1
|
Vaz-Rodrigues R, Mazuecos L, de la Fuente J. Current and Future Strategies for the Diagnosis and Treatment of the Alpha-Gal Syndrome (AGS). J Asthma Allergy 2022; 15:957-970. [PMID: 35879928 PMCID: PMC9307871 DOI: 10.2147/jaa.s265660] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/12/2022] [Indexed: 11/23/2022] Open
Abstract
The α-Gal syndrome (AGS) is a pathognomonic immunoglobulin E (IgE)-mediated delayed anaphylaxis in foods containing the oligosaccharide galactose-α-1,3-galactose (α-Gal) such as mammalian meat or dairy products. Clinical presentation of AGS can also comprise immediate hypersensitivity due to anticancer therapy, gelatin-containing vaccines or mammalian serum-based antivenom. The IgE initial sensitization is caused by hard-bodied tick bites and symptomatic individuals typically develop delayed pruritus, urticaria, angioedema, anaphylaxis, malaise or gut-related symptoms. Due to inapparent presentation, delayed reactions and a wide variety of patients´ clinical history, the AGS diagnosis and treatment remain challenging. This review covers not only current diagnostic methods used for AGS such as the skin prick test (SPT), the oral food challenge (OFC), anti-α-Gal IgE levels measurement and the basophil activation test (BAT), but also potentially relevant next-generation diagnostic tools like the mast cell activation test (MAT), the histamine-release (HR) assay, omics technologies and model-based reasoning (MBR). Moreover, it focuses on the therapeutical medical and non-medical methods available and current research methods that are being applied in order to elucidate the molecular, physiological and immune mechanisms underlying this allergic disorder. Lastly, future treatment and preventive tools are also discussed, being of utmost importance for the identification of tick salivary molecules, with or without α-Gal modifications, that trigger IgE sensitivity as they could be the key for further vaccine development. Bearing in mind climate change, the tick-host paradigm will shift towards an increasing number of AGS cases in new regions worldwide, which will pose new challenges for clinicians in the future.
Collapse
Affiliation(s)
- Rita Vaz-Rodrigues
- SaBio (Health and Biotechnology), Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ciudad Real, 13005, Spain
| | - Lorena Mazuecos
- SaBio (Health and Biotechnology), Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ciudad Real, 13005, Spain
| | - José de la Fuente
- SaBio (Health and Biotechnology), Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ciudad Real, 13005, Spain.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| |
Collapse
|
2
|
Commins SP. Diagnosis & management of alpha-gal syndrome: lessons from 2,500 patients. Expert Rev Clin Immunol 2020; 16:667-677. [PMID: 32571129 PMCID: PMC8344025 DOI: 10.1080/1744666x.2020.1782745] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/11/2020] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Alpha-gal Syndrome (AGS) is a unique allergy to non-primate mammalian meat (and derived-products) that is associated with tick bites and is due to a specific IgE antibody to the oligosaccharide galactose-α-1,3-galactose (alpha-gal). AGS has many novel features that broaden the paradigm of food allergy, including that reactions are delayed 3-6 hours after exposure and patients have frequently tolerated red meat for many years prior to the development of allergic reactions. Due to the ubiquitous inclusion of mammal-derived materials in foods, medications, personal products and stabilizing compounds, full avoidance is difficult to achieve. AREAS COVERED This review describes the author's experience with diagnosis, management, and design of appropriate avoidance for patients with AGS and provides clinicians with practical advice for care of these patients. EXPERT OPINION The number of patients with AGS is rising and may have exceeded awareness of the diagnosis amongst healthcare providers. In summarizing experience gained to thus far, we hope to create a resource for identifying and managing this unique allergic syndrome.
Collapse
Affiliation(s)
- Scott P Commins
- Division of Allergy, Immunology and Rheumatology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
3
|
Abstract
α-Gal syndrome results from sensitization to the carbohydrate epitope galactose-α-1,3-galactose (α‑gal). The allergen occurs in mammalian meat and innards, but also in other foods and medical products of animal origin. Allergic reactions generally occur delayed after allergen intake with a latency period, depending on the individual tolerance threshold and the influence of cofactors. Details in the patient's medical history can help to establish the suspected diagnosis of α‑gal syndrome. Confirmation of the diagnosis requires the expertise of specialists, experienced with the implementation and interpretation of in vitro and in vivo diagnostic tests. Whereas skin prick testing with commercial whole-meat extracts often does not provide reliable results, allergen-specific IgE (α-gal) is generally detectable in affected patients. Cell-based tests such as the basophil activation test are currently only employed in an experimental setting. To evaluate, whether a sensitization is clinically relevant, an in-patient oral food challenge should be performed, using for example cooked pork or porcine kidney in addition to suspected cofactors.
