang, China
| |
Collapse
|
8
|
Xu ZL, Xu LP, Wu DP, Wang SQ, Zhang X, Xi R, Gao SJ, Xia LH, Yang JM, Jiang M, Wang X, Liu QF, Chen J, Zhou M, Huang XJ. Comparable long-term outcomes between upfront haploidentical and identical sibling donor transplant in aplastic anemia: a national registry-based study. Haematologica 2022; 107:2918-2927. [PMID: 35615930 PMCID: PMC9713560 DOI: 10.3324/haematol.2022.280758] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/13/2022] [Indexed: 12/14/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) remains a curative option for severe aplastic anemia (SAA), and transplantation from identical sibling donors (ISD) has been recommended as a first-line treatment. Haploidentical donor (HID) transplantation for SAA has made great advances; thus, an increased role of HID-SCT in SAA should be considered. We performed a national registry-based analysis comparing long-term outcomes in the upfront HID or upfront ISD SCT setting. A total of 342 SAA patients were enrolled, with 183 patients receiving HID SCT and 159 receiving ISD SCT. The estimated 9-year overall survival and failure-free survival were 87.1±2.5% and 89.3±3.7% (P=0.173) and 86.5±2.6% versus 88.1±3.8% (P=0.257) for patients in the HID and ISD SCT groups, respectively. Transplantation from HID or ISD SCT has greatly improved quality of life (QoL) levels post-HSCT compared to pre-HSCT. The occurrence of chronic graft-versus-host disease was the only identified adverse factor affecting each subscale of QoL. Physical and mental component summaries in adults as well as physical, mental, social, and role well-being in children were all similar between HID and ISD SCT at 5-year time points. At the last follow-up, the proportion of returning to society was comparable between the HID and ISD groups, showing 78.0% versus 84.6% among children and 74.6% versus 81.2% among adults. These data suggest that haploidentical transplant can be considered a potential therapeutic option in the upfront setting for SAA patients in the absence of an HLA-identical related or unrelated donor.
Collapse
Affiliation(s)
- Zheng-Li Xu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China; National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Lan-Ping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China; National Clinical Research Center for Hematologic Disease, Beijing, China
| | - De-Pei Wu
- The First affiliated Hospital of Soochow University, Soochow, China
| | | | - Xi Zhang
- Xinqiao Hospital affiliated to Third Military Medical University, Chongqing, China
| | - Rui Xi
- General Hospital of Lanzhou Military Region of PLA, Lanzhou, China
| | - Su-Jun Gao
- The First Hospital of Jilin University, Changchun, China
| | - Ling-Hui Xia
- Xiehe Hospital affiliated to Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Min Yang
- Changhai Hospital affiliated to Second Military Medical University, Shanghai, China
| | - Ming Jiang
- The First affiliated Hospital of Xinjiang Medical University, Urumchi, China
| | - Xin Wang
- Shandong Provincial Hospital, Jinan, China
| | - Qi-Fa Liu
- Nanfang Hospital affiliated to Southern Medical University, Guangzhou, China
| | - Jia Chen
- The First affiliated Hospital of Soochow University, Soochow, China
| | - Ming Zhou
- Guangzhou First People's Hospital, Guangzhou, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China; National Clinical Research Center for Hematologic Disease, Beijing, China; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China; Peking-Tsinghua Center for Life Sciences, Beijing, China.
| |
Collapse
|
9
|
Chen J, Zhang Y, Chen X, Pang A, Zhao Y, Liu L, Ma R, Wei J, He Y, Yang D, Zhang R, Zhai W, Ma Q, Jiang E, Han M, Zhou J, Feng S. Comparison of porcine ALG and rabbit ATG on outcomes of HLA-haploidentical hematopoietic stem cell transplantation for patients with acquired aplastic anemia. Cancer Cell Int 2022; 22:89. [PMID: 35189891 PMCID: PMC8862236 DOI: 10.1186/s12935-021-02410-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/15/2021] [Indexed: 11/10/2022] Open
Abstract
Objective To evaluate the efficacy and safety of P-ALG (porcine anti-lymphocyte globulin) and R-ATG (rabbit anti-thymocyte globulin) in the conditioning regime for patients with acquired aplastic anemia who underwent HLA-haploidentical hematopoietic stem cell transplantation (halpo-HSCT). Methods A total of 91 patients with acquired aplastic anemia who received haplo-HSCT at our center between January 2014 and December 2020 were retrospectively reviewed. Twenty-eight patients were in the P-ALG group while sixty-three patients were in the R-ATG group. Results The median time was 11 versus 13 days (P = 0.294) for myeloid engraftment and 12.5 versus 15 days (P = 0.465) for platelet engraftment in the P-ALG and R-ATG groups, respectively. There were no significant difference in 5-year overall survival (74.83% ± 8.24% vs 72.29% ± 6.26%, P = 0.830), GVHD-free, failure-free survival (71.05% ± 8.65% vs 62.71% ± 6.22%, P = 0.662), failure-free survival (74.83% ± 8.24% vs 66.09% ± 5.84%, P = 0.647) and transplantation-related mortality (25.17% ± 8.24% vs 26.29% ± 6.22%, P = 0.708) between the two groups. The incidence of aGVHD (acute graft versus host disease) (65.39% ± 9.33% vs 62.71% ± 6.30%, P = 0.653), II–IV aGVHD (38.46% ± 9.54% vs 35.64% ± 6.24%, P = 0.695), III–IV aGVHD (19.23% ± 7.73% vs 10.53% ± 4.07%, P = 0.291), cGVHD (chronic graft versus host disease) (22.22% ± 12.25% vs 22.31% ± 6.30%, P = 0.915), and moderate to severe cGVHD (5.56% ± 5.40% vs 9.28% ± 4.46%, P = 0.993) were not significantly different. Similar outcomes were observed between the P-ALG and R-ATG groups for severe bacterial infection (17.9% vs 25.4%, P = 0.431), invasive fungal diseases (3.6% vs 9.5%, P = 0.577) and graft rejection (0% vs 9.5%, P = 0.218). However, the incidence of cytomegalovirus infection and Epstein-Barr virus infection was significantly lower in the P-ALG group (46.4% vs 71.4%, P = 0.022; 3.6% vs 25.4%, P = 0.014). Conclusion The efficacy and safety of P-ALG were similar with R-ATG in the setting of haplo-HSCT for patients with acquired aplastic anemia patients. P-ALG could be an alternative for R-ATG. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02410-z.
