1
|
Ren J, Yan G, Yang L, Kong L, Guan Y, Sun H, Liu C, Liu L, Han Y, Wang X. Cancer chemoprevention: signaling pathways and strategic approaches. Signal Transduct Target Ther 2025; 10:113. [PMID: 40246868 PMCID: PMC12006474 DOI: 10.1038/s41392-025-02167-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/01/2024] [Accepted: 02/04/2025] [Indexed: 04/19/2025] Open
Abstract
Although cancer chemopreventive agents have been confirmed to effectively protect high-risk populations from cancer invasion or recurrence, only over ten drugs have been approved by the U.S. Food and Drug Administration. Therefore, screening potent cancer chemopreventive agents is crucial to reduce the constantly increasing incidence and mortality rate of cancer. Considering the lengthy prevention process, an ideal chemopreventive agent should be nontoxic, inexpensive, and oral. Natural compounds have become a natural treasure reservoir for cancer chemoprevention because of their superior ease of availability, cost-effectiveness, and safety. The benefits of natural compounds as chemopreventive agents in cancer prevention have been confirmed in various studies. In light of this, the present review is intended to fully delineate the entire scope of cancer chemoprevention, and primarily focuses on various aspects of cancer chemoprevention based on natural compounds, specifically focusing on the mechanism of action of natural compounds in cancer prevention, and discussing in detail how they exert cancer prevention effects by affecting classical signaling pathways, immune checkpoints, and gut microbiome. We also introduce novel cancer chemoprevention strategies and summarize the role of natural compounds in improving chemotherapy regimens. Furthermore, we describe strategies for discovering anticancer compounds with low abundance and high activity, revealing the broad prospects of natural compounds in drug discovery for cancer chemoprevention. Moreover, we associate cancer chemoprevention with precision medicine, and discuss the challenges encountered in cancer chemoprevention. Finally, we emphasize the transformative potential of natural compounds in advancing the field of cancer chemoprevention and their ability to introduce more effective and less toxic preventive options for oncology.
Collapse
Affiliation(s)
- Junling Ren
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Guangli Yan
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Le Yang
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Ling Kong
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Yu Guan
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Hui Sun
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China.
| | - Chang Liu
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Lei Liu
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Ying Han
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Xijun Wang
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China.
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China.
| |
Collapse
|
2
|
Obrzut O, Gostyńska-Stawna A, Kustrzyńska K, Stawny M, Krajka-Kuźniak V. Curcumin: A Natural Warrior Against Inflammatory Liver Diseases. Nutrients 2025; 17:1373. [PMID: 40284236 PMCID: PMC12030243 DOI: 10.3390/nu17081373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025] Open
Abstract
Curcumin (CUR), a bioactive compound found in turmeric, has garnered attention for its potential anti-inflammatory properties and impact on liver health. Numerous studies suggest that CUR may be crucial in mitigating liver inflammation. The compound's anti-inflammatory effects are believed to be attributed to its ability to modulate various molecular pathways involved in the inflammatory response. Research indicates that CUR may suppress the activation of inflammatory cells and the production of pro-inflammatory cytokines in the liver. Additionally, it has been observed to inhibit the activity of transcription factors that play a key role in inflammation. By targeting these molecular mechanisms, CUR may help alleviate the inflammatory burden on the liver. Moreover, CUR's antioxidant properties are thought to contribute to its protective effects on the liver. Oxidative stress is closely linked to inflammation, and CUR's ability to neutralize free radicals may further support its anti-inflammatory action. While the evidence is promising, it is essential to note that more research is needed to fully understand the precise mechanisms through which CUR influences liver inflammation. Nevertheless, these findings suggest that CUR could be a potential therapeutic agent in managing liver inflammatory conditions. In this review, we explore the potential impact of CUR on inflammation, highlighting the key mechanisms involved, as reported in the literature.
Collapse
Affiliation(s)
- Olga Obrzut
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| | - Aleksandra Gostyńska-Stawna
- Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.G.-S.); (M.S.)
| | - Karolina Kustrzyńska
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
- Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland
| | - Maciej Stawny
- Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.G.-S.); (M.S.)
