1
|
Westphal SG, Mannon RB. Biomarkers of Rejection in Kidney Transplantation. Am J Kidney Dis 2025; 85:364-374. [PMID: 39419272 PMCID: PMC11846701 DOI: 10.1053/j.ajkd.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/02/2024] [Accepted: 07/26/2024] [Indexed: 10/19/2024]
Abstract
Alloimmune injury is a major cause of long-term kidney allograft failure whether due to functionally stable (subclinical) or overt clinical rejection. These episodes may be mediated by immune cells (cellular rejection) or alloantibody (antibody-mediated rejection). Early recognition of immune injury is needed for timely appropriate intervention to maintain graft functional viability. However, the conventional measure of kidney function (ie, serum creatinine) is insufficient for immune monitoring due to limited sensitivity and specificity for rejection. As a result, there is need for biomarkers that more sensitively detect the immune response to the kidney allograft. Recently, several biomarkers have been clinically implemented into the care of kidney transplant recipients. These biomarkers attempt to achieve multiple goals including (1) more sensitive detection of clinical and subclinical rejection, (2) predicting impending rejection, (3) monitoring for the adequacy of treatment response, and (4) facilitating personalized immunosuppression. In this review, we summarize the findings to date in commercially available biomarkers, along with biomarkers approaching clinical implementation. While we discuss the analytical and clinical validity of these biomarkers, we identify the challenges and limitations to widespread biomarker use, including the need for biomarker-guided prospective studies to establish evidence of clinical utility of these new assays.
Collapse
Affiliation(s)
- Scott G Westphal
- Division of Nephrology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska; Medical Service, Nebraska Western Iowa Veterans Affairs Health Care System, Omaha, Nebraska
| | - Roslyn B Mannon
- Medical Service, Nebraska Western Iowa Veterans Affairs Health Care System, Omaha, Nebraska.
| |
Collapse
|
2
|
Gupta G, Athreya A, Kataria A. Biomarkers in Kidney Transplantation: A Rapidly Evolving Landscape. Transplantation 2025; 109:418-427. [PMID: 39020463 DOI: 10.1097/tp.0000000000005122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
The last decade has seen an explosion in clinical research focusing on the use of noninvasive biomarkers in kidney transplantation. Much of the published literature focuses on donor-derived cell-free DNA (dd-cfDNA). Although initially studied as a noninvasive means of identifying acute rejection, it is now clear that dd-cfDNA is more appropriately described as a marker of severe injury and irrespective of the etiology, elevated dd-cfDNA ≥0.5% portends worse graft outcomes. Blood gene expression profiling is also commercially available and has mostly been studied in the context of early identification of subclinical rejection, although additional data is needed to validate these findings. Torque teno virus, a ubiquitous DNA virus, has emerged as a biomarker of immunosuppression exposure as peripheral blood Torque teno virus copy numbers might mirror the intensity of host immunosuppression. Urinary chemokine tests including C-X-C motif chemokine ligand 9 and C-X-C motif chemokine ligand 10 have recently been assessed in large clinical trials and hold promising potential for early diagnosis of both subclinical and acute rejection, as well as, for long-term prognosis. Urinary cellular messenger RNA and exosome vesicular RNA based studies require additional validation. Although current data does not lend itself to conclusion, future studies on multimodality testing may reveal the utility of serial surveillance for individualization of immunosuppression and identify windows of opportunity to intervene early and before the irreversible allograft injury sets in.
Collapse
Affiliation(s)
- Gaurav Gupta
- Hume-Lee Transplant Center, Virginia Commonwealth University, Richmond, VA
- Division of Nephrology, Virginia Commonwealth University, Richmond, VA
| | - Akshay Athreya
- Division of Nephrology, Virginia Commonwealth University, Richmond, VA
| | - Ashish Kataria
- Division of Nephrology, Medical College of Georgia, Augusta, GA
| |
Collapse
|
3
|
Jaikaransingh V, Makadia B, Khan HS, Hasan I. Clinical use of donor-derived cell-free DNA in kidney transplantation. World J Transplant 2024; 14:97219. [PMID: 39697447 PMCID: PMC11438940 DOI: 10.5500/wjt.v14.i4.97219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/12/2024] [Accepted: 07/23/2024] [Indexed: 09/20/2024] Open
Abstract
Traditional monitoring of kidney transplant recipients for allograft dysfunction caused by rejection involves serial checks of serum creatinine with biopsy of the renal allograft if dysfunction is suspected. This approach is labor-intensive, invasive and costly. In addition, because this approach relies on a rise in serum creatinine above historical baselines, injury to the allograft can be extensive before this rise occurs. In an effort to address this, donor-derived cell-free DNA (dd-cf DNA) is being used with increasing frequency in the clinical setting as a means of diagnosing a rejection of the renal allograft early in the course. This can potentially allow for early intervention to minimize not only injury, but the intensity of antirejection therapy needed and the avoidance of side effects. Here, we will review the available methodology for the determination and quantification of dd-cf DNA, the data supporting its use in clinical practice and the limitations of this technology.