Collapse
Affiliation(s)
- Juan Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Yuanfeng Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300020, China. .,Department of Hematology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong Province, China.
| | - Xin Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Aiming Pang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Yuanqi Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Li Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Runzhi Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Jialin Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Yi He
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Donglin Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Rongli Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Weihua Zhai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Qiaoling Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Mingzhe Han
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Jiaxi Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300020, China.
| | - Sizhou Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300020, China.
| |
Collapse
|
10
|
Wang Q, Ren H, Liang Z, Liu W, Yin Y, Wang Q, Wang Q, Sun Y, Xu W, Qiu Z, Ou J, Han N, Wang J, Dong Y, Li Y. Comparable Outcomes in Acquired Severe Aplastic Anemia Patients With Haploidentical Donor or Matched Related Donor Transplantation: A Retrospective Single-Center Experience. Front Med (Lausanne) 2022; 8:807527. [PMID: 35141252 PMCID: PMC8820587 DOI: 10.3389/fmed.2021.807527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/24/2021] [Indexed: 11/13/2022] Open
Abstract
Clinical data of patients with severe aplastic anemia (SAA) were retrospectively analyzed to evaluate the outcomes of haploidentical hematopoietic stem cell transplantation (HID-HSCT) with matched related sibling hematopoietic stem cell transplantation (MSD-HSCT) in complications and survivals. Thirty consecutive patients were enrolled in the study with a median follow-up of 50 months (range 4, 141), and the median age of the patients was 21 years (range 3, 49). All the patients achieved myeloid engraftment in the two cohorts. The cumulative incidences of platelet engraftment were 95.5 and 100% in HID cohort and MSD cohort, respectively. The median time for neutrophil and platelet recovery was 11 (range 9, 19) and 15 (range 10, 25) days in HID cohort, and 12 (range 10, 19) and 14 (range 8, 25) days in MSD cohort. The cumulative incidences of grade II–IV and grade III–IV acute graft vs. host disease (aGvHD) in HID cohort and in MSD cohort were 18.9 vs. 14.3% (p = 0.77) and 10.5 vs. 0% (p = 0.42), respectively. The cumulative incidences of chronic graft vs. host disease (cGvHD) was 22.7% in HID cohort and 25.5% in MSD cohort (p = 0.868). The 5-year overall survival (OS) rates and 5-year failure-free survival (FFS) rates in HID cohort and MSD cohort were 85.1 vs. 87.5% (p = 0.858), 80.3 vs. 87.5% (p = 0.635), respectively. The median time to achieve engraftment, cumulative incidence of aGvHD and cGvHD, and the 5-year OS and FFS rates were not significantly different between the two cohorts. We suggest that HID-HSCT might be a safety and effective option for SAA patients without a matched donor.
Collapse
|
11
|
Zhang XT, Wang X, Cao J, Chen W, Qi KM, Qi N, Liang F, Dong XY, Tang GF, Li DP, Sang W, Li ZY, Cheng H, Xu KL. Treatment outcome of 301 aplastic anemia patients in China: a 10-year follow-up and real-world data from single institute experience. Hematology 2021; 26:1025-1030. [PMID: 34895103 DOI: 10.1080/16078454.2021.2009646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
OBJECTIVE This study was carried out to explore clinical treatment and prognosis of patients with AA with different economic status. Methods: We retrospectively analyzed the clinical outcome of 301 patients with AA in our center from April 2008 to November 2017. RESULTS Treatments included anti-thymocyte globulin (ATG) or anti-lymphocyte globulin (ALG) combined with cyclosporineA (CsA) (9%), allogeneic hematopoietic stem cell transplantation (allo-HSCT) (7%), CsA combined with androgen or CsA alone (hereinafter referred to as CsA group) (77%), no specific therapy (7%). The 5-year overall survival (OS) was higher in patients with non-severe AA (94.6%) compared with those with severe AA (SAA) (66.6%, P <.001), very severe AA (VSAA) (41.3%, P <.001). The 5-year OS was 76.5% in patients with SAA/VSAA treated with ATG/ALG combined with CsA, 75% in allo-HSCT group(P =.936), 63.6% in CsA group (P =.557), which was significantly higher than no specific therapy group (21.8%, P =.002). For those who responded to CsA , the duration of CsA (median follow-up time: 27 months, 1-101 months) was positively correlated with progression-free survival (r=0.603, P <.001). Multivariate analysis revealed that 36-65 years of age, SAA/VSAA, and no specific therapy were independent risk factors for inferior survival. CONCLUSION The treatment of elderly patients with AA still faces challenges. CsA is benefit to the survival of SAA/VSAA patients. AA patients, who responded to initialy CsA treatment, may benefit from prolonged CsA treatment. In view of the side effects of CsA, the timing of withdrawal is worth further exploration.