| | - Violetta Krajka-Kuźniak
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| |
Collapse
|
3
|
Almeida PSD, Barão K, Forones NM. SARCOPENIA AND GASTROINTESTINAL CANCER: NUTRITIONAL APPROACH FOCUSING ON CURCUMIN SUPPLEMENTATION. ARQUIVOS DE GASTROENTEROLOGIA 2025; 62:e24068. [PMID: 40197883 PMCID: PMC12043197 DOI: 10.1590/s0004-2803.24612024-068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 11/15/2024] [Indexed: 04/10/2025]
Abstract
BACKGROUND Sarcopenia is a syndrome characterized by decreased strength, quantity and/or quality of skeletal muscle mass. When associated with cancer, it correlates with poorer clinical outcomes. Cancers of the gastrointestinal tract, prevalent globally and in Brazil, are associated with a greater nutritional risk. Early detection and intervention for nutritional risks are critical in this population. Recent studies on turmeric/curcumin have demonstrated beneficial effects in cancer patients. Specifically, curcumin have shown promise in reducing muscle depletion, oxidative stress, and improving strength and fatigue, factors related to sarcopenia. This review aims to elucidate sarcopenia and sarcopenia secondary to cancer, emphasizing nutritional management and the role of curcumin supplementation. Effective cancer management, whether with or without sarcopenia, demands comprehensive public health strategies and multimodal interventions within healthcare institutions. Nutrition is pivotal across the cancer care journey, encompassing screening, guidance, and provision of nutrients that support maintaining or recovering body composition. Curcumin supplementation emerges as a potential adjuvant to the standard cancer treatment and sarcopenia management. Nevertheless, further clinical studies are warranted to substantiate these findings. BACKGROUND • Sarcopenia is a syndrome characterized by decreased strength, quantity and/or quality of skeletal muscle mass. BACKGROUND • Sarcopenia when associated with cancer, it correlates with poorer clinical outcomes. BACKGROUND • Curcumin has shown promise in reducing muscle depletion, oxidative stress, and improving strength and fatigue, factors related to sarcopenia. BACKGROUND • Curcumin supplementation emerges as a potential adjuvant to the standard cancer treatment and sarcopenia management.
Collapse
Affiliation(s)
- Pamela S de Almeida
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Medicina, Divisão de Gastroenterologia, São Paulo, SP, Brasil
| | - Katia Barão
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Medicina, Divisão de Gastroenterologia, São Paulo, SP, Brasil
| | - Nora M Forones
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Medicina, Divisão de Gastroenterologia, São Paulo, SP, Brasil
| |
Collapse
|
4
|
Imtiaz I, Schloss J, Bugarcic A. Interplay Between Traditional and Scientific Knowledge: Phytoconstituents and Their Roles in Lung and Colorectal Cancer Signaling Pathways. Biomolecules 2025; 15:380. [PMID: 40149916 PMCID: PMC11940637 DOI: 10.3390/biom15030380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/27/2025] [Accepted: 02/27/2025] [Indexed: 03/29/2025] Open
Abstract
Natural plant products have been used for cancer treatment since ancient times and continue to play a vital role in modern anticancer drug development. However, only a small fraction of identified medicinal plants has been thoroughly investigated, particularly for their effects on cellular pathways in lung and colorectal cancers, two under-researched cancers with poor prognostic outcomes (lung cancers). This review focuses on the lung and colorectal cancer signaling pathways modulated by bioactive compounds from eleven traditional medicinal plants: Curcuma longa, Astragalus membranaceus, Glycyrrhiza glabra, Althaea officinalis, Echinacea purpurea, Sanguinaria canadensis, Codonopsis pilosula, Hydrastis canadensis, Lobelia inflata, Scutellaria baicalensis, and Zingiber officinale. These plants were selected based on their documented use in traditional medicine and modern clinical practice. Selection criteria involved cross-referencing herbs identified in a scoping review of traditional cancer treatments and findings from an international survey on herbal medicine currently used for lung and colorectal cancer management by our research group and the availability of existing literature on their anticancer properties. The review identifies several isolated phytoconstituents from these plants that exhibit anticancer properties by modulating key signaling pathways such as PI3K/Akt/mTOR, RAS/RAF/MAPK, Wnt/β-catenin, and TGF-β in vitro. Notable constituents include sanguinarine, berberine, hydrastine, lobeline, curcumin, gingerol, shogaol, caffeic acid, echinacoside, cichoric acid, glycyrrhizin, 18-β-glycyrrhetinic acid, astragaloside IV, lobetyolin, licochalcone A, baicalein, baicalin, wogonin, and glycyrol. Curcumin and baicalin show preclinical effectiveness but face bioavailability challenges, which may be overcome by combining them with piperine or using oral extracts to enhance gut microbiome conversion, integrating traditional knowledge with modern strategies for improved outcomes. Furthermore, herbal extracts from Echinacea, Glycyrrhiza, and Codonopsis, identified in traditional knowledge, are currently in clinical trials. Notably, curcumin and baicalin also modulate miRNA pathways, highlighting a promising intersection of modern science and traditional medicine. Thus, the development of anticancer therapeutics continues to benefit from the synergy of traditional knowledge, scientific innovation, and technological advancements.
