1
|
van Rees CB, Geist J, Arthington AH. Grasping at water: a gap-oriented approach to bridging shortfalls in freshwater biodiversity conservation. Biol Rev Camb Philos Soc 2025. [PMID: 40328259 DOI: 10.1111/brv.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 04/11/2025] [Accepted: 04/23/2025] [Indexed: 05/08/2025]
Abstract
Freshwater biodiversity is the fastest declining part of the global biota, threatened by multiple stressors including habitat loss and fragmentation, climate change, invasive species, water pollution, and abstraction by humans. A multitude of recent agenda-setting publications have pointed out key objectives and goals for addressing this freshwater biodiversity crisis, but important gaps must be overcome to reach ambitious conservation targets. In this perspective, we complement these high-level papers in freshwater conservation by highlighting important gaps in knowledge, governance, and implementation. This gap-oriented approach is designed to facilitate meaningful action by highlighting missing 'pieces' in the conservation process, and their connection to existing and emerging solutions in the literature. We derive 13 overarching gaps from a conference session and informal synthesis of recent literature in freshwater biodiversity conservation to catalyse research, advocacy, and action to meet freshwater goals for the post-2020 Kunming-Montreal Global Biodiversity Framework (GBF). Key gaps include inventory data on global freshwater biodiversity, collating and mobilizing conservation evidence in practice, improving coordination of ecological governance at scale -including within and across catchments-and navigating trade-offs between economic development, resource consumption, and priorities for freshwater biodiversity. Finally, we apply this gap-oriented approach to key language describing GBF goals for freshwater biodiversity conservation, and point out existing and emerging solutions which may help address important gaps. Major themes that address multiple gaps include the use of Nature-based Solutions and Other Effective Area-based Conservation Measures (OECMs), navigation of water management trade-offs between human and environmental needs, co-production of knowledge with Indigenous and local people and other stakeholders, integration of conservation research and action between aquatic and terrestrial ecosystems, and funding and policy mechanisms to facilitate conservation action and support meaningful monitoring of conservation evidence across hydrological scales.
Collapse
Affiliation(s)
- Charles B van Rees
- Odum School of Ecology, University of Georgia, 140 E Green St, Athens, GA, 30602, USA
- Institute of Resilient Infrastructure Systems, University of Georgia, 597 D.W. Brooks Drive, Athens, GA, 30602, USA
- River Basin Center, University of Georgia, 203 D.W. Brooks Drive, Athens, GA, 30602, USA
| | - Juergen Geist
- Aquatic Systems Biology Unit, Technical University of Munich, Mühlenweg 22, Freising, D-85354, Germany
| | - Angela H Arthington
- Australian Rivers Institute, Griffith University, 170 Kessels Road, Nathan, Queensland, 4111, Australia
| |
Collapse
|
2
|
Bayer PE, Bennett A, Nester G, Corrigan S, Raes EJ, Cooper M, Ayad ME, McVey P, Kardailsky A, Pearce J, Fraser MW, Goncalves P, Burnell S, Rauschert S. A Comprehensive Evaluation of Taxonomic Classifiers in Marine Vertebrate eDNA Studies. Mol Ecol Resour 2025:e14107. [PMID: 40243260 DOI: 10.1111/1755-0998.14107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 12/05/2024] [Accepted: 03/11/2025] [Indexed: 04/18/2025]
Abstract
Environmental DNA (eDNA) metabarcoding is a widely used tool for surveying marine vertebrate biodiversity. To this end, many computational tools have been released and a plethora of bioinformatic approaches are used for eDNA-based community composition analysis. Simulation studies and careful evaluation of taxonomic classifiers are essential to establish reliable benchmarks to improve the accuracy and reproducibility of eDNA-based findings. Here we present a comprehensive evaluation of nine taxonomic classifiers exploring three widely used mitochondrial markers (12S rDNA, 16S rDNA and COI) in Australian marine vertebrates. Curated reference databases and exclusion database tests were used to simulate diverse species compositions, including three positive control and two negative control datasets. Using these simulated datasets ranging from 36 to 302 marker genes, we were able to identify between 19% and 89% of marine vertebrate species using mitochondrial markers. We show that MMSeqs2 and Metabuli generally outperform BLAST with 10% and 11% higher F1 scores for 12S and 16S rDNA markers, respectively, and that Naive Bayes Classifiers such as Mothur outperform sequence-based classifiers except MMSeqs2 for COI markers by 11%. Database exclusion tests reveal that MMSeqs2 and BLAST are less susceptible to false positives compared to Kraken2 with default parameters. Based on these findings, we recommend that MMSeqs2 is used for taxonomic classification of marine vertebrates given its ability to improve species-level assignments while reducing the number of false positives. Our work contributes to the establishment of best practices in eDNA-based biodiversity analysis to ultimately increase the reliability of this monitoring tool in the context of marine vertebrate conservation.