Collapse
Affiliation(s)
- Xiao-Tian Zhang
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Xue Wang
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Jiang Cao
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Wei Chen
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Kun-Ming Qi
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Na Qi
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Fei Liang
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Xue-Yan Dong
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Guo-Feng Tang
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China
| | - De-Peng Li
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Wei Sang
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Zhen-Yu Li
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Hai Cheng
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Kai-Lin Xu
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China.,Institute of Hematology, Xuzhou Medical University, Xuzhou, People's Republic of China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, People's Republic of China
| |
Collapse
|
12
|
Xu LP, Yu Y, Cheng YF, Zhang YY, Mo XD, Han TT, Wang FR, Yan CH, Sun YQ, Chen YH, Wang JZ, Xu ZL, Tang FF, Han W, Wang Y, Zhang XH, Huang XJ. Development and validation of a mortality predicting scoring system for severe aplastic anaemia patients receiving haploidentical allogeneic transplantation. Br J Haematol 2021; 196:735-742. [PMID: 34741461 DOI: 10.1111/bjh.17916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/05/2021] [Accepted: 10/10/2021] [Indexed: 12/29/2022]
Abstract
Haploidentical allogeneic haematopoietic stem cell transplantation (haplo-HSCT) is a significant alternative treatment for severe aplastic anaemia (SAA). To improve this process by modifying the risk stratification system, we conducted a retrospective study using our database. 432 SAA patients who received haplo-HSCT between 2006 and 2020 were enrolled. These patients were divided into a training (n = 288) and a validation (n = 144) subset randomly. In the training cohort, longer time from diagnosis to transplantation, poorer Eastern Cooperative Oncology Group (ECOG) status and higher haematopoietic cell transplantation-specific comorbidity index (HCT-CI) score were independent risk factors for worse treatment-related mortality (TRM) in the final multivariable model. The haplo-HSCT scoring system was developed by these three parameters. Three-year TRM after haplo-HSCT were 6% [95% confidence interval (CI), 1-21%], 21% (95% CI, 7-40%), and 47% (95% CI, 20-70%) for the low-, intermediate-, and high-risk group, respectively (P < 0·0001). In the validation cohort, the haplo-HSCT scoring system also separated patients into three risk groups with increasing risk of TRM: intermediate-risk [hazard ratio (HR) 2·45, 95% CI, 0·92-6·53] and high-risk (HR 11·74, 95% CI, 3·07-44·89) compared with the low-risk group (P = 0·001). In conclusion, the haplo-HSCT scoring system could effectively predict TRM after transplantation.
Collapse
Affiliation(s)
- Lan-Ping Xu
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Peking University People's Hospital, Beijing, China
| | - Yu Yu
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Peking University People's Hospital, Beijing, China
| | - Yi-Fei Cheng
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Peking University People's Hospital, Beijing, China
| | - Yuan-Yuan Zhang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Peking University People's Hospital, Beijing, China
| | - Xiao-Dong Mo
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Peking University People's Hospital, Beijing, China
| | - Ting-Ting Han
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Peking University People's Hospital, Beijing, China
| | - Feng-Rong Wang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Peking University People's Hospital, Beijing, China
| | - Chen-Hua Yan
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Peking University People's Hospital, Beijing, China
| | - Yu-Qian Sun
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Peking University People's Hospital, Beijing, China
| | - Yu-Hong Chen
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Peking University People's Hospital, Beijing, China
| | - Jing-Zhi Wang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Peking University People's Hospital, Beijing, China
| | - Zheng-Li Xu
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Peking University People's Hospital, Beijing, China
| | - Fei-Fei Tang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Peking University People's Hospital, Beijing, China
| | - Wei Han
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Peking University People's Hospital, Beijing, China
| | - Yu Wang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Peking University People's Hospital, Beijing, China
| | - Xiao-Hui Zhang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Peking University People's Hospital, Beijing, China
| | - Xiao-Jun Huang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Peking University People's Hospital, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| |
Collapse
|
13
|
Gonzalez-Villarreal G, Pequeño-Luevano M, Baltazar-Arellano S, Sandoval A, Sotomayor-Duque G, Martinez-Pozos G, Ortega A, de Leon R, Hernandez R. First-line haploidentical stem cell transplantation in children and adolescents with severe aplastic anemia using mobilized peripheral blood as source of CD34+: Single-institutional experience in a transplant center from northeast Mexico. Pediatr Transplant 2021; 25:e14082. [PMID: 34255405 DOI: 10.1111/petr.14082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/01/2021] [Accepted: 06/14/2021] [Indexed: 11/28/2022]
Abstract
INTRODUCTION The only curative treatment for severe aplastic anemia in children is an allogeneic stem cell transplant; however, few patients have a matched related or unrelated donor. Haploidentical stem cell transplantation (haplo-SCT) using bone marrow (BM) and peripheral blood stem cells (PBSC) has been recently described as effective and safe. In this study, we retrospectively report the outcome of twelve pediatric patients who underwent haplo-SCT using only PBSC. METHODS The conditioning regimen consisted on rabbit anti-thymocyte globulin (r-ATG) 2.5 mg/kg/d on days -7, -6,-5, and -4, and cyclophosphamide (Cy) 50 mg/kg/d on days -3 and -2. We used Cy 50 mg/kg/d on days +3 and +4, tacrolimus and mycophenolic acid as graft versus host disease (GVHD) prophylaxis. RESULTS The median follow-up was 1,099 days (45-1258 days). The overall survival rate up-to-date is 83.3%. In 10 of the 12 patients, a sustained graft was achieved. None of the patients had acute or chronic GVHD. CONCLUSIONS Haplo-SCT could be established as a first-line treatment when there is no matched related or unrelated donor. According to this short sample and previous reports, PBSC are a feasible option effectively used as the sole source of stem cells. Additionally, post-transplant cyclophosphamide remains a good strategy for GVHD prevention.