Collapse
Affiliation(s)
- Vishal Jaikaransingh
- Department of Medicine, Divison of Nephrology, University of Florida College of Medicine-Jacksonville, Jacksonville, FL 32209, United States
| | - Bhaktidevi Makadia
- Department of Medicine, Divison of Nephrology, University of Florida College of Medicine-Jacksonville, Jacksonville, FL 32209, United States
| | - Hafiz S Khan
- Department of Medicine, Divison of Nephrology, University of Florida College of Medicine-Jacksonville, Jacksonville, FL 32209, United States
| | - Irtiza Hasan
- Department of Medicine, Divison of Nephrology, University of Florida College of Medicine-Jacksonville, Jacksonville, FL 32209, United States
| |
Collapse
|
4
|
Mour G, Parajuli S. Can Blood Gene Expression Profile and Donor-Derived Cellfree DNA Guide Postrejection Management among Kidney Transplant Recipients? KIDNEY360 2024; 5:1410-1412. [PMID: 39480667 PMCID: PMC11556940 DOI: 10.34067/kid.0000000570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Affiliation(s)
- Girish Mour
- Division of Nephrology, Department of Medicine, Mayo Clinic, Phoenix, Arizona
| | - Sandesh Parajuli
- Division of Nephrology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
5
|
Cao C, Yuan L, Wang Y, Liu H, Cuello Garcia H, Huang H, Tan W, Zhou Y, Shi H, Jiang T. Analysis of the primary factors influencing donor derived cell-free DNA testing in kidney transplantation. Front Immunol 2024; 15:1435578. [PMID: 39308855 PMCID: PMC11412870 DOI: 10.3389/fimmu.2024.1435578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/20/2024] [Indexed: 09/25/2024] Open
Abstract
The donor-derived cell-free DNA (ddcfDNA) is found in the plasma and urine of kidney transplant recipients and displays notable potential in diagnosing rejection, specifically antibody-mediated rejection (ABMR). Nonetheless, the quantitative methods of ddcfDNA lacking standardization and diverse detection techniques can impact the test outcomes. Besides, both the fraction and absolute values of ddcfDNA have been reported as valuable markers for rejection diagnosis, but they carry distinct meanings and are special in various pathological conditions. Additionally, ddcfDNA is highly sensitive to kidney transplant injury. The various sampling times and combination with other diseases can indeed impact ddcfDNA detection values. This review comprehensively analyses the various factors affecting ddcfDNA detection in kidney transplantation, including the number of SNPs and sequencing depths. Furthermore, different pathological conditions, distinct sampling time points, and the presence of complex heterologous signals can influence ddcfDNA testing results in kidney transplantation. The review also provides insights into ddcfDNA testing on different platforms along with key considerations.
Collapse
Affiliation(s)
- Changling Cao
- Biostatistics, Research & Development (R&D), AlloDx Biotech (Shanghai), Co., Ltd, Shanghai, China
| | - Li Yuan
- Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yinfeng Wang
- Biostatistics, Research & Development (R&D), AlloDx Biotech (Shanghai), Co., Ltd, Shanghai, China
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Haitao Liu
- Medical Department, AlloDx Biotech (Shanghai), Co., Ltd, Shanghai, China
| | | | - Huiqiang Huang
- Biostatistics, Research & Development (R&D), AlloDx Biotech (Shanghai), Co., Ltd, Shanghai, China
| | - Weiqiang Tan
- Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yang Zhou
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Haifeng Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, China
- Medical Department, AlloDx Biotech (Shanghai), Co., Ltd, Shanghai, China
| | - Tingya Jiang
- Medical Department, AlloDx Biotech (Shanghai), Co., Ltd, Shanghai, China
| |
Collapse
|
6
|
Kataria A, Athreya A, Gupta G. Biomarkers in Kidney Transplantation. ADVANCES IN KIDNEY DISEASE AND HEALTH 2024; 31:427-435. [PMID: 39232613 DOI: 10.1053/j.akdh.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/11/2024] [Indexed: 09/06/2024]
Abstract
Currently in the United States, there are more than 250,000 patients with a functioning kidney allograft and over 100,000 waitlisted patients awaiting kidney transplant, with a burgeoning number added to the kidney transplant wait list every year. Although early post-transplant care is delivered at the transplant center, the increasing number of kidney transplant recipients requires general nephrologists to actively participate in the long-term care of these patients. Serum creatinine and proteinuria are imperfect traditional biomarkers of allograft dysfunction and lag behind subclinical allograft injury. This manuscript reviews the various clinically available biomarkers in the field of kidney transplantation for a general nephrologist with a focus on the utility of donor-derived cell-free DNA, as a marker of early allograft injury. Blood gene expression profiling, initially studied in the context of early identification of subclinical rejection, awaits validation in larger multicentric trials. Urinary cellular messenger ribonucleic acid and chemokine CXCL10 hold promising potential for early diagnosis of both subclinical and acute rejection. Torque tenovirus, a ubiquitous DNA virus is emerging as a biomarker of immunosuppression exposure as peripheral blood torque tenovirus copy numbers might mirror the intensity of host immunosuppression. Although high-quality evidence is still being generated, evidence and recommendations are provided to aid the general nephrologist in implementation of novel biomarkers in their clinical practice.
Collapse
Affiliation(s)
| | - Akshay Athreya
- Division of Nephrology, Virginia Commonwealth University, Richmond, VA
| | - Gaurav Gupta
- Division of Nephrology, Virginia Commonwealth University, Richmond, VA; Hume-Lee Transplant Center, Virginia Commonwealth University, Richmond, VA.
| |
Collapse
|
7
|
Kumar N, Tandon A, Rana R, Rana DS, Bhalla AK, Gupta A, Sachdeva MP, Huirem RS, Chauhan K, Yashavarddhan MH, Basnal A, Gupta R, Mallick PK, Ganguly NK. Donor-Derived Cell-Free DNA as a Non-Invasive Biomarker for Graft Rejection in Kidney Transplant Recipients: A Prospective Study among the Indian Population. Diagnostics (Basel) 2023; 13:3540. [PMID: 38066781 PMCID: PMC10706139 DOI: 10.3390/diagnostics13233540] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 12/23/2024] Open
Abstract
Monitoring graft health and detecting graft rejection is crucial for the success of post-transplantation outcomes. In Western countries, the use of donor-derived cell-free DNA (dd-cfDNA) has gained widespread recognition as a diagnostic tool for kidney transplant recipients. However, the role of dd-cfDNA among the Indian population remains unexplored. The recipients were categorized into two groups: the post-transplant recipient (PTR) group (n = 16) and the random recipient (RR) group (n = 87). Blood samples were collected daily from the PTR group over a 7-day period, whereas the RR group's samples were obtained at varying intervals. In this study, we used a targeted approach to identify dd-cfDNA, which eliminated the need for genotyping, and is based on the minor allele frequency of SNP assays. In the PTR group, elevated dd-cfDNA% levels were observed immediately after transplantation, but returned to normal levels within five days. Within the RR group, heightened serum creatinine levels were directly proportional to increased dd-cfDNA%. Sixteen recipients were advised to undergo biopsy due to elevated serum creatinine and other pathological markers. Among these sixteen recipients, six experienced antibody-mediated rejection (ABMR), two exhibited graft dysfunctions, two had active graft injury, and six (37.5%) recipients showed no rejection (NR). In cases of biopsy-proven ABMR and NR, recipients displayed a mean ± SD dd-cfDNA% of 2.80 ± 1.77 and 0.30 ± 0.35, respectively. This study found that the selected SNP assays exhibit a high proficiency in identifying donor DNA. This study also supports the use of dd-cfDNA as a routine diagnostic test for kidney transplant recipients, along with biopsies and serum creatinine, to attain better graft monitoring.