Collapse
Affiliation(s)
| | | | - Andrea Bugarcic
- National Centre for Naturopathic Medicine, Faculty of Health, Southern Cross University, Military Road, Lismore, NSW 2480, Australia; (I.I.); (J.S.)
| |
Collapse
|
5
|
Peribañez-Dominguez S, Parra-Guillen Z, Troconiz IF. Development and Application of Physiologically-Based Pharmacokinetic Model to Predict Systemic and Organ Exposure of Colorectal Cancer Drugs. Pharmaceutics 2025; 17:57. [PMID: 39861705 PMCID: PMC11768185 DOI: 10.3390/pharmaceutics17010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/23/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Colorectal cancer (CRC) holds the third and second position among cancers affecting men and women, respectively. Frequently, the first-line treatment for metastatic CRC consists of the intravenous administration of 5-fluorouracil and leucovorin in combination with oxaliplatin or irinotecan. Physiologically-based pharmacokinetic models (PBPK) aim to mechanistically incorporate body physiology and drug physicochemical attributes, enabling the description of both systemic and organ drug exposure based on the treatment specificities. This bottom-up approach represents an opportunity to personalize treatment and minimize the therapeutic risk/benefit ratio through the understanding of drug distribution within colorectal tissue. This project has the goal of characterizing the systemic and tissue exposure of four anti-cancer drugs in humans using a PBPK platform fed with data from the literature. METHODS A literature search was performed to collect clinical data on systemic concentration versus time profiles. Physicochemical features were obtained from the literature, as well as parameters associated with distribution, metabolism, and excretion. The PBPK models were built using PK-Sim®. RESULTS The data from 51 clinical studies were extracted and combined in one single dataset. The PBPK models successfully described the exposure vs. time profiles with respect to both, with both the typical tendency and dispersion shown by the data. The percentage of observations falling within the two-fold error bounds ranged between 94 and 100%. The colon/plasma AUCinf ratios were similar for 5-FU, oxaliplatin, and leucovorin, but it was significantly higher for irinotecan. CONCLUSIONS The PBPK models support tailored treatment approaches by linking in vitro studies to organ exposure. These models serve as the initial step towards incorporating a dedicated tumor compartment, which will further account for the variability in tumor microenvironment characteristics to improve therapeutic strategies.
Collapse
Affiliation(s)
- Sara Peribañez-Dominguez
- Department of Pharmaceutical Science, School of Pharmacy and Nutrition, University of Navarra, 31009 Pamplona, Spain; (Z.P.-G.); (I.F.T.)
- Navarra Institute for Health Research (IdiSNA), 31002 Pamplona, Spain
| | - Zinnia Parra-Guillen
- Department of Pharmaceutical Science, School of Pharmacy and Nutrition, University of Navarra, 31009 Pamplona, Spain; (Z.P.-G.); (I.F.T.)
- Navarra Institute for Health Research (IdiSNA), 31002 Pamplona, Spain
| | - Iñaki F. Troconiz
- Department of Pharmaceutical Science, School of Pharmacy and Nutrition, University of Navarra, 31009 Pamplona, Spain; (Z.P.-G.); (I.F.T.)
- Navarra Institute for Health Research (IdiSNA), 31002 Pamplona, Spain
- Navarra Institute of Data Science and Artificial Intelligence, DATAI, University of Navarra, 31009 Pamplona, Spain
| |
Collapse
|
6
|
Campagna R, Cecati M, Vignini A. The Multifaceted Role of the Polyphenol Curcumin: A Focus on Type 2 Diabetes Mellitus. Curr Diabetes Rev 2025; 21:e15733998313402. [PMID: 39620334 DOI: 10.2174/0115733998313402240726080637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/18/2024] [Accepted: 06/26/2024] [Indexed: 04/23/2025]
Abstract
Type 2 Diabetes Mellitus (T2DM) is a chronic metabolic disorder characterized by chronic hyperglycemia, which often co-exists with other metabolic impairments. This condition can damage various tissues and organs, resulting in the development of severe complications, both microvascular, such as retinopathy, nephropathy, and neuropathy, and macrovascular, responsible for an increased risk of cardiovascular diseases. Curcumin is the main bioactive molecule found in the rhizomes of turmeric. Many studies have reported curcumin to exhibit antioxidant, anti-inflammatory, anti-infectious, and anti-cancer properties; thus, there is an increasing interest in exploiting these properties in order to prevent the rise or the progression of T2DM, as well as its possible associated conditions. In this review, we have presented the current state-ofart regarding the clinical trials that have involved curcumin administration and analyzed the possible mechanisms by which curcumin might exert the beneficial effects observed in literature.