Collapse
Affiliation(s)
- Guadalupe Gonzalez-Villarreal
- Division of Stem Cell Transplantation. Hospital No. 25 Instituto Mexicano del Seguro Social (IMSS), Monterrey, Mexico
| | - Myrna Pequeño-Luevano
- Division of Stem Cell Transplantation. Hospital No. 25 Instituto Mexicano del Seguro Social (IMSS), Monterrey, Mexico
| | | | - Adriana Sandoval
- Pediatric Hematology Division. Hospital No. 25 IMSS, Monterrey, Mexico
| | - Guillermo Sotomayor-Duque
- Division of Stem Cell Transplantation. Hospital No. 25 Instituto Mexicano del Seguro Social (IMSS), Monterrey, Mexico
| | - Gerardo Martinez-Pozos
- Division of Stem Cell Transplantation. Hospital No. 25 Instituto Mexicano del Seguro Social (IMSS), Monterrey, Mexico
| | - Andrés Ortega
- Division of Stem Cell Transplantation. Hospital No. 25 Instituto Mexicano del Seguro Social (IMSS), Monterrey, Mexico
| | - Rosa de Leon
- Chief of Hematology Division. Hospital No. 25 IMSS, Monterrey, Mexico
| | - Roberto Hernandez
- Chief of Hemato- Oncology Division. Hospital No. 25 IMSS, Monterrey, Mexico
| |
Collapse
|
14
|
Alotaibi H, Aljurf M, de Latour R, Alfayez M, Bacigalupo A, Fakih RE, Schrezenmeier H, Ahmed SO, Gluckman E, Iqbal S, Höchsmann B, Halkes C, de la Fuente J, Alshehry N, Cesaro S, Passweg J, Dufour C, Risitano AM, DiPersio J, Motabi I. Upfront Alternative Donor Transplant versus Immunosuppressive Therapy in Patients with Severe Aplastic Anemia Who Lack a Fully HLA-Matched Related Donor: Systematic Review and Meta-Analysis of Retrospective Studies, on Behalf of the Severe Aplastic Anemia Working Party of the European Group for Blood and Marrow Transplantation. Transplant Cell Ther 2021; 28:105.e1-105.e7. [PMID: 34649020 DOI: 10.1016/j.jtct.2021.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/18/2021] [Accepted: 10/03/2021] [Indexed: 10/20/2022]
Abstract
Idiopathic aplastic anemia is a rare and life-threatening disorder, and hematopoietic stem cell transplantation (HSCT) from a matched sibling donor (MSD) is the standard treatment strategy for young patients. Alternative donor transplantation (ADT) from a matched unrelated donor or an HLA haploidentical donor is not commonly used in the frontline setting. This systematic review/meta-analysis was conducted to compare ADT as an upfront, rather than delayed, treatment strategy in the absence of an MSD to immunosuppressive therapy (IST) in severe aplastic anemia (SAA). We searched PubMed/MEDLINE and Embase (1998 to 2019) for studies that compared the outcomes of ADT with IST as upfront therapy in patients with SAA. We included studies with 5 patients or more in each arm. Studies that included patients with inherited forms of bone marrow failure syndromes were excluded. The primary outcome was the 5-year overall survival (OS) rate. Five studies met the inclusion criteria and were included in this meta-analysis. The pooled 5-year odds ratio (OR) for OS was statistically significant at 0.44 (95% confidence interval [CI], 0.23 to 0.85) in favor of upfront ADT. In addition, survival was compared between upfront ADT versus salvage ADT in 6 studies. The pooled 5-year OR for OS was statistically significant at 0.31 (95% CI, 0.15 to 0.64) in favor of upfront ADT. Although this analysis has some limitations, including the retrospective nature of the included studies, the lack of ethnic diversity, the predominantly pediatric population, and the relatively suboptimal IST regimen used in some of the studies, it indicates that upfront ADT is a potential alternative treatment option in young and pediatric SAA patients who lack an HLA identical sibling donor, particularly when optimal IST is not available. © 2021 American Society for Transplantation and Cellular Therapy. Published by Elsevier Inc.
Collapse
Affiliation(s)
| | - Mahmoud Aljurf
- King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | | | | | | | - Riad El Fakih
- King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | | | - Syed Osman Ahmed
- King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Eliane Gluckman
- Eurocord, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France; Monacord, Centre Scientifique de Monaco, Principauté de Monaco, Monaco
| | - Shahid Iqbal
- Manchester Royal Infirmary, Manchester, United Kingdom
| | - Britta Höchsmann
- Eurocord, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France; Monacord, Centre Scientifique de Monaco, Principauté de Monaco, Monaco
| | | | - Josu de la Fuente
- Imperial College Healthcare/Imperial College London, London, United Kingdom
| | | | - Simone Cesaro
- Pediatric Hematology Oncology, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | | | - Carlo Dufour
- Hematology Unit, G. Gaslini Children Research Hospital, Genova, Italy
| | | | - John DiPersio
- Washington University School of Medicine, St Louis, Missouri
| | | |
Collapse
|
15
|
Niu YY, Ma LM, Wang T. Haploidentical haematopoietic stem cell transplantation for the treatment of severe aplastic anaemia patients with high-risk factors who lack an HLA-matched sibling donor. Transfus Clin Biol 2021; 29:53-59. [PMID: 34343707 DOI: 10.1016/j.tracli.2021.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 10/20/2022]
Abstract
This study aimed to analyse the efficacy of haploidentical donor (HID) haematopoietic stem cell transplantation as a first-line treatment for severe aplastic anaemia (SAA) with high-risk factors (infection or very severe aplastic anaemia,VSAA) in patients who lack an HLA-matched sibling donor (MSD). The patients with infection were treated with anti-infection therapy, and allogeneic haematopoietic stem cell transplantation (HSCT) was carried out after the infection being effectively controlled was in accordance with the stable infection (SI) standard. A total of 44 SAA patients receiving MSD transplantation (n=19) and HID transplantation (n=25) were included in this study. There was no significant difference in neutrophil engraftment between the two groups [MSD vs. HID, 19 (11-38) vs. 22 (15-47).P=0.241], and the difference in platelet engraftment was statistically significant [MSD vs. HID, 11(7-33) vs. 20 (12-69), P=0.034]. The HID group exhibited a higher incidence of grade II-IV acute graft-versus-host disease (aGVHD) (HID vs. MSD, 48.0% vs10.5%, P=0.034)and a higher incidence of chronic GVHD (cGVHD) than the MSD group (64.0% vs. 21.1%, P=0.026). There was no significant difference between overall survival (OS) following HID and MSD transplantation (84.0% vs. 89.5%, P=0.664) and failure-free survival (FFS)(80.0% vs. 84.2%, P=0.965). The interval from diagnosis to transplantation (>50d) and ECOG (>2) were independent factors associated with OS and FFS. HID HSCT may be an effective and safe option for SAA patients with high-risk factors who lack an MSD.