Collapse
Affiliation(s)
- Naveen Kumar
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India; (N.K.); (R.S.H.); (K.C.); (M.H.Y.)
- Department of Nephrology, Sir Ganga Ram Hospital, New Delhi 110060, India (A.K.B.)
- Department of Anthropology, University of Delhi, New Delhi 110007, India; (A.T.); (M.P.S.)
| | - Archita Tandon
- Department of Anthropology, University of Delhi, New Delhi 110007, India; (A.T.); (M.P.S.)
| | - Rashmi Rana
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India; (N.K.); (R.S.H.); (K.C.); (M.H.Y.)
| | - Devinder Singh Rana
- Department of Nephrology, Sir Ganga Ram Hospital, New Delhi 110060, India (A.K.B.)
| | - Anil Kumar Bhalla
- Department of Nephrology, Sir Ganga Ram Hospital, New Delhi 110060, India (A.K.B.)
| | - Anurag Gupta
- Department of Nephrology, Sir Ganga Ram Hospital, New Delhi 110060, India (A.K.B.)
| | - Mohinder Pal Sachdeva
- Department of Anthropology, University of Delhi, New Delhi 110007, India; (A.T.); (M.P.S.)
| | - Rohit Singh Huirem
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India; (N.K.); (R.S.H.); (K.C.); (M.H.Y.)
| | - Kirti Chauhan
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India; (N.K.); (R.S.H.); (K.C.); (M.H.Y.)
| | - M. H. Yashavarddhan
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India; (N.K.); (R.S.H.); (K.C.); (M.H.Y.)
| | - Atul Basnal
- Laboratory Oncology, Dr BRAIRCH, All India Institute of Medical Sciences, New Delhi 110029, India; (A.B.)
| | - Ritu Gupta
- Laboratory Oncology, Dr BRAIRCH, All India Institute of Medical Sciences, New Delhi 110029, India; (A.B.)
| | | | - Nirmal Kumar Ganguly
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India; (N.K.); (R.S.H.); (K.C.); (M.H.Y.)
| |
Collapse
|
8
|
González-López E, Ocejo-Vinyals JG, Renuncio-García M, Roa-Bautista A, San Segundo Arribas D, Escagedo C, García-Saiz MDM, Valero R, García-Berbel P, Ruíz San Millán JC, Rodrigo E. Donor-Derived Cell-Free DNA at 1 Month after Kidney Transplantation Relates to HLA Class II Eplet Mismatch Load. Biomedicines 2023; 11:2741. [PMID: 37893114 PMCID: PMC10604614 DOI: 10.3390/biomedicines11102741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/03/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Kidney transplantation is the preferred therapeutic option for end-stage renal disease; however, the alloimmune response is still the leading cause of renal allograft failure. To better identify immunologic disparities in order to evaluate HLA compatibility between the donor and the recipient, the concept of eplet load has arisen. Regular kidney function monitoring is essential for the accurate and timely diagnosis of allograft rejection and the appropriate treatment. Donor-derived cell-free DNA (dd-cfDNA) has been proposed as a potential biomarker of acute rejection and graft failure in kidney transplantation. The proportion of plasma dd-cfDNA was determined in forty-two kidney patients at 1 month after transplantation. A total of eleven (26.2%) patients had a dd-cfDNA proportion of ≥1.0%. The only pretransplant variable related to dd-cfDNA > 1.0% was the HLA class II eplet mismatch load, mainly the HLA-DQB1 eplet mismatch load. Furthermore, dd-cfDNA was able to discriminate the patients with antibody-mediated rejection (AbMR) (AUC 87.3%), acute rejection (AUC 78.2%), and troubled graft (AUC 81.4%). Increased dd-cfDNA levels were associated with kidney allograft deterioration, particularly rejection, as well as a greater HLA class II eplet mismatch load. Consequently, combining dd-cfDNA determination and HLA eplet mismatch load calculation should improve the assessment of the risk of short- and long-term allograft damage.
Collapse
Affiliation(s)
- Elena González-López
- Immunology Department, Immunopathology Group, Marqués de Valdecilla University Hospital-IDIVAL, University of Cantabria, 39008 Santander, Spain; (E.G.-L.); (M.R.-G.); (A.R.-B.); (D.S.S.A.)
| | - Javier Gonzalo Ocejo-Vinyals
- Immunology Department, Infectious Diseases and Clinical Microbiology Group, Marqués de Valdecilla University Hospital-IDIVAL, University of Cantabria, 39008 Santander, Spain;
| | - Mónica Renuncio-García
- Immunology Department, Immunopathology Group, Marqués de Valdecilla University Hospital-IDIVAL, University of Cantabria, 39008 Santander, Spain; (E.G.-L.); (M.R.-G.); (A.R.-B.); (D.S.S.A.)
| | - Adriel Roa-Bautista
- Immunology Department, Immunopathology Group, Marqués de Valdecilla University Hospital-IDIVAL, University of Cantabria, 39008 Santander, Spain; (E.G.-L.); (M.R.-G.); (A.R.-B.); (D.S.S.A.)
| | - David San Segundo Arribas
- Immunology Department, Immunopathology Group, Marqués de Valdecilla University Hospital-IDIVAL, University of Cantabria, 39008 Santander, Spain; (E.G.-L.); (M.R.-G.); (A.R.-B.); (D.S.S.A.)