Collapse
Affiliation(s)
- Roberto Campagna
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Monia Cecati
- Scientific Direction, Advanced Technology Center for Aging Research, IRCCS INRCA, Ancona, Italy
| | - Arianna Vignini
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
7
|
Manavi MA, Fathian Nasab MH, Mohammad Jafari R, Dehpour AR. Mechanisms underlying dose-limiting toxicities of conventional chemotherapeutic agents. J Chemother 2024; 36:623-653. [PMID: 38179685 DOI: 10.1080/1120009x.2023.2300217] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024]
Abstract
Dose-limiting toxicities (DLTs) are severe adverse effects that define the maximum tolerated dose of a cancer drug. In addition to the specific mechanisms of each drug, common contributing factors include inflammation, apoptosis, ion imbalances, and tissue-specific enzyme deficiencies. Among various DLTs are bleomycin-induced pulmonary fibrosis, doxorubicin-induced cardiomyopathy, cisplatin-induced nephrotoxicity, methotrexate-induced hepatotoxicity, vincristine-induced neurotoxicity, paclitaxel-induced peripheral neuropathy, and irinotecan, which elicits severe diarrhea. Currently, specific treatments beyond dose reduction are lacking for most toxicities. Further research on cellular and molecular pathways is imperative to improve their management. This review synthesizes preclinical and clinical data on the pharmacological mechanisms underlying DLTs and explores possible treatment approaches. A comprehensive perspective reveals knowledge gaps and emphasizes the need for future studies to develop more targeted strategies for mitigating these dose-dependent adverse effects. This could allow the safer administration of fully efficacious doses to maximize patient survival.
Collapse
Affiliation(s)
- Mohammad Amin Manavi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Razieh Mohammad Jafari
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Gajos-Michniewicz A, Czyz M. Therapeutic Potential of Natural Compounds to Modulate WNT/β-Catenin Signaling in Cancer: Current State of Art and Challenges. Int J Mol Sci 2024; 25:12804. [PMID: 39684513 DOI: 10.3390/ijms252312804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Targeted therapies and immunotherapies have improved the clinical outcome of cancer patients; however, the efficacy of treatment remains frequently limited due to low predictability of response and development of drug resistance. Therefore, novel therapeutic strategies for various cancer types are needed. Current research emphasizes the potential therapeutic value of targeting WNT/β-catenin dependent signaling that is deregulated in various cancer types. Targeting the WNT/β-catenin signaling pathway with diverse synthetic and natural agents is the subject of a number of preclinical studies and clinical trials for cancer patients. The usage of nature-derived agents is attributed to their health benefits, reduced toxicity and side effects compared to synthetic agents. The review summarizes preclinical studies and ongoing clinical trials that aim to target components of the WNT/β-catenin pathway across a diverse spectrum of cancer types, highlighting their potential to improve cancer treatment.
Collapse
Affiliation(s)
- Anna Gajos-Michniewicz
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215 Lodz, Poland
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215 Lodz, Poland
| |
Collapse
|
9
|
Hon KW, Naidu R. Synergistic Mechanisms of Selected Polyphenols in Overcoming Chemoresistance and Enhancing Chemosensitivity in Colorectal Cancer. Antioxidants (Basel) 2024; 13:815. [PMID: 39061884 PMCID: PMC11273411 DOI: 10.3390/antiox13070815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/29/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer deaths worldwide. Despite significant advances in medical treatment, chemotherapy as monotherapy can lead to substantial side effects and chemoresistance. This underscores the need for therapeutic approaches that are not only pharmacologically safe but also modulate multiple potent signaling pathways and sensitize cancer cells to overcome resistance to standard drugs. In recent years, scientists have been searching for natural compounds that can be used as chemosensitizers in addition to conventional medications for the synergistic treatment of CRC. Polyphenols represent a diverse group of natural compounds that can target multiple signaling pathways in cancer cells to induce anti-cancer effects. Additionally, polyphenols have been shown to work synergistically with chemotherapeutics and other natural compounds in cancer cells. This review aims to provide a comprehensive insight into the synergistic mechanisms of selected polyphenols as chemosensitizers in CRC cells. Further research and clinical trials are warranted to fully harness the synergistic mechanisms of selected polyphenols combined with chemotherapy or natural compounds in improving cancer treatment outcomes.