Collapse
Affiliation(s)
- Y-Y Niu
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032 China
| | - L-M Ma
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032 China
| | - T Wang
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032 China.
| |
Collapse
|
16
|
Outcomes of haploidentical bone marrow transplantation in patients with severe aplastic anemia-II that progressed from non-severe acquired aplastic anemia. Front Med 2021; 15:718-727. [PMID: 34170455 DOI: 10.1007/s11684-020-0807-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/29/2020] [Indexed: 10/21/2022]
Abstract
Severe aplastic anemia II (SAA-II) progresses from non-severe aplastic anemia (NSAA). The unavailability of efficacious treatment has prompted the need for haploidentical bone marrow transplantation (haplo-BMT) in patients lacking a human leukocyte antigen (HLA)-matched donor. This study aimed to investigate the efficacy of haplo-BMT for patients with SAA-II. Twenty-two patients were included and followed up, and FLU/BU/CY/ATG was used as conditioning regimen. Among these patients, 21 were successfully engrafted, 19 of whom survived after haplo-BMT. Four patients experienced grade II-IV aGvHD, including two with grade III-IV aGvHD. Six patients experienced chronic GvHD, among whom four were mild and two were moderate. Twelve patients experienced infections during BMT. One was diagnosed with post-transplant lymphoproliferative disorder and one with probable EBV disease, and both recovered after rituximab infusion. Haplo-BMT achieved 3-year overall survival and disease-free survival rate of 86.4% ± 0.73% after a median follow-up of 42 months, indicating its effectiveness as a salvage therapy. These promising outcomes may support haplo-BMT as an alternative treatment strategy for patients with SAA-II lacking HLA-matched donors.
Collapse
|
17
|
Yang Y, Ji J, Tang Z, Han B. Comparisons Between Frontline Therapy and a Combination of Eltrombopag Plus Immunosuppression Therapy and Human Leukocyte Antigen-Haploidentical Hematopoietic Stem Cell Transplantation in Patients With Severe Aplastic Anemia: A Systematic Review. Front Oncol 2021; 11:614965. [PMID: 33981596 PMCID: PMC8107688 DOI: 10.3389/fonc.2021.614965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/16/2021] [Indexed: 11/13/2022] Open
Abstract
Background and Aims: This study aimed at comparing the efficacy and safety of eltrombopag (EPAG) plus immunosuppressive therapies (ISTs) and haploidentical hematopoietic stem cell transplantation (haplo-HSCT) in the frontline treatment for severe aplastic anemia (SAA) patients. Methods: Four electronic databases and Clinicaltrials.gov were comprehensively searched from January 2010 to August 2020. Studies that aimed at evaluating the efficacy and safety of EPAG+IST or haplo-HSCT in SAA patients were included. One-/2-year overall survival (OS), complete response (CR), and overall response rates (ORRs) were indirectly compared between EPAG+IST and haplo-HSCT. Results: A total of 447 patients involved in 10 cohort studies were found to be eligible for this study. A narrative synthesis was performed due to lack of data directly comparing the outcome of EPAG+IST and haplo-HSCT. Consistent with the analysis results in the whole population, subgroup analyses in the age-matched population showed that there was no significant difference in ORR between EPAG+IST and haplo-HSCT groups. However, the CR rate was lower in the EPAG+IST group when compared with the haplo-HSCT group. The incidence rate of clonal evolution/SAA relapse ranged at 8-14 and 19-31% in the EPAG+IST group but not reported in the haplo-HSCT group. The incidence rate for acute graft vs. host disease (aGVHD) and chronic graft vs. host disease (cGVHD) ranged at 52-57 and 12-67%, respectively, for the haplo-HSCT group. The main causes of deaths were infections in the EPAG+IST group, and GVHD and infections in the haplo-HSCT group. Conclusion: EPAG+IST has a comparable ORR and 1-/2-year OS but lower CR rate when indirectly compared with haplo-HSCT in the frontline treatment of patients with SAA. Patients treated with haplo-HSCT may exhibit a high incidence of GVHD, whereas patients treated with EPAG+IST may experience more relapses or clone evolution.