| | - Clara Escagedo
- Nephrology Department, Immunopathology Group, Marqués de Valdecilla University Hospital-IDIVAL, University of Cantabria, 39008 Santander, Spain; (C.E.); (R.V.); (J.C.R.S.M.)
| | - María del Mar García-Saiz
- Clinical Pharmacology Department, Marqués de Valdecilla University Hospital-IDIVAL, University of Cantabria, 39008 Santander, Spain;
| | - Rosalía Valero
- Nephrology Department, Immunopathology Group, Marqués de Valdecilla University Hospital-IDIVAL, University of Cantabria, 39008 Santander, Spain; (C.E.); (R.V.); (J.C.R.S.M.)
| | - Pilar García-Berbel
- Pathological Anatomy Department, Marqués de Valdecilla University Hospital-IDIVAL, University of Cantabria, 39008 Santander, Spain;
| | - Juan Carlos Ruíz San Millán
- Nephrology Department, Immunopathology Group, Marqués de Valdecilla University Hospital-IDIVAL, University of Cantabria, 39008 Santander, Spain; (C.E.); (R.V.); (J.C.R.S.M.)
| | - Emilio Rodrigo
- Nephrology Department, Immunopathology Group, Marqués de Valdecilla University Hospital-IDIVAL, University of Cantabria, 39008 Santander, Spain; (C.E.); (R.V.); (J.C.R.S.M.)
| |
Collapse
|
9
|
Abdulhadi T, Alrata L, Dubrawka C, Amurao G, Kalipatnapu SM, Isaac C, Rodrigues S, Flores KM, Alsabbagh DY, Alomar O, Alhamad T. Donor-derived cell free DNA as a biomarker in kidney transplantation. Pharmacogenomics 2023; 24:771-780. [PMID: 37732393 DOI: 10.2217/pgs-2023-0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023] Open
Abstract
The early detection of acute rejection in the allograft is important as it provides an opportunity for timely therapeutic intervention in order to preserve graft function and achieve longer graft survival. Donor-derived cell-free DNA (dd-cfDNA) has emerged as a new biomarker in the field of kidney transplantation. In this review, we used data from various studies to examine the role of dd-cfDNA in comparison to creatinine and donor-specific antibodies in the early detection of transplant rejection. We also reviewed the use of dd-cfDNA in other organ transplants as well as the challenges and potential future direction for dd-cfDNA as a diagnostic tool.
Collapse
Affiliation(s)
- Tarek Abdulhadi
- Department of Medicine, Division of Nephrology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Louai Alrata
- Department of Medicine, Division of Nephrology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Casey Dubrawka
- Department of Pharmacy, Barnes Jewish Hospital, St. Louis, MO 63110, USA
| | - Gwendolyn Amurao
- Department of Medicine, Division of Nephrology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sri Mahathi Kalipatnapu
- Department of Medicine, Division of Nephrology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Che Isaac
- Department of Medicine, Division of Nephrology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shelden Rodrigues
- Department of Medicine, Division of Nephrology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Karen Marie Flores
- Department of Medicine, Division of Nephrology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dema Yaseen Alsabbagh
- Department of Medicine, Division of Nephrology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Omar Alomar
- Department of Medicine, Division of Nephrology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tarek Alhamad
- Department of Medicine, Division of Nephrology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Transplant Epidemiology Research Collaboration (TERC), Institute of Public Health, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
10
|
Graver AS, Lee D, Power DA, Whitlam JB. Understanding Donor-derived Cell-free DNA in Kidney Transplantation: An Overview and Case-based Guide for Clinicians. Transplantation 2023; 107:1675-1686. [PMID: 36579675 DOI: 10.1097/tp.0000000000004482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Kidney transplant recipients undergo lifelong monitoring of allograft function and evaluation for transplant complications. The current monitoring paradigm utilizes blood, urine, and tissue markers that are insensitive, nonspecific, or invasive to obtain. As a result, problems are detected late, after significant damage has accrued, and often beyond the time at which complete resolution is possible. Indeed, most kidney transplants eventually fail, usually because of chronic rejection and other undetected injury. There is a clear need for a transplant-specific biomarker that enables a proactive approach to monitoring via early detection of reversible pathology. A biomarker that supports timely and personalized treatment would assist in achieving the ultimate goal of improving allograft survival and limiting therapeutic toxicity to the recipient. Donor-derived cell-free DNA (ddcfDNA) has been proposed as one such transplant biomarker. Although the test is presently utilized most in the United States, it is conceivable that its use will become more widespread. This review covers aspects of ddcfDNA that support informed use of the test by general nephrologists, including the basic biology of ddcfDNA, methodological nuances of testing, and general recommendations for use in the kidney transplant population. Clinical contexts are used to illustrate evidence-supported interpretation of ddcfDNA results and subsequent management. Finally, knowledge gaps and areas for further study are discussed.
Collapse
Affiliation(s)
- Alison S Graver
- Kidney Transplant Service, Department of Nephrology, Austin Health, Heidelberg, VIC, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC, Australia
| | - Darren Lee
- Kidney Transplant Service, Department of Nephrology, Austin Health, Heidelberg, VIC, Australia
- Department of Renal Medicine, Eastern Health Clinical School, Monash University, Box Hill, VIC, Australia
| | - David A Power
- Kidney Transplant Service, Department of Nephrology, Austin Health, Heidelberg, VIC, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC, Australia
| | - John B Whitlam
- Kidney Transplant Service, Department of Nephrology, Austin Health, Heidelberg, VIC, Australia
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, VIC, Australia
| |
Collapse
|
11
|
Huang E, Mengel M, Clahsen-van Groningen MC, Jackson AM. Diagnostic Potential of Minimally Invasive Biomarkers: A Biopsy-centered Viewpoint From the Banff Minimally Invasive Diagnostics Working Group. Transplantation 2023; 107:45-52. [PMID: 36508645 PMCID: PMC9746335 DOI: 10.1097/tp.0000000000004339] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/15/2022] [Accepted: 07/26/2022] [Indexed: 12/14/2022]
Abstract
With recent advances and commercial implementation of minimally invasive biomarkers in kidney transplantation, new strategies for the surveillance of allograft health are emerging. Blood and urine-based biomarkers can be used to detect the presence of rejection, but their applicability as diagnostic tests has not been studied. A Banff working group was recently formed to consider the potential of minimally invasive biomarkers for integration into the Banff classification for kidney allograft pathology. We review the existing data on donor-derived cell-free DNA, blood and urine transcriptomics, urinary protein chemokines, and next-generation diagnostics and conclude that the available data do not support their use as stand-alone diagnostic tests at this point. Future studies assessing their ability to distinguish complex phenotypes, differentiate T cell-mediated rejection from antibody-mediated rejection, and function as an adjunct to histology are needed to elevate these minimally invasive biomarkers from surveillance tests to diagnostic tests.