Collapse
Affiliation(s)
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia;
| |
Collapse
|
10
|
Abdullah NA, Md Hashim NF, Muhamad Zakuan N, Chua JX. Thioredoxin system in colorectal cancer: Its role in carcinogenesis, disease progression, and response to treatment. Life Sci 2024; 348:122711. [PMID: 38734065 DOI: 10.1016/j.lfs.2024.122711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/27/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
The thioredoxin system is essential for many physiological processes, including the maintenance of redox signalling pathways. Alterations in the activity, expression and interactions with other signalling pathways can lead to protective or pathophysiological responses. Thioredoxin and thioredoxin reductase, the two main components of this system, are often overexpressed in cancer, including colorectal cancer. This overexpression is often linked with tumour progression and poor outcomes. This review discusses the role of the Trx system in driving colorectal carcinogenesis and disease progression, as well as the challenges of targeting this system. Additionally, the recent advancements in the development of novel and effective thioredoxin inhibitors for colorectal cancer are also explored.
Collapse
Affiliation(s)
- Nurul Akmaryanti Abdullah
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Nur Fariesha Md Hashim
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Noraina Muhamad Zakuan
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Jia Xin Chua
- Department of Pre-clinical Sciences, University Tunku Abdul Rahman, 43000, Selangor, Malaysia.
| |
Collapse
|
11
|
Jacob S, Kather FS, Morsy MA, Boddu SHS, Attimarad M, Shah J, Shinu P, Nair AB. Advances in Nanocarrier Systems for Overcoming Formulation Challenges of Curcumin: Current Insights. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:672. [PMID: 38668166 PMCID: PMC11054677 DOI: 10.3390/nano14080672] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/29/2024]
Abstract
Curcumin, an organic phenolic molecule that is extracted from the rhizomes of Curcuma longa Linn, has undergone extensive evaluation for its diverse biological activities in both animals and humans. Despite its favorable characteristics, curcumin encounters various formulation challenges and stability issues that can be effectively addressed through the application of nanotechnology. Nano-based techniques specifically focused on enhancing solubility, bioavailability, and therapeutic efficacy while mitigating toxicity, have been explored for curcumin. This review systematically presents information on the improvement of curcumin's beneficial properties when incorporated, either individually or in conjunction with other drugs, into diverse nanosystems such as liposomes, nanoemulsions, polymeric micelles, dendrimers, polymeric nanoparticles, solid-lipid nanoparticles, and nanostructured lipid carriers. Additionally, the review examines ongoing clinical trials and recently granted patents, offering a thorough overview of the dynamic landscape in curcumin delivery. Researchers are currently exploring nanocarriers with crucial features such as surface modification, substantial loading capacity, biodegradability, compatibility, and autonomous targeting specificity and selectivity. Nevertheless, the utilization of nanocarriers for curcumin delivery is still in its initial phases, with regulatory approval pending and persistent safety concerns surrounding their use.
Collapse
Affiliation(s)
- Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates;
| | - Fathima Sheik Kather
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates;
| | - Mohamed A. Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.M.); (M.A.); (A.B.N.)
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| | - Sai H. S. Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates;
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Mahesh Attimarad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.M.); (M.A.); (A.B.N.)
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India;
| | - Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.M.); (M.A.); (A.B.N.)
| |
Collapse
|
12
|
Cacciola NA, Cuciniello R, Petillo GD, Piccioni M, Filosa S, Crispi S. An Overview of the Enhanced Effects of Curcumin and Chemotherapeutic Agents in Combined Cancer Treatments. Int J Mol Sci 2023; 24:12587. [PMID: 37628772 PMCID: PMC10454892 DOI: 10.3390/ijms241612587] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Due to the progressive ageing of the human population, the number of cancer cases is increasing. For this reason, there is an urgent need for new treatments that can prolong the lives of cancer patients or ensure them a good quality of life. Although significant progress has been made in the treatment of cancer in recent years and the survival rate of patients is increasing, limitations in the use of conventional therapies include the frequent occurrence of side effects and the development of resistance to chemotherapeutic agents. These limitations are prompting researchers to investigate whether combining natural agents with conventional drugs could have a positive therapeutic effect in cancer treatment. Several natural bioactive compounds, especially polyphenols, have been shown to be effective against cancer progression and do not exert toxic effects on healthy tissues. Many studies have investigated the possibility of combining polyphenols with conventional drugs as a novel anticancer strategy. Indeed, this combination often has synergistic benefits that increase drug efficacy and reduce adverse side effects. In this review, we provide an overview of the studies describing the synergistic effects of curcumin, a polyphenol that has been shown to have extensive cytotoxic functions against cancer cells, including combined treatment. In particular, we have described the results of recent preclinical and clinical studies exploring the pleiotropic effects of curcumin in combination with standard drugs and the potential to consider it as a promising new tool for cancer therapy.