Collapse
Affiliation(s)
- Philipp E Bayer
- Minderoo Foundation, Perth, Western Australia, Australia
- Minderoo OceanOmics Centre at UWA, Oceans Institute, The University of Western Australia, Crawley, Western Australia, Australia
| | - Adam Bennett
- Minderoo Foundation, Perth, Western Australia, Australia
- Minderoo OceanOmics Centre at UWA, Oceans Institute, The University of Western Australia, Crawley, Western Australia, Australia
| | - Georgia Nester
- Minderoo Foundation, Perth, Western Australia, Australia
- Minderoo OceanOmics Centre at UWA, Oceans Institute, The University of Western Australia, Crawley, Western Australia, Australia
- Minderoo-UWA Deep-Sea Research Centre, School of Biological Sciences and Oceans Institute, The University of Western Australia, Crawley, Western Australia, Australia
| | - Shannon Corrigan
- Minderoo Foundation, Perth, Western Australia, Australia
- Minderoo OceanOmics Centre at UWA, Oceans Institute, The University of Western Australia, Crawley, Western Australia, Australia
| | - Eric J Raes
- Minderoo Foundation, Perth, Western Australia, Australia
- Minderoo OceanOmics Centre at UWA, Oceans Institute, The University of Western Australia, Crawley, Western Australia, Australia
| | - Madalyn Cooper
- Minderoo Foundation, Perth, Western Australia, Australia
| | - Marcelle E Ayad
- Minderoo Foundation, Perth, Western Australia, Australia
- Minderoo OceanOmics Centre at UWA, Oceans Institute, The University of Western Australia, Crawley, Western Australia, Australia
| | - Philip McVey
- Minderoo Foundation, Perth, Western Australia, Australia
| | - Anya Kardailsky
- Minderoo Foundation, Perth, Western Australia, Australia
- Minderoo OceanOmics Centre at UWA, Oceans Institute, The University of Western Australia, Crawley, Western Australia, Australia
| | - Jessica Pearce
- Minderoo Foundation, Perth, Western Australia, Australia
- Minderoo OceanOmics Centre at UWA, Oceans Institute, The University of Western Australia, Crawley, Western Australia, Australia
| | - Matthew W Fraser
- Minderoo Foundation, Perth, Western Australia, Australia
- School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Priscila Goncalves
- Minderoo Foundation, Perth, Western Australia, Australia
- Minderoo OceanOmics Centre at UWA, Oceans Institute, The University of Western Australia, Crawley, Western Australia, Australia
| | - Stephen Burnell
- Minderoo Foundation, Perth, Western Australia, Australia
- Minderoo OceanOmics Centre at UWA, Oceans Institute, The University of Western Australia, Crawley, Western Australia, Australia
| | - Sebastian Rauschert
- Minderoo Foundation, Perth, Western Australia, Australia
- Minderoo OceanOmics Centre at UWA, Oceans Institute, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
3
|
Liu S, Chen J, Cui G, Zhang B, Yan B, Nie Q. Environmental DNA metabarcoding: Current applications and future prospects for freshwater fish monitoring. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124531. [PMID: 39955904 DOI: 10.1016/j.jenvman.2025.124531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/07/2025] [Accepted: 02/08/2025] [Indexed: 02/18/2025]
Abstract
Fish, as the top predators in freshwater, greatly contribute to maintain ecosystem stability. There has been a sharp decline in freshwater fish stocks due to multiple factors, both natural and anthropogenic. Effective and accurate monitoring of freshwater fish is necessary to inform on ecosystem health and guide environmental management practices. Traditional survey methods are gradually unable to meet the growing monitoring needs. Environmental DNA (eDNA) metabarcoding provides a high sensitivity, fast and affordable approach for surveying and monitoring of aquatic biology. However, due to the limitations of incomplete databases and non-standardized procedures, the use of eDNA techniques for monitoring freshwater fish remains less mature compared to traditional fish monitoring methods. To systematically review the current applications and future prospects of the eDNA metabarcoding for freshwater fish monitoring, this article: (i) summarizes relevant researches on freshwater fish monitoring using eDNA technology (e.g., methodologies, resource surveys, habitat assessments, etc.) over the past decade. (ii) outlines the methodology of eDNA metabarcoding in freshwater fish monitoring, proposes a standardized process for eDNA methods, and suggests ways to eliminate detection errors. (iii) analyzes the current challenges of the eDNA metabarcoding application in resource surveys and ecological quality assessments of freshwater fish. The eDNA technology can be used as a better alternative or supplement to traditional survey methods for monitoring the diversity, biomass, population distribution, and spawning behaviors of freshwater fish, in particular, it has a prominent advantage in monitoring endangered and rare fish species. (iv) investigates the application of eDNA technology in investigating the impact of human activities and invasive species on freshwater fish, and emphasizes the eDNA's potential in assessing the impacts of water projects (e.g., dam construction or removal, water diversion project) on fish habitats, and the effectiveness of fish passage and invasive fish control efforts. (v) discusses the future prospects of eDNA-based freshwater fish monitoring, both in terms of technology and application. This review provides a guidance for the future development and application of eDNA technology in freshwater fish monitoring and ecological quality assessments.