Collapse
Affiliation(s)
- Edmund Huang
- Division of Nephrology, Department of Medicine, Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Michael Mengel
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Marian C. Clahsen-van Groningen
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Erasmus MC Transplant Institute, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Institute of Experimental and Systems Biology, RWTH Aachen University, Aachen, Germany
| | | |
Collapse
|
12
|
Guo L, Shen J, Lei W, Yan P, Wang M, Zhou Q, Wang H, Wu J, Chen J, Wang R. Plasma Donor-Derived Cell-Free DNA Levels Are Associated With the Inflammatory Burden and Macrophage Extracellular Trap Activity in Renal Allografts. Front Immunol 2022; 13:796326. [PMID: 35386710 PMCID: PMC8977515 DOI: 10.3389/fimmu.2022.796326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 02/22/2022] [Indexed: 11/23/2022] Open
Abstract
Recent studies have confirmed the role of plasma donor-derived cell-free DNA (ddcfDNA) as a reliable non-invasive biomarker for allograft injury after kidney transplantation. Whereas the variability of plasma ddcfDNA levels among recipients has limited their clinical use. This study aimed to explore the intrinsic factors associated with plasma ddcfDNA elevation by investigating the impact of Banff lesions and inflammatory infiltrates on ddcfDNA levels in kidney transplant recipients. From March 2017 to September 2019, a total of 106 kidney transplant recipients with matched allograft biopsies were included, consisting of 13 recipients with normal/nonspecific changes, 13 recipients with borderline changes, 60 with T cell-mediated rejection, and 20 with antibody-mediated rejection. Histologic classification was performed according to the Banff 2017 criteria by two experienced pathologists. Plasma ddcfDNA fractions ranged from 0.12% to 10.22%, with a median level of 0.91%. Banff histology subelements including glomerulitis, intimal arteritis, and severe interstitial inflammation were correlated with increased plasma ddcfDNA levels. The inflammatory cell infiltrate in the allografts was phenotyped by immunochemistry and automatically counted by digital image recognition. Pearson correlation analysis revealed a significant positive correlation between macrophage infiltrations in allografts and plasma ddcfDNA levels. Additionally, macrophage extracellular trap (MET) activity was significantly associated with the rise in plasma ddcfDNA levels. Our findings demonstrated that plasma ddcfDNA could reflect the inflammatory state in renal allografts and suggested the potential role of METs in the pathogenesis of allograft injury.
Collapse
Affiliation(s)
- Luying Guo
- Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China.,National Key Clinical Department of Kidney Diseases, Hangzhou, China.,Institute of Nephrology, Zhejiang University, Hangzhou, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Jia Shen
- Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China.,National Key Clinical Department of Kidney Diseases, Hangzhou, China.,Institute of Nephrology, Zhejiang University, Hangzhou, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Wenhua Lei
- Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China.,National Key Clinical Department of Kidney Diseases, Hangzhou, China.,Institute of Nephrology, Zhejiang University, Hangzhou, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Pengpeng Yan
- Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China.,National Key Clinical Department of Kidney Diseases, Hangzhou, China.,Institute of Nephrology, Zhejiang University, Hangzhou, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Meifang Wang
- Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China.,National Key Clinical Department of Kidney Diseases, Hangzhou, China.,Institute of Nephrology, Zhejiang University, Hangzhou, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Qin Zhou
- Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China.,National Key Clinical Department of Kidney Diseases, Hangzhou, China.,Institute of Nephrology, Zhejiang University, Hangzhou, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Huiping Wang
- Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China.,National Key Clinical Department of Kidney Diseases, Hangzhou, China.,Institute of Nephrology, Zhejiang University, Hangzhou, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Jianyong Wu
- Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China.,National Key Clinical Department of Kidney Diseases, Hangzhou, China.,Institute of Nephrology, Zhejiang University, Hangzhou, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Jianghua Chen
- Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China.,National Key Clinical Department of Kidney Diseases, Hangzhou, China.,Institute of Nephrology, Zhejiang University, Hangzhou, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Rending Wang
- Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China.,National Key Clinical Department of Kidney Diseases, Hangzhou, China.,Institute of Nephrology, Zhejiang University, Hangzhou, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| |
Collapse
|
13
|
Zhou Y, Wang Y, Addai FP, Li X, Zhang X, Liu H, Yang G, Zeng F, Jiang T, Liu J. Analysis of cell-free fetal DNA in 16,843 pregnant women from a single center in China using targeted sequencing approach. Placenta 2022; 122:18-22. [DOI: 10.1016/j.placenta.2022.03.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/16/2022] [Accepted: 03/25/2022] [Indexed: 11/28/2022]
|
14
|
Chen XT, Qiu J, Wu ZX, Zhang H, Chen T, Yang SC, Zhao GD, He Y, Shen X, Luo JQ, Huang Y, Wang CX, Chen LZ, Wu CL, Huang G. OUP accepted manuscript. Clin Chem 2022; 68:814-825. [PMID: 35587713 DOI: 10.1093/clinchem/hvac053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/08/2022] [Indexed: 11/14/2022]