Collapse
Affiliation(s)
- Nunzio Antonio Cacciola
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via F. Delpino 1, 80137 Naples, Italy;
- Research Institute on Terrestrial Ecosystems (IRET), UOS Naples-Consiglio Nazionale delle Ricerche (CNR), Via Pietro Castellino 111, 80131 Naples, Italy
| | - Rossana Cuciniello
- Institute of Biosciences and BioResources-UOS Naples CNR, Via P. Castellino, 111, 80131 Naples, Italy; (R.C.); (M.P.)
- IRCCS Neuromed, 86077 Isernia, Italy
| | | | - Miriam Piccioni
- Institute of Biosciences and BioResources-UOS Naples CNR, Via P. Castellino, 111, 80131 Naples, Italy; (R.C.); (M.P.)
| | - Stefania Filosa
- Institute of Biosciences and BioResources-UOS Naples CNR, Via P. Castellino, 111, 80131 Naples, Italy; (R.C.); (M.P.)
- IRCCS Neuromed, 86077 Isernia, Italy
| | - Stefania Crispi
- Institute of Biosciences and BioResources-UOS Naples CNR, Via P. Castellino, 111, 80131 Naples, Italy; (R.C.); (M.P.)
| |
Collapse
|
13
|
Peña M, Mesas C, Perazzoli G, Martínez R, Porres JM, Doello K, Prados J, Melguizo C, Cabeza L. Antiproliferative, Antioxidant, Chemopreventive and Antiangiogenic Potential of Chromatographic Fractions from Anemonia sulcata with and without Its Symbiont Symbiodinium in Colorectal Cancer Therapy. Int J Mol Sci 2023; 24:11249. [PMID: 37511009 PMCID: PMC10379856 DOI: 10.3390/ijms241411249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Anemonia sulcata may be a source of marine natural products (MNPs) due to the antioxidant and antitumor activity of its crude homogenates shown in vitro in colon cancer cells. A bioguided chromatographic fractionation assay of crude Anemonia sulcata homogenates with and without its symbiont Symbiodinium was performed to characterize their bioactive composition and further determine their biological potential for the management of colorectal cancer (CRC). The 20% fractions retained the in vitro antioxidant activity previously reported for homogenates. As such, activation of antioxidant and detoxifying enzymes was also evaluated. The 40% fractions showed the greatest antiproliferative activity in T84 cells, synergistic effects with 5-fluoruracil and oxaliplatin, overexpression of apoptosis-related proteins, cytotoxicity on tumorspheres, and antiangiogenic activity. The predominantly polar lipids and toxins tentatively identified in the 20% and 40% fractions could be related to their biological activity in colon cancer cells although further characterizations of the active fractions are necessary to isolate and purify the bioactive compounds.
Collapse
Affiliation(s)
- Mercedes Peña
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
| | - Cristina Mesas
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
| | - Gloria Perazzoli
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
| | - Rosario Martínez
- Department of Physiology, Institute of Nutrition and Food Technology (INyTA), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
| | - Jesús M Porres
- Department of Physiology, Institute of Nutrition and Food Technology (INyTA), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
| | - Kevin Doello
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
- Medical Oncology Service, Virgen de las Nieves Hospital, 18016 Granada, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
| | - Laura Cabeza
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
| |
Collapse
|
14
|
Jakobušić Brala C, Karković Marković A, Kugić A, Torić J, Barbarić M. Combination Chemotherapy with Selected Polyphenols in Preclinical and Clinical Studies-An Update Overview. Molecules 2023; 28:molecules28093746. [PMID: 37175156 PMCID: PMC10180288 DOI: 10.3390/molecules28093746] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
This review article describes studies published over the past five years on the combination of polyphenols, which are the most studied in the field of anticancer effects (curcumin, quercetin, resveratrol, epigallocatechin gallate, and apigenin) and chemotherapeutics such as cisplatin, 5-fluorouracil, oxaliplatin, paclitaxel, etc. According to WHO data, research has been limited to five cancers with the highest morbidity rate (lung, colorectal, liver, gastric, and breast cancer). A systematic review of articles published in the past five years (from January 2018 to January 2023) was carried out with the help of all Web of Science databases and the available base of clinical studies. Based on the preclinical studies presented in this review, polyphenols can enhance drug efficacy and reduce chemoresistance through different molecular mechanisms. Considering the large number of studies, curcumin could be a molecule in future chemotherapy cocktails. One of the main problems in clinical research is related to the limited bioavailability of most polyphenols. The design of a new co-delivery system for drugs and polyphenols is essential for future clinical research. Some polyphenols work in synergy with chemotherapeutic drugs, but some polyphenols can act antagonistically, so caution is always required.