Collapse
Affiliation(s)
- Shuaishuai Liu
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, PR China
| | - Juan Chen
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, PR China.
| | - Ge Cui
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, PR China
| | - Bo Zhang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, PR China
| | - Bingcheng Yan
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, PR China
| | - Qihao Nie
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, PR China
| |
Collapse
|
4
|
Cantera I, Giachello S, Münkemüller T, Caccianiga M, Gobbi M, Losapio G, Marta S, Valle B, Zawierucha K, Thuiller W, Ficetola GF. Describing functional diversity of communities from environmental DNA. Trends Ecol Evol 2025; 40:170-179. [PMID: 39572353 DOI: 10.1016/j.tree.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/04/2024] [Accepted: 10/18/2024] [Indexed: 02/07/2025]
Abstract
Comprehensive assessments of functional diversity are needed to understand ecosystem alterations under global changes. The 'Fun-eDNA' approach characterises functional diversity by assigning traits to taxonomic units obtained through environmental DNA (eDNA) sampling. By simultaneously analysing an unprecedented number of taxa over broad spatial scales, the approach provides a whole-ecosystem perspective of functional diversity. Fun-eDNA is increasingly used to tackle multiple questions, but aligning eDNA with traits poses several conceptual and technical challenges. Enhancing trait databases, improving the annotation of eDNA-based taxonomic inventories, interdisciplinary collaboration, and conceptual harmonisation of traits are key steps to achieve a comprehensive assessment of diverse taxa. Overcoming these challenges can unlock the full potential of eDNA in leveraging measures of ecosystem functions from multi-taxa assessments.
Collapse
Affiliation(s)
- Isabel Cantera
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milano, Italy.
| | - Simone Giachello
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milano, Italy; Department of Sciences, Technologies and Society, University School for Advanced Studies IUSS Pavia, Pavia, Italy
| | - Tamara Münkemüller
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Marco Caccianiga
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Mauro Gobbi
- Research and Museum Collections Office, Climate and Ecology Unit, MUSE-Science Museum of Trento, Trento, Italy
| | - Gianalberto Losapio
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy; Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland
| | - Silvio Marta
- Institute of Geosciences and Earth Resources, CNR, Via Moruzzi 1, 56124, Pisa, Italy
| | - Barbara Valle
- Università degli Studi di Siena, Siena, Italy; NBFC- Nature Biodiversity Future Center, Palermo, Italy
| | - Krzysztof Zawierucha
- Department of Animal Taxonomy and Ecology, Adam Mickiewicz University, Poznań, Poland
| | - Wilfried Thuiller
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Gentile Francesco Ficetola
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milano, Italy; Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| |
Collapse
|
5
|
Hassan S, Bali BS, Yaseen A, Zaman M, Muneer W, Ganiee SA, Shah AJ, Ganai BA. Bridging the gaps through environmental DNA: A review of critical considerations for interpreting the biodiversity data in coral reef ecosystems. MARINE POLLUTION BULLETIN 2024; 209:117242. [PMID: 39509908 DOI: 10.1016/j.marpolbul.2024.117242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 11/01/2024] [Accepted: 11/01/2024] [Indexed: 11/15/2024]
Abstract
Coral reefs, the rainforests of the sea, are vital hotspots for marine biodiversity. However, the persistent challenge of climate change directly threatens the delicate balance of coral reef ecosystems, impacting myriad species and critical ecosystem services. Therefore, this comprehensive review critically discusses the associated challenges in assessing and preserving coral reef diversity, emphasizing the need for novel biomonitoring techniques due to the elusive and cryptic nature of many reef organisms. The review focuses on environmental DNA (eDNA) analysis as a non-invasive tool for coral species monitoring at various ecological levels. The review highlights that using eDNA in coral reef monitoring requires careful consideration of multiple factors, such as strategic assay development, optimization, and marker selection, substrate selection, and sample volume, which are critical for maximizing the probability of species detection. Moreover, integrating environmental RNA (eRNA) provides additional insights into temporal aspects advancing the coral reef biodiversity research and conservation efforts.