Affiliation(s)
- Xu-Tao Chen
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Rd. 2, Guangzhou, Guangdong Province, China, 510080
| | - Jiang Qiu
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Rd. 2, Guangzhou, Guangdong Province, China, 510080
| | - Zi-Xuan Wu
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Rd. 2, Guangzhou, Guangdong Province, China, 510080
| | - Hui Zhang
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Rd. 2, Guangzhou, Guangdong Province, China, 510080
| | - Tong Chen
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Rd. 2, Guangzhou, Guangdong Province, China, 510080
| | - Shi-Cong Yang
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Rd. 2, Guangzhou, Guangdong Province, China, 510080
| | - Guo-Dong Zhao
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Rd. 2, Guangzhou, Guangdong Province, China, 510080
| | - Yu He
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Rd. 2, Guangzhou, Guangdong Province, China, 510080
| | - Xue Shen
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Rd. 2, Guangzhou, Guangdong Province, China, 510080
| | - Jin-Quan Luo
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Rd. 2, Guangzhou, Guangdong Province, China, 510080
| | - Yang Huang
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Rd. 2, Guangzhou, Guangdong Province, China, 510080
| | - Chang-Xi Wang
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Rd. 2, Guangzhou, Guangdong Province, China, 510080
| | - Li-Zhong Chen
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Rd. 2, Guangzhou, Guangdong Province, China, 510080
| | - Cheng-Lin Wu
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Rd. 2, Guangzhou, Guangdong Province, China, 510080
| | - Gang Huang
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Rd. 2, Guangzhou, Guangdong Province, China, 510080
| |
Collapse
|
15
|
Garg N, Mandelbrot DA, Parajuli S, Aziz F, Astor BC, Chandraker A, Djamali A. The clinical value of donor-derived cell-free DNA measurements in kidney transplantation. Transplant Rev (Orlando) 2021; 35:100649. [PMID: 34507254 DOI: 10.1016/j.trre.2021.100649] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 12/21/2022]
Abstract
Early diagnosis is critical to minimizing the damage rejection can do to the transplanted kidney. Donor-derived cell-free DNA (dd-cfDNA) represents non-encapsulated fragmented DNA that is continuously shed into the bloodstream from the allograft undergoing injury, with a half-life of about 30 min. This article reviews the available evidence regarding the diagnostic value of dd-cfDNA in kidney transplantation, as a result of which two assays, Allosure and Prospera, have garnered Medicare approval. We provide information on important scenarios and contexts including antibody-mediated rejection, T-cell mediated rejection, pre-test probability of rejection, timing of the test, repeat transplants, and background cell-free DNA levels to help our understanding of the test characteristics and utility of these assays in clinical practice. Data on multimodality assays including gene expression profiles and serial monitoring of dd-cfDNA in high risk situations are emerging.
Collapse
Affiliation(s)
- Neetika Garg
- Division of Nephrology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| | - Didier A Mandelbrot
- Division of Nephrology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| | - Sandesh Parajuli
- Division of Nephrology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| | - Fahad Aziz
- Division of Nephrology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| | - Brad C Astor
- Division of Nephrology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Population Health Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| | - Anil Chandraker
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Arjang Djamali
- Division of Nephrology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Division of Transplant Surgery, University of Wisconsin School of Medicine and Public Health Madison, WI, USA.
| |
Collapse
|
16
|
Shen J, Guo L, Lei W, Liu S, Yan P, Liu H, Zhou J, Zhou Q, Liu F, Jiang T, Wang H, Wu J, Chen J, Wang R. Urinary donor-derived cell-free DNA as a non-invasive biomarker for BK polyomavirus-associated nephropathy. J Zhejiang Univ Sci B 2021; 22:917-928. [PMID: 34783222 DOI: 10.1631/jzus.b2100131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BK polyomavirus-associated nephropathy (BKPyVAN) is a common cause of allograft failure. However, differentiation between BKPyVAN and type I T cell-mediated rejection (TCMR) is challenging when simian virus 40 (SV40) staining is negative, because of the similarities in histopathology. This study investigated whether donor-derived cell-free DNA (ddcfDNA) can be used to differentiate BKPyVAN. Target region capture sequencing was applied to detect the ddcfDNAs of 12 recipients with stable graft function, 22 with type I TCMR, 21 with proven BKPyVAN, and 5 with possible PyVAN. We found that urinary ddcfDNA levels were upregulated in recipients with graft injury, whereas plasma ddcfDNA levels were comparable for all groups. The median urinary concentrations and fractions of ddcfDNA in proven BKPyVAN recipients were significantly higher than those in type I TCMR recipients (10.4 vs. 6.1 ng/mL, P<0.001 and 68.4% vs. 55.3%, P=0.013, respectively). Urinary ddcfDNA fractions (not concentrations) were higher in the BKPyVAN-pure subgroup than in the BKPyVAN-rejection-like subgroup (81.30% vs. 56.64%, P=0.025). With a cut-off value of 7.81 ng/mL, urinary ddcfDNA concentrations distinguished proven BKPyVAN from type I TCMR (area under the curve (AUC)=0.848, 95% confidence interval (95% CI): 0.734 to 0.963). These findings suggest that urinary ddcfDNA is a non-invasive biomarker which can reliably differentiate BKPyVAN from type I TCMR.