Collapse
Affiliation(s)
- Cvijeta Jakobušić Brala
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10 000 Zagreb, Croatia
| | - Ana Karković Marković
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10 000 Zagreb, Croatia
| | - Azra Kugić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10 000 Zagreb, Croatia
| | - Jelena Torić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10 000 Zagreb, Croatia
| | - Monika Barbarić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10 000 Zagreb, Croatia
| |
Collapse
|
15
|
Kunnumakkara AB, Hegde M, Parama D, Girisa S, Kumar A, Daimary UD, Garodia P, Yenisetti SC, Oommen OV, Aggarwal BB. Role of Turmeric and Curcumin in Prevention and Treatment of Chronic Diseases: Lessons Learned from Clinical Trials. ACS Pharmacol Transl Sci 2023; 6:447-518. [PMID: 37082752 PMCID: PMC10111629 DOI: 10.1021/acsptsci.2c00012] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Indexed: 03/08/2023]
Abstract
Turmeric (Curcuma longa) has been used for thousands of years for the prevention and treatment of various chronic diseases. Curcumin is just one of >200 ingredients in turmeric. Almost 7000 scientific papers on turmeric and almost 20,000 on curcumin have been published in PubMed. Scientific reports based on cell culture or animal studies are often not reproducible in humans. Therefore, human clinical trials are the best indicators for the prevention and treatment of a disease using a given agent/drug. Herein, we conducted an extensive literature survey on PubMed and Scopus following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The keywords "turmeric and clinical trials" and "curcumin and clinical trials" were considered for data mining. A total of 148 references were found to be relevant for the key term "turmeric and clinical trials", of which 70 were common in both PubMed and Scopus, 44 were unique to PubMed, and 34 were unique to Scopus. Similarly, for the search term "curcumin and clinical trials", 440 references were found to be relevant, of which 70 were unique to PubMed, 110 were unique to Scopus, and 260 were common to both databases. These studies show that the golden spice has enormous health and medicinal benefits for humans. This Review will extract and summarize the lessons learned about turmeric and curcumin in the prevention and treatment of chronic diseases based on clinical trials.
Collapse
Affiliation(s)
- Ajaikumar B. Kunnumakkara
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Mangala Hegde
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Dey Parama
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Sosmitha Girisa
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Aviral Kumar
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Uzini Devi Daimary
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Prachi Garodia
- Integrative
Research Center, Miami, Florida 33125, United States
| | - Sarat Chandra Yenisetti
- Department
of Zoology, Drosophila Neurobiology Laboratory, Nagaland University (Central), Lumami, Nagaland-798627, India
| | - Oommen V. Oommen
- Department
of Computational Biology and Bioinformatics, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala-695581, India
| | - Bharat B. Aggarwal
- Inflammation
Research Center, San Diego, California 92109, United States
| |
Collapse
|
16
|
Hegde M, Girisa S, BharathwajChetty B, Vishwa R, Kunnumakkara AB. Curcumin Formulations for Better Bioavailability: What We Learned from Clinical Trials Thus Far? ACS OMEGA 2023; 8:10713-10746. [PMID: 37008131 PMCID: PMC10061533 DOI: 10.1021/acsomega.2c07326] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/18/2023] [Indexed: 05/30/2023]
Abstract
Curcumin has been credited with a wide spectrum of pharmacological properties for the prevention and treatment of several chronic diseases such as arthritis, autoimmune diseases, cancer, cardiovascular diseases, diabetes, hemoglobinopathies, hypertension, infectious diseases, inflammation, metabolic syndrome, neurological diseases, obesity, and skin diseases. However, due to its weak solubility and bioavailability, it has limited potential as an oral medication. Numerous factors including low water solubility, poor intestinal permeability, instability at alkaline pH, and fast metabolism contribute to curcumin's limited oral bioavailability. In order to improve its oral bioavailability, different formulation techniques such as coadministration with piperine, incorporation into micelles, micro/nanoemulsions, nanoparticles, liposomes, solid dispersions, spray drying, and noncovalent complex formation with galactomannosides have been investigated with in vitro cell culture models, in vivo animal models, and humans. In the current study, we extensively reviewed clinical trials on various generations of curcumin formulations and their safety and efficacy in the treatment of many diseases. We also summarized the dose, duration, and mechanism of action of these formulations. We have also critically reviewed the advantages and limitations of each of these formulations compared to various placebo and/or available standard care therapies for these ailments. The highlighted integrative concept embodied in the development of next-generation formulations helps to minimize bioavailability and safety issues with least or no adverse side effects and the provisional new dimensions presented in this direction may add value in the prevention and cure of complex chronic diseases.