Collapse
|
4
|
Anemüller W, Mohr M, Brans R, Homann A, Jappe U. [Alpha-Gal-associated delayed red meat anaphylaxis as an occupational disease]. Hautarzt 2019; 69:848-852. [PMID: 29951852 DOI: 10.1007/s00105-018-4224-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In a 30-year-old chef with recurrent delayed angioedema history as well as the experimental detection of IgE antibodies against galactose-alpha-(1,3)-galactose (alpha-Gal) pointed to alpha-Gal as the causative agent. The diagnosis, therefore, was delayed anaphylaxis due to alpha-Gal. Because of the potential relationship to his profession, we submitted a dermatologist's report BK 5101 to the liability and insurance association, whereupon his contract of employment was terminated without notice. As a consequence, we reported an occupational disease. This case demonstrates an underdiagnosed, potentially life-threatening allergy to the disaccharide alpha-Gal in red meat as an occupational disease.
Collapse
Affiliation(s)
- W Anemüller
- Klinik für Dermatologie, Allergologie und Venerologie, Universität zu Lübeck, Lübeck, Deutschland
| | - M Mohr
- Klinik für Dermatologie, Allergologie und Venerologie, Universität zu Lübeck, Lübeck, Deutschland
| | - R Brans
- Institut für Gesundheitsforschung und Bildung (IGB), Abteilung Dermatologie, Umweltmedizin und Gesundheitstheorie, Institut für interdisziplinäre Dermatologische Prävention und Rehabilitation (iDerm), Universität Osnabrück, Osnabrück, Deutschland
| | - A Homann
- Forschungsgruppe Klinische und Molekulare Allergologie des Forschungszentrums Borstel, Airway Research Center North (ARCN), Mitglied des Deutschen Zentrums für Lungenforschung (DZL), Parkallee 35, 23845, Borstel, Deutschland
| | - U Jappe
- Forschungsgruppe Klinische und Molekulare Allergologie des Forschungszentrums Borstel, Airway Research Center North (ARCN), Mitglied des Deutschen Zentrums für Lungenforschung (DZL), Parkallee 35, 23845, Borstel, Deutschland.
- Interdisziplinäre Allergie-Ambulanz, Medizinische Klinik III, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck, Deutschland.
| |
Collapse
|
5
|
Bracey DN, Seyler TM, Jinnah AH, Smith TL, Ornelles DA, Deora R, Parks GD, Van Dyke ME, Whitlock PW. A porcine xenograft-derived bone scaffold is a biocompatible bone graft substitute: An assessment of cytocompatibility and the alpha-Gal epitope. Xenotransplantation 2019; 26:e12534. [PMID: 31342586 DOI: 10.1111/xen.12534] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/20/2019] [Accepted: 05/08/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND Xenografts are an attractive alternative to traditional bone grafts because of the large supply from donors with predictable morphology and biology as well as minimal risk of human disease transmission. Clinical series involving xenograft bone transplantation, most commonly from bovine sources, have reported poor results with frequent graft rejection and failure to integrate with host tissue. Failures have been attributed to residual alpha-Gal epitope in the xenograft which humans produce natural antibody against. To the authors' knowledge, there is currently no xenograft-derived bone graft substitute that has been adopted by orthopedic surgeons for routine clinical use. METHODS In the current study, a bone scaffold intended to serve as a bone graft substitute was derived from porcine cancellous bone using a tissue decellularization and chemical oxidation protocol. In vitro cytocompatibility, pathogen clearance, and alpha-Gal quantification tests were used to assess the safety of the bone scaffold intended for human use. RESULTS In vitro studies showed the scaffold was free of processing chemicals and biocompatible with mouse and human cell lines. When bacterial and viral pathogens were purposefully added to porcine donor tissue, processing successfully removed these pathogens to comply with sterility assurance levels established by allograft tissue providers. Critically, 98.5% of the alpha-Gal epitope was removed from donor tissue after decellularization as shown by ELISA inhibition assay and immunohistochemical staining. CONCLUSIONS The current investigation supports the biologic safety of bone scaffolds derived from porcine donors using a decellularization protocol that meets current sterility assurance standards. The majority of the highly immunogenic xenograft carbohydrate was removed from donor tissue, and these findings support further in vivo investigation of xenograft-derived bone tissue for orthopedic clinical application.
Collapse
Affiliation(s)
- Daniel N Bracey
- Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Thorsten M Seyler
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Alexander H Jinnah
- Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Thomas L Smith
- Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - David A Ornelles
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Rajendar Deora
- Department of Microbial Infection and Immunity, Department of Microbiology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Griffith D Parks
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida
| | - Mark E Van Dyke
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Patrick W Whitlock
- Division of Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
6
|
Hilger C, Fischer J, Wölbing F, Biedermann T. Role and Mechanism of Galactose-Alpha-1,3-Galactose in the Elicitation of Delayed Anaphylactic Reactions to Red Meat. Curr Allergy Asthma Rep 2019; 19:3. [PMID: 30673913 PMCID: PMC6344609 DOI: 10.1007/s11882-019-0835-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Purpose of Review The alpha-Gal (α-Gal) syndrome is characterized by the presence of IgE antibodies directed at the carbohydrate galactose-alpha-1,3-galactose (α-Gal). In this article, we review the presence of α-Gal in food and non-food sources; we discuss the evolutionary context of the antibody response to α-Gal and highlight immune responses to α-Gal and other carbohydrates. Recent findings IgE antibodies have been associated with delayed allergy to red meat. In addition to food, drugs, and other products of animal origin are increasingly perceived as a risk for patients sensitized to α-Gal. The link between tick bites and anti-α-Gal IgE-antibody production that has been established first by epidemiological studies has now been confirmed in mouse models. Summary The anti-α-Gal immune response is complex and characterized by a unique feature. IgM and IgG antibodies have been found to confer protection against pathogens whereas the IgE-response to α-Gal is detrimental and causes severe reactions upon exposure to mammalian meat and other products.