Collapse
Affiliation(s)
- Yuan Yang
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jiang Ji
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Zengwei Tang
- Department of Hepatobiliary and Pancreatic Surgery, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Bing Han
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
18
|
Li R, Tu J, Zhao J, Pan H, Fang L, Shi J. Mesenchymal stromal cells as prophylaxis for graft-versus-host disease in haplo-identical hematopoietic stem cell transplantation recipients with severe aplastic anemia?-a systematic review and meta-analysis. Stem Cell Res Ther 2021; 12:106. [PMID: 33541414 PMCID: PMC7860635 DOI: 10.1186/s13287-021-02170-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 01/14/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) are an emerging prophylaxis option for graft-versus-host disease (GVHD) in haplo-identical hematopoietic stem cell transplantation (haplo-HSCT) recipients with severe aplastic anemia (SAA), but studies have reported inconsistent results. This systematic review and meta-analysis evaluates the efficacy of MSCs as prophylaxis for GVHD in SAA patients with haplo-HSCT. METHODS Studies were retrieved from PubMed, EMBASE, Cochrane, Web of Science, and http://clinicaltrials.gov from establishment to February 2020. Twenty-nine single-arm studies (n = 1456) were included, in which eight (n = 241) studies combined with MSCs and eleven (n = 1215) reports without MSCs in haplo-HSCT for SAA patients. The primary outcomes were the incidences of GVHD. Other outcomes included 2-year overall survival (OS) and the incidence of cytomegalovirus (CMV) infection. Odds ratios (ORs) were calculated to compare the results pooled through random or fixed effects models. RESULTS Between MSCs and no MSCs groups, no significant differences were found in the pooled incidences of acute GVHD (56.0%, 95% CI 48.6-63.5% vs. 47.2%, 95% CI 29.0-65.4%; OR 1.43, 95% CI 0.91-2.25; p = 0.123), grade II-IV acute GVHD (29.8%, 95% CI 24.1-35.5% vs. 30.6%, 95% CI 26.6-34.6%; OR 0.97, 95% CI 0.70-1.32; p = 0.889), and chronic GVHD (25.4%, 95% CI 19.8-31.0% vs. 30.0%, 95% CI 23.3-36.6%; OR 0.79, 95% CI 0.56-1.11; p = 0.187). Furtherly, there was no obvious difference in 2-year OS (OR 0.98, 95% CI 0.60-1.61; p = 1.000) and incidence of CMV infection (OR 0.61, 95% CI 0.40-1.92; p = 0.018). CONCLUSIONS Our meta-analysis indicates that the prophylactic use of MSC co-transplantation is not an effective option for SAA patients undergoing haplo-HSCT. Hence, the general co-transplantation of MSCs for SAA haplo-HSCT recipients may lack evidence-based practice.
Collapse
Affiliation(s)
- Ruonan Li
- Regenerative Medicine Clinic, National Clinical Research Center for Blood Diseases, State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Jingke Tu
- Regenerative Medicine Clinic, National Clinical Research Center for Blood Diseases, State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Jingyu Zhao
- Regenerative Medicine Clinic, National Clinical Research Center for Blood Diseases, State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Hong Pan
- Regenerative Medicine Clinic, National Clinical Research Center for Blood Diseases, State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Liwei Fang
- Regenerative Medicine Clinic, National Clinical Research Center for Blood Diseases, State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Jun Shi
- Regenerative Medicine Clinic, National Clinical Research Center for Blood Diseases, State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 288 Nanjing Road, Heping District, Tianjin, 300020, China.
| |
Collapse
|
19
|
Xu ZL, Huang XJ. Haploidentical stem cell transplantation for aplastic anemia: the current advances and future challenges. Bone Marrow Transplant 2020; 56:779-785. [PMID: 33323948 DOI: 10.1038/s41409-020-01169-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/24/2020] [Accepted: 11/20/2020] [Indexed: 12/11/2022]
Abstract
Haematopoietic stem cell transplantation (HSCT) is a curative option for severe aplastic anemia (SAA). Finding a suitable matched donor in a timely manner is a challenge. The availability of haploidentical donors and their successful use in transplantation have expanded valid choices for SAA. In recent decades, haploidentical HSCT (haplo-HSCT) for the treatment of SAA has been continuously attempted, and great strides have been made. Nowadays, haplo-HSCT using different regimens has overcome the difficulty of graft failure and severe graft-versus-host disease (GvHD), and achieved inspiring survival outcomes in SAA. The regimens consist mainly of granulocyte colony-stimulating factor (G-CSF) plus antithymocyte globulin (ATG), posttransplantation cyclophosphamide (PT-Cy), and ex vivo graft T-cell depletion (TCD). In particular, the G-CSF and ATG-based regimen includes the largest sample size and the successful wide use of the G-CSF and ATG-based regimen has promoted haplo-HSCT a higher priority in SAA patients without matched related or unrelated donors in China. Recent studies have also indicated that haplo-HSCT using PT-Cy or TCD regimen is a practicable alternative, but the sample size is relatively small. Here, we offer an overview of clinical results obtained through the use of haploidentical transplantation in SAA, mainly focusing on current advances and future challenges.
Collapse
Affiliation(s)
- Zheng-Li Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.
| |
Collapse
|
20
|
Zhu Y, Gao Q, Hu J, Liu X, Guan D, Zhang F. Allo-HSCT compared with immunosuppressive therapy for acquired aplastic anemia: a system review and meta-analysis. BMC Immunol 2020; 21:10. [PMID: 32138642 PMCID: PMC7059290 DOI: 10.1186/s12865-020-0340-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/26/2020] [Indexed: 11/21/2022] Open
Abstract
Background Allogeneic hematopoietic stem cell transplantation (allo-HSCT) and immunosuppressive therapy (IST) are two major competing treatment strategies for acquired aplastic anemia (AA). Whether allo-HSCT is superior to IST as a front-line treatment for patients with AA has been a subject of debate. To compare the efficacy and safety of allo-HSCT with that of IST as a front-line treatment for patients with AA, we performed a meta-analysis of available studies that examined the impact of the two major competing treatment strategies for AA. Results Fifteen studies including a total of 5336 patients were included in the meta-analysis. The pooled hazard ratio (HR) for overall survival (OS) was 0.4 (95% CI 0.074–0.733, P = 0.016, I2 = 58.8%) and the pooled HR for failure-free survival (FFS) was 1.962 (95% CI 1.43–2.493, P = 0.000, I2 = 0%). The pooled relative risk (RR) for overall response rate (ORR) was 1.691 (95% CI 1.433–1.996, P = 0.000, I2 = 11.6%). Conclusion Although survival was significantly longer among AA patients undergoing first-line allo-HSCT compared to those undergoing first-line IST, the selection of initial treatment for patients with newly diagnosed AA still requires comprehensive evaluation of donor availability, patient age, expected quality of life, risk of disease relapse or clonal evolution after IST, and potential use of adjunctive eltrombopag.