Collapse
|
17
|
Chan WJJ, Adiwidjaja J, McLachlan AJ, Boddy AV, Harnett JE. Interactions between natural products and cancer treatments: underlying mechanisms and clinical importance. Cancer Chemother Pharmacol 2023; 91:103-119. [PMID: 36707434 PMCID: PMC9905199 DOI: 10.1007/s00280-023-04504-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/09/2023] [Indexed: 01/28/2023]
Abstract
Natural products, also referred to as dietary supplements, complementary and alternative medicines, and health or food supplements are widely used by people living with cancer. These products are predominantly self-selected and taken concurrently with cancer treatments with the intention of improving quality of life, immune function and reducing cancer symptoms and treatment side effects. Concerns have been raised that concurrent use may lead to interactions resulting in adverse effects and unintended treatment outcomes. This review provides an overview of the mechanisms by which these interactions can occur and the current evidence about specific clinically important natural product-drug interactions. Clinical studies investigating pharmacokinetic interactions provide evidence that negative treatment outcomes may occur when Hypericum perforatum, Grapefruit, Schisandra sphenanthera, Curcuma longa or Hydrastis canadensis are taken concurrently with common cancer treatments. Conversely, pharmacodynamic interactions between Hangeshashinto (TJ-14) and some cancer treatments have been shown to reduce the side effects of diarrhoea and oral mucositis. In summary, research in this area is limited and requires further investigation.
Collapse
Affiliation(s)
- Wai-Jo Jocelin Chan
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Jeffry Adiwidjaja
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia.,Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Andrew J McLachlan
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Alan V Boddy
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5001, Australia
| | - Joanna E Harnett
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
18
|
Lin X, Wang Q, Du S, Guan Y, Qiu J, Chen X, Yuan D, Chen T. Nanoparticles for co-delivery of paclitaxel and curcumin to overcome chemoresistance against breast cancer. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
19
|
Kumar A, Hegde M, Parama D, Kunnumakkara AB. Curcumin: The Golden Nutraceutical on the Road to Cancer Prevention and Therapeutics. A Clinical Perspective. Crit Rev Oncog 2022; 27:33-63. [PMID: 37183937 DOI: 10.1615/critrevoncog.2023045587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Cancer is considered as the major public health scourge of the 21st century. Although remarkable strides were made for developing targeted therapeutics, these therapies suffer from lack of efficacy, high cost, and debilitating side effects. Therefore, the search for safe, highly efficacious, and affordable therapies is paramount for establishing a treatment regimen for this deadly disease. Curcumin, a known natural, bioactive, polyphenol compound from the spice turmeric (Curcuma longa), has been well documented for its wide range of pharmacological and biological activities. A plethora of literature indicates its potency as an anti-inflammatory and anti-cancer agent. Curcumin exhibits anti-neoplastic attributes via regulating a wide array of biological cascades involved in mutagenesis, proliferation, apoptosis, oncogene expression, tumorigenesis, and metastasis. Curcumin has shown a wide range of pleiotropic anti-proliferative effect in multiple cancers and is a known inhibitor of varied oncogenic elements, including nuclear factor kappa B (NF-κB), c-myc, cyclin D1, Bcl-2, VEGF, COX-2, NOS, tumor necrosis factor alpha (TNF-α), interleukins, and MMP-9. Further, curcumin targets different growth factor receptors and cell adhesion molecules involved in tumor growth and progression, making it a most promising nutraceutical for cancer therapy. To date, curcumin-based therapeutics have completed more than 50 clinical trials for cancer. Although creative experimentation is still elucidating the immense potential of curcumin, systematic validation by proper randomized clinical trials warrant its transition from lab to bedside. Therefore, this review summarizes the outcome of diverse clinical trials of curcumin in various cancer types.
Collapse
Affiliation(s)
- Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam-781039, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam-781039, India
| | - Dey Parama
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, Assam-781039, India
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam-781039, India
| |
Collapse
|