Collapse
Affiliation(s)
- Christiane Hilger
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg.
| | - Jörg Fischer
- Department of Dermatology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Florian Wölbing
- Department of Dermatology and Allergy Biederstein, Technical University of Munich, Munich, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy Biederstein, Technical University of Munich, Munich, Germany.,Clinical Unit Allergology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| |
Collapse
|
7
|
Peptidomics of an in vitro digested α-Gal carrying protein revealed IgE-reactive peptides. Sci Rep 2017; 7:5201. [PMID: 28701697 PMCID: PMC5507865 DOI: 10.1038/s41598-017-05355-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/26/2017] [Indexed: 12/25/2022] Open
Abstract
The mammalian carbohydrate galactose-α1,3-galactose (α-Gal) causes a novel form of food allergy, red meat allergy, where patients experience severe allergic reactions several hours after red meat consumption. Here we explored gastric digestion of α-Gal glycoproteins using an in vitro model. Bovine thyroglobulin (BTG), a typical α-Gal carrying glycoprotein, was digested with pepsin. The resulting peptides were characterised by SDS PAGE, immunoblot and ImmunoCAP using sera from 20 red meat allergic patients. During pepsinolysis of BTG, a wide range of peptide bands was observed of which 14 to 17 kDa peptides remained stable throughout the gastric phase. The presence of the α-Gal epitope on the obtained peptides was demonstrated by an anti-α-Gal antibody and IgE from red meat allergic patients. The α-Gal digests were able to inhibit up to 86% of IgE reactivity to BTG. Importantly, basophil activation test demonstrated that the allergenic activity of BTG was retained after digestion in all four tested patients. Mass spectrometry-based peptidomics revealed that these peptides represent mostly internal and C-terminal parts of the protein, where the most potent IgE-binding α-Gal residues were identified at Asn1756, Asn1850 and Asn2231. Thus allergenic α-Gal epitopes are stable to pepsinolysis, reinforcing their role as clinically relevant food allergens.
Collapse
|
8
|
Alpha-Gal Syndrome: Clinical Presentation, New Concepts, and Unmet Needs. CURRENT TREATMENT OPTIONS IN ALLERGY 2017. [DOI: 10.1007/s40521-017-0134-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Fischer J, Yazdi AS, Biedermann T. Clinical spectrum of α-Gal syndrome: from immediate-type to delayed immediate-type reactions to mammalian innards and meat. ALLERGO JOURNAL INTERNATIONAL 2016; 25:55-62. [PMID: 27226951 PMCID: PMC4861743 DOI: 10.1007/s40629-016-0099-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/21/2015] [Indexed: 11/15/2022]
Abstract
The term α-Gal syndrome describes a novel IgE-mediated immediate-type allergy to the disaccharide galactose-α-1,3-galactose (α-Gal). Its classification as a syndrome is proposed on the basis of its clinical relevance in three different fields of allergy: food, drugs, and tick bites. The main focus of the present article is on α-Gal as an eliciting allergen in food allergy. It was recently shown that immediate-type allergies to pork kidney and other mammalian innards belong to the spectrum of α-Gal syndrome. These allergic reactions manifest as classic immediate-type allergies with a typical latency of under 1 h. The phenomenon of a delayed-onset immediate-type allergy with a latency of 3-6 h following ingestion of mammalian meat is considered pathognomonic for α-Gal syndrome. This clinically distinct type of presentation can be explained using the concept of food-dependent exercise-induced anaphylaxis (FDEIA). However, clinical observations and challenge testing in this constellation reveal that individual sensitivity in α-Gal patients is highly variable and which broadens our basic understanding of α-Gal syndrome.
Collapse
Affiliation(s)
- Jörg Fischer
- />Department of Dermatology, Faculty of Medicine, Eberhard Karls University Tuebingen, Liebermeisterstraße 25, 72076 Tuebingen, Germany
| | - Amir S. Yazdi
- />Department of Dermatology, Faculty of Medicine, Eberhard Karls University Tuebingen, Liebermeisterstraße 25, 72076 Tuebingen, Germany
| | - Tilo Biedermann
- />Department of Dermatology and Allergy Biederstein, Technical University Munich, Germany
| |
Collapse
|