Collapse
Affiliation(s)
- Jia Shen
- Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.,National Key Clinical Department of Kidney Diseases, Hangzhou 310003, China.,Key Laboratory of Kidney Disease Prevention and Control Technology of Zhejiang Province, Hangzhou 310003, China.,Zhejiang University Institute of Nephrology, Hangzhou 310003, China
| | - Luying Guo
- Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.,National Key Clinical Department of Kidney Diseases, Hangzhou 310003, China.,Key Laboratory of Kidney Disease Prevention and Control Technology of Zhejiang Province, Hangzhou 310003, China.,Zhejiang University Institute of Nephrology, Hangzhou 310003, China
| | - Wenhua Lei
- Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.,National Key Clinical Department of Kidney Diseases, Hangzhou 310003, China.,Key Laboratory of Kidney Disease Prevention and Control Technology of Zhejiang Province, Hangzhou 310003, China.,Zhejiang University Institute of Nephrology, Hangzhou 310003, China
| | - Shuaihui Liu
- Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.,National Key Clinical Department of Kidney Diseases, Hangzhou 310003, China.,Key Laboratory of Kidney Disease Prevention and Control Technology of Zhejiang Province, Hangzhou 310003, China.,Zhejiang University Institute of Nephrology, Hangzhou 310003, China
| | - Pengpeng Yan
- Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.,National Key Clinical Department of Kidney Diseases, Hangzhou 310003, China.,Key Laboratory of Kidney Disease Prevention and Control Technology of Zhejiang Province, Hangzhou 310003, China.,Zhejiang University Institute of Nephrology, Hangzhou 310003, China
| | - Haitao Liu
- AlloDx (Shanghai) Biotech., Co., Ltd., Shanghai 201100, China
| | - Jingyi Zhou
- Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.,National Key Clinical Department of Kidney Diseases, Hangzhou 310003, China.,Key Laboratory of Kidney Disease Prevention and Control Technology of Zhejiang Province, Hangzhou 310003, China.,Zhejiang University Institute of Nephrology, Hangzhou 310003, China
| | - Qin Zhou
- Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.,National Key Clinical Department of Kidney Diseases, Hangzhou 310003, China.,Key Laboratory of Kidney Disease Prevention and Control Technology of Zhejiang Province, Hangzhou 310003, China.,Zhejiang University Institute of Nephrology, Hangzhou 310003, China
| | - Feng Liu
- AlloDx (Shanghai) Biotech., Co., Ltd., Shanghai 201100, China
| | - Tingya Jiang
- AlloDx (Shanghai) Biotech., Co., Ltd., Shanghai 201100, China
| | - Huiping Wang
- Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.,National Key Clinical Department of Kidney Diseases, Hangzhou 310003, China.,Key Laboratory of Kidney Disease Prevention and Control Technology of Zhejiang Province, Hangzhou 310003, China.,Zhejiang University Institute of Nephrology, Hangzhou 310003, China
| | - Jianyong Wu
- Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.,National Key Clinical Department of Kidney Diseases, Hangzhou 310003, China.,Key Laboratory of Kidney Disease Prevention and Control Technology of Zhejiang Province, Hangzhou 310003, China.,Zhejiang University Institute of Nephrology, Hangzhou 310003, China
| | - Jianghua Chen
- Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.,National Key Clinical Department of Kidney Diseases, Hangzhou 310003, China.,Key Laboratory of Kidney Disease Prevention and Control Technology of Zhejiang Province, Hangzhou 310003, China.,Zhejiang University Institute of Nephrology, Hangzhou 310003, China
| | - Rending Wang
- Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China. .,National Key Clinical Department of Kidney Diseases, Hangzhou 310003, China. .,Key Laboratory of Kidney Disease Prevention and Control Technology of Zhejiang Province, Hangzhou 310003, China. .,Zhejiang University Institute of Nephrology, Hangzhou 310003, China. .,Organ Donation and Coordination Office, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
17
|
Jackson AM, Amato-Menker C, Bettinotti M. Cell-free DNA diagnostics in transplantation utilizing next generation sequencing. Hum Immunol 2021; 82:850-858. [PMID: 34600770 DOI: 10.1016/j.humimm.2021.07.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/29/2021] [Accepted: 07/12/2021] [Indexed: 12/25/2022]
Abstract
The use of Next Generation Sequencing (NGS) to interrogate cell-free DNA (cfDNA) as a transplant diagnostic provides a crucial step in improving the accuracy of post-transplant monitoring of allograft health. cfDNA interrogation provides a powerful, yet minimally invasive, biomarker for disease and tissue injury. cfDNA can be isolated from a variety of body fluids and analyzed using bioinformatics to unlock its origins. Furthermore, cfDNA characteristics can reveal the mechanisms and conditions under which it was generated and released. In transplantation, donor-derived cfDNA monitoring provides a tool for identifying active allograft injury at the time of transplant, infection, and rejection. Multiple detection and interrogation methods for cfDNA detection are now being evaluated for clinical validity and hold the promise to provide minimally invasive, quantitative, and reproducible measures of allograft injury across organ types.
Collapse
Affiliation(s)
- Annette M Jackson
- Duke University, Department of Surgery, DUMC Box 2645, Durham, NC 27710, USA.
| | - Carly Amato-Menker
- West Virginia University, Microbiology, Immunology, and Cell Biology, Morgantown, WV, USA
| | - Maria Bettinotti
- Johns Hopkins University, Department of Pathology, 2041 E. Monument Street, Baltimore, MD 21205, USA
| |
Collapse
|
18
|
Donor-Derived Cell-Free DNA to Diagnose Graft Rejection Post-Transplant: Past, Present and Future. TRANSPLANTOLOGY 2021. [DOI: 10.3390/transplantology2030034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Donor-derived cell-free DNA (dd-cfDNA) is a non-invasive biomarker that is more sensitive and specific towards diagnosing any graft injury or rejection. Due to its applicability over all transplanted organs irrespective of age, sex, race, ethnicity, and the non-requirement of a donor sample, it emerges as a new gold standard for graft health and rejection monitoring. Published research articles describing the role and efficiency of dd-cfDNA were identified and scrutinized to acquire a brief understanding of the history, evolution, emergence, role, efficiency, and applicability of dd-cfDNA in the field of transplantation. The dd-cfDNA can be quantified using quantitative PCR, next-generation sequencing, and droplet digital PCR, and there is a commendatory outcome in terms of diagnosing graft injury and monitoring graft health. The increased levels of dd-cfDNA can diagnose the rejection prior to any other presently used biochemistry or immunological assay methods. Biopsies are performed when these tests show any signs of injury and/or rejection. Therefore, by the time these tests predict and show any unusual or improper activity of the graft, the graft is already damaged by almost 50%. This review elucidates the evolution, physiology, techniques, limitations, and prospects of dd-cfDNA as a biomarker for post-transplant graft damage and rejection.