Collapse
Affiliation(s)
- Yangmin Zhu
- Department of Therapeutic Center of Anemia, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College (CAMS & PUMC), Tianjin, China
| | - Qingyan Gao
- Department of Therapeutic Center of Anemia, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College (CAMS & PUMC), Tianjin, China
| | - Jing Hu
- Department of Therapeutic Center of Anemia, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College (CAMS & PUMC), Tianjin, China
| | - Xu Liu
- Department of Therapeutic Center of Anemia, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College (CAMS & PUMC), Tianjin, China
| | - Dongrui Guan
- Department of Therapeutic Center of Anemia, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College (CAMS & PUMC), Tianjin, China
| | - Fengkui Zhang
- Department of Therapeutic Center of Anemia, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College (CAMS & PUMC), Tianjin, China.
| |
Collapse
|
21
|
Geng C, Liu X, Chen M, Yang C, Han B. Comparison of frontline treatment with intensive immunosuppression therapy and HLA-haploidentical hematopoietic stem cell transplantation for young patients with severe aplastic anemia - A meta analysis. Leuk Res 2019; 88:106266. [PMID: 31743865 DOI: 10.1016/j.leukres.2019.106266] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/14/2019] [Accepted: 10/28/2019] [Indexed: 12/30/2022]
Abstract
AIM To compare the survivals and treatment related complications between immunosuppression therapy (IST) and haploidentical hematopoietic stem cell transplantation (haplo-HSCT) on children and young adults with severe aplastic anemia (SAA) in East Asia during the last 10 years. METHODS After looking through Pubmed, Embase, Web of Science and Wanfang Data, a total of 491 patients from 7 retrospective studies conducted in East-Asia were included for meta-analysis based on Stata program. Publication bias was measured by Begger and Egger tests. 1/3/5/10 years overall survivals (OS), failure free survivals (FFS), incidence rates of adverse events and their 95% confidence intervals (CI) were pooled and compared. RESULTS There was no difference of 1/3/5/10 years OS between IST group and haplo-HSCT group, but the 1/3/5/10 years FFS were significantly better in haplo-HSCT group compared with IST group (p < 0.01). However, higher incidence of infections was observed in haplo-HSCT group compared with IST group (76% versus 45%, p < 0.001). The pooled estimates for acute graft versus host disease (aGVHD) and chronic graft versus host disease (cGVHD) were 54% (95% Cl, 43%~64%) and 43% (95% CI, 18%~68%), respectively for haplo-HSCT group. Among them 38% (95%CI, 22%~54%) was grade III aGVHD and 11% (95% Cl, 0%~22%) was grade III-IV aGVHD. Death causes included severe infection, bleeding in IST group and infection, GVHD in haplo-HSCT group. CONCLUSIONS The long-term survivals were similar for young patients with SAA who received IST or haplo-HSCT as the frontline treatment. The haplo-HSCT group showed a better FFS, on the other hand, had higher incidence of infection and GVHD.
Collapse
Affiliation(s)
- Chang Geng
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Xinjian Liu
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Institute of Hematology of Henan Province, 127 Dongming Road, Zhengzhou, China
| | - Miao Chen
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Chen Yang
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Bing Han
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
22
|
Kim H, Lee KH, Sohn SK, Kim I, Kim SH, Park Y, Choi JH, Kwak JY, Kim MK, Bae SH, Shin HJ, Won JH, Lee WS, Choi Y. Effect of Stem Cell Source and Dose on Allogeneic Hematopoietic Stem Cell Transplantation in Adult Patients with Idiopathic Aplastic Anemia: Data from the Korean Aplastic Anemia Trials. Acta Haematol 2019; 143:232-243. [PMID: 31390612 DOI: 10.1159/000501496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 06/08/2019] [Indexed: 11/19/2022]
Abstract
OBJECTIVE We aimed to evaluate the effect of stem cell source and dose on the survival of various donor subgroups, such as matched sibling donor (MSDs) and alternative donors (ADs), upon bone marrow (BM) or peripheral blood stem cell (PBSC) infusion in aplastic anemia (AA). METHODS We retrospectively investigated the effects of stem cell source and dose on allogeneic hematopoietic stem cell transplantation (alloHSCT) in AA. RESULTS A total of 267 patients were included in this analysis. The BM-treated group showed an association with low incidence of any-grade acute graft versus host disease (GvHD) (p < 0.001). A higher stem cell dose was related with a low incidence of extensive chronic GvHD in MSDs (p = 0.025). Multivariate analysis for overall survival (OS) revealed that only age at alloHSCT <31 years (p = 0.010) and prior platelet transfusion <86 U (p = 0.046) in MSDs and higher stem cell dose (hazard ratio = 2.596, p = 0.045) in ADs were favorable prognostic factors. CONCLUSION PBSCs could be preferred in AD because high stem cell dose may be easily achieved to improve the OS at the expense of acute GvHD. However, BM stem cells are preferred in MSDs.