Collapse
|
19
|
Donor-derived Cell-free DNA in Solid-organ Transplant Diagnostics: Indications, Limitations, and Future Directions. Transplantation 2021; 105:1203-1211. [PMID: 33534526 DOI: 10.1097/tp.0000000000003651] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The last few years have seen an explosion in clinical research focusing on the use of donor-derived cell-free DNA (dd-cfDNA) in solid-organ transplants (SOT). Although most of the literature published so far focuses on kidney transplants, there are several recent as well as ongoing research studies on heart, lung, pancreas, and liver transplants. Though initially studied as a noninvasive means of identifying subclinical or acute rejection in SOT, it is rapidly becoming clear that instead of being a specific marker for allograft rejection, dd-cfDNA is more appropriately described as a marker of severe injury, although the most common cause of this injury is allograft rejection. Multiple studies in kidney transplants have shown that although sensitivity for the diagnosis of antibody-mediated rejection is excellent, it is less so for T-cell-mediated rejection. It is possible that combining dd-cfDNA with other novel urine- or blood-based biomarkers may increase the sensitivity for the diagnosis of rejection. Irrespective of the cause, though, elevated dd-cfDNA seems to portend adverse allograft prognosis and formation of de novo donor-specific antibody. Although current data do not lend themselves to a clear conclusion, ongoing studies may reveal the utility of serial surveillance for the management of SOT as following levels of dd-cfDNA over time may provide windows of opportunity to intervene early and before irreversible allograft injury. Finally, cost-effectiveness studies will be needed to guide the ideal incorporation of dd-cfDNA into routine clinical practice.
Collapse
|
20
|
Kant S, Brennan DC. Donor-Derived Cell-Free DNA in Kidney Transplantation: Origins, Present and a Look to the Future. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:482. [PMID: 34065914 PMCID: PMC8151129 DOI: 10.3390/medicina57050482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/05/2021] [Accepted: 05/09/2021] [Indexed: 11/16/2022]
Abstract
Since its first detection in 1948, donor-derived cell-free DNA (dd-cfDNA) has been employed for a myriad of indications in various medical specialties. It has had a far-reaching impact in solid organ transplantation, with the most widespread utilization in kidney transplantation for the surveillance and detection of allograft rejection. The purpose of this review is to track the arc of this revolutionary test-from origins to current use-along with examining challenges and future prospects though the lens of transplant nephrology.
Collapse
Affiliation(s)
- Sam Kant
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
- Comprehensive Transplant Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Daniel C. Brennan
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
- Comprehensive Transplant Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
21
|
Paul RS, Almokayad I, Collins A, Raj D, Jagadeesan M. Donor-derived Cell-free DNA: Advancing a Novel Assay to New Heights in Renal Transplantation. Transplant Direct 2021; 7:e664. [PMID: 33564715 PMCID: PMC7862009 DOI: 10.1097/txd.0000000000001098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
Despite advances in transplant immunosuppression, long-term renal allograft outcomes remain suboptimal because of the occurrence of rejection, recurrent disease, and interstitial fibrosis with tubular atrophy. This is largely due to limitations in our understanding of allogeneic processes coupled with inadequate surveillance strategies. The concept of donor-derived cell-free DNA as a signal of allograft stress has therefore rapidly been adopted as a noninvasive monitoring tool. Refining it for effective clinical use, however, remains an ongoing effort. Furthermore, its potential to unravel new insights in alloimmunity through novel molecular techniques is yet to be realized. This review herein summarizes current knowledge and active endeavors to optimize cell-free DNA-based diagnostic techniques for clinical use in kidney transplantation. In addition, the integration of DNA methylation and microRNA may unveil new epigenetic signatures of allograft health and is also explored in this report. Directing research initiatives toward these aspirations will not only improve diagnostic precision but may foster new paradigms in transplant immunobiology.
Collapse
Affiliation(s)
- Rohan S. Paul
- Division of Kidney Disease & Hypertension, George Washington University, Washington, DC
| | - Ismail Almokayad
- Division of Kidney Disease & Hypertension, George Washington University, Washington, DC
| | - Ashte Collins
- Division of Kidney Disease & Hypertension, George Washington University, Washington, DC
| | - Dominic Raj
- Division of Kidney Disease & Hypertension, George Washington University, Washington, DC
| | | |
Collapse
|
22
|
Martuszewski A, Paluszkiewicz P, Król M, Banasik M, Kepinska M. Donor-Derived Cell-Free DNA in Kidney Transplantation as a Potential Rejection Biomarker: A Systematic Literature Review. J Clin Med 2021; 10:jcm10020193. [PMID: 33430458 PMCID: PMC7827757 DOI: 10.3390/jcm10020193] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/02/2021] [Accepted: 01/05/2021] [Indexed: 12/12/2022] Open
Abstract
Kidney transplantation (KTx) is the best treatment method for end-stage kidney disease. KTx improves the patient's quality of life and prolongs their survival time; however, not all patients benefit fully from the transplantation procedure. For some patients, a problem is the premature loss of graft function due to immunological or non-immunological factors. Circulating cell-free DNA (cfDNA) is degraded deoxyribonucleic acid fragments that are released into the blood and other body fluids. Donor-derived cell-free DNA (dd-cfDNA) is cfDNA that is exogenous to the patient and comes from a transplanted organ. As opposed to an invasive biopsy, dd-cfDNA can be detected by a non-invasive analysis of a sample. The increase in dd-cfDNA concentration occurs even before the creatinine level starts rising, which may enable early diagnosis of transplant injury and adequate treatment to avoid premature graft loss. In this paper, we summarise the latest promising results related to cfDNA in transplant patients.
Collapse
Affiliation(s)
- Adrian Martuszewski
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland; (A.M.); (P.P.); (M.B.)
| | - Patrycja Paluszkiewicz
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland; (A.M.); (P.P.); (M.B.)
| | - Magdalena Król
- Students Scientific Association, Department of Biomedical and Environmental Analysis, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Mirosław Banasik
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland; (A.M.); (P.P.); (M.B.)
| | - Marta Kepinska
- Department of Biomedical and Environmental Analyses, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
- Correspondence: ; Tel.: +48-71-784-0171
| |
Collapse
|