Collapse
Affiliation(s)
- Hawk Kim
- Division of Hematology, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, Republic of Korea,
| | - Kyoo-Hyung Lee
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sang Kyun Sohn
- Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Inho Kim
- Seoul National University Hospital, Seoul, Republic of Korea
| | - Sung-Hyun Kim
- Dong-A University Medical Center, Busan, Republic of Korea
| | - Yong Park
- Korea University Anam Hospital, Seoul, Republic of Korea
| | - Jung Hye Choi
- Hanyang University Hospital, Guri, Republic of Korea
| | - Jae-Yong Kwak
- Chonbuk National University Hospital, Jeonju, Republic of Korea
| | - Min Kyoung Kim
- Yeungnam University Medical Center, Gyeongsan, Republic of Korea
| | - Sung Hwa Bae
- Daegu Catholic University Hospital, Daegu, Republic of Korea
| | - Ho-Jin Shin
- Pusan National University Hospital, Busan, Republic of Korea
| | - Jong Ho Won
- Soonchunhyang University Hospital Seoul, Seoul, Republic of Korea
| | - Won Sik Lee
- Inje University Busan Paik Hospital, Busan, Republic of Korea
| | - Yunsuk Choi
- Division of Hematology and Cellular Therapy, Ulsan University Hospital, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
23
|
Immunosuppressive therapy versus haploidentical transplantation in adults with acquired severe aplastic anemia. Bone Marrow Transplant 2019; 54:1319-1326. [PMID: 30670825 DOI: 10.1038/s41409-018-0410-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 11/08/2018] [Accepted: 11/10/2018] [Indexed: 11/08/2022]
Abstract
Our study aimed to compare treatment outcomes between hematopoietic stem cell transplantation (HSCT) from haploidentical donors (HID) and immunosuppressive therapy (IST) in adults with acquired severe aplastic anemia (SAA). The medical records of 113 SAA adults who received IST, including rabbit ATG and cyclosporin (N = 37), or HID HSCT (N = 76) within 6 months of diagnosis at two institutions were retrospectively reviewed. Estimated 8-year overall survival (OS) was comparable between the IST and HID HSCT groups (75.6 vs. 83.7%, respectively, P = 0.328), but failure free survival (FFS) was significantly lower in IST group than HID HSCT group (38.5 vs. 83.7%, respectively, P = 0.001). Furthermore, a significant improvement in FFS was observed with HSCT over IST in patients under 40 years old. At the last follow-up, patients in HSCT group achieved better Karnofsky Performance Status (KPS) than those in IST group (100 [20-100] vs. 90 [20-100], P = 0.002). In terms of blood count, 83.1% (54/65) of patients in HSCT group showed complete recovery compared to only 38.2% (13/34) in IST group (P < 0.001). These data suggest that HID HSCT could be an effective alternative treatment option for SAA adults, and additional prospective studies are necessary.
Collapse
|
24
|
Yang S, Yuan X, Ma R, Jiang L, Guo J, Zang Y, Shi J, Yang J, Lei P, Liu Z, Zhang Y, Zhu Z. Comparison of Outcomes of Frontline Immunosuppressive Therapy and Frontline Haploidentical Hematopoietic Stem Cell Transplantation for Children with Severe Aplastic Anemia Who Lack an HLA-Matched Sibling Donor. Biol Blood Marrow Transplant 2019; 25:975-980. [PMID: 30658223 DOI: 10.1016/j.bbmt.2019.01.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/09/2019] [Indexed: 11/17/2022]
Abstract
We compared the outcomes of immunosuppressive therapy (IST) with those of T cell-replete haploidentical donor hematopoietic stem cell transplantation (haplo-HSCT) in children and adolescents with severe aplastic anemia (SAA). The medical records of 49 patients with SAA who received frontline IST (n = 29) or frontline haplo-HSCT (n = 20) between 2012 and 2016 were analyzed retrospectively. Fourteen patients responded after the first IST, and 1 patient responded after the second IST in the frontline IST group; 12 patients underwent salvage HSCT after IST failure. Sixteen of the 20 patients who underwent frontline haplo-HSCT survived without treatment failure. The 3-year overall survival of the frontline IST group was comparable to that of the frontline haplo-HSCT group (79.3 ± 7.5% versus 85.0 ± 8.0%; χ2 = 0.110; P = .740). The 3-year failure-free survival was lower in the frontline IST group compared with the frontline haplo-HSCT group (35.9 ± 10.9% versus 80.0 ± 8.9%; χ2 = 4.089; P = .043). Five patients of the IST group who underwent salvage HSCT achieved long survival without event. The event-free survival was lower in the salvage HSCT group compared with the haplo-HSCT group (41.7 ± 14.2% versus 80.0 ± 8.9%; χ2 = 3.992; P = .046), and the incidences of acute GVHD, grade II-IV acute GVHD, chronic GVHD, and severe infection were comparable between the 2 groups. Our results suggest that frontline haplo-HSCT may be a better treatment than IST for children and adolescents with SAA who lack an HLA age-matched familial donor.
Collapse
Affiliation(s)
- Shiwei Yang
- Institute of Hematology of Henan Provincial People's Hospital, Henan Provincial People's Hospital, Henan, China
| | - Xiaoli Yuan
- Department of Hematology, People's Hospital of Zhengzhou University, Henan, China
| | - Rongjun Ma
- Department of Hematology, People's Hospital of Zhengzhou University, Henan, China
| | - Li Jiang
- Department of Hematology, People's Hospital of Zhengzhou University, Henan, China
| | - Jianmin Guo
- Department of Hematology, People's Hospital of Zhengzhou University, Henan, China
| | - Yuzhu Zang
- Department of Hematology, People's Hospital of Zhengzhou University, Henan, China
| | - Jie Shi
- Department of Hematology, People's Hospital of Zhengzhou University, Henan, China
| | - Jing Yang
- Department of Hematology, People's Hospital of Zhengzhou University, Henan, China
| | - Pingchong Lei
- Department of Hematology, People's Hospital of Zhengzhou University, Henan, China
| | - Zhongwen Liu
- Department of Hematology, People's Hospital of Zhengzhou University, Henan, China
| | - Yin Zhang
- Department of Hematology, People's Hospital of Zhengzhou University, Henan, China
| | - Zunmin Zhu
- Department of Hematology, People's Hospital of Zhengzhou University, Henan, China.
| |
Collapse
|
25
|
Affiliation(s)
- Neal S Young
- From the Hematology Branch, National Heart, Lung, and Blood Institute, Bethesda, MD
| |
Collapse
|
26
|
Fu HX, Huang XJ. [Advances in haploidentical hematopoietic stem cell transplantation for non-malignant hematological diseases]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2018; 39:691-696. [PMID: 30180476 PMCID: PMC7342844 DOI: 10.3760/cma.j.issn.0253-2727.2018.08.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Indexed: 11/05/2022]
|