Collapse
Affiliation(s)
- Shahnawaz Hassan
- Department of Environmental Science, University of Kashmir, Srinagar 190006, India.
| | - Bikram Singh Bali
- Department of Earth Science, University of Kashmir, Srinagar 190006, India
| | - Aarif Yaseen
- Department of Environmental Science, University of Kashmir, Srinagar 190006, India
| | - Muzafar Zaman
- Department of Environmental Science, University of Kashmir, Srinagar 190006, India
| | - Wani Muneer
- Department of Environmental Science, University of Kashmir, Srinagar 190006, India
| | - Shahid Ahmad Ganiee
- Department of Environmental Science, University of Kashmir, Srinagar 190006, India
| | - Abdul Jalil Shah
- Department of Pharmaceutical Sciences, University of Kashmir, Srinagar 190006, India
| | - Bashir Ahmad Ganai
- Centre of Research for Development, University of Kashmir, Srinagar 190006, India.
| |
Collapse
|
6
|
Roblet S, Priouzeau F, Gambini G, Cottalorda JM, Gastaldi JM, Pey A, Raybaud V, Suarez GR, Serre C, Sabourault C, Dérijard B. From sight to sequence: Underwater visual census vs environmental DNA metabarcoding for the monitoring of taxonomic and functional fish diversity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177250. [PMID: 39477117 DOI: 10.1016/j.scitotenv.2024.177250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/10/2024]
Abstract
Fish monitoring is essential for assessing the effects of natural and anthropic stressors on marine ecosystems. In this context, environmental DNA (eDNA) metabarcoding appears to be a promising tool, due to its efficiency in species detection. However, before this method can be fully implemented in monitoring programs, more studies are needed to evaluate its ability to assess the composition of fish assemblages compared with traditional survey methods that have been used for decades. Here, we used both eDNA metabarcoding and Underwater Visual Census (UVC) to assess the taxonomic and functional diversity (presence-absence data) of Mediterranean fish communities. We collected eDNA samples and performed UVC strip transects inside and outside four Marine Protected Areas in the Mediterranean Sea. Samples for eDNA analysis were collected by filtering seawater simultaneously at the surface and the bottom, and DNA was amplified using a combination of three sets of primers. We found that eDNA alone made an outstanding characterisation of fish composition with the detection of 95 % of the 60 taxa identified in this study, whereas UVC recovered only 58 % of them. Functional diversity was better evaluated with eDNA than with UVC, with the detection of a greater breadth of functional traits. eDNA was even better at characterising functional than taxonomic diversity, providing reliable information on ecosystem functioning with little sampling effort. Together these results suggest that eDNA metabarcoding offers great potential for surveying complex marine ecosystems. Combining eDNA metabarcoding and UVC in integrated monitoring programs would therefore improve monitoring strategies and enhance our understanding of fish communities, a key step promoting their conservation.
Collapse
Affiliation(s)
- Sylvain Roblet
- Université Côte d'Azur, CNRS, ECOSEAS, 28 Avenue Valrose, 06000 Nice, France.
| | - Fabrice Priouzeau
- Université Côte d'Azur, CNRS, ECOSEAS, 28 Avenue Valrose, 06000 Nice, France.
| | - Gilles Gambini
- Université Côte d'Azur, CNRS, ECOSEAS, 28 Avenue Valrose, 06000 Nice, France.
| | | | | | - Alexis Pey
- THALASSA Marine Research & Environmental Awareness, 286 F Route d'Aspremont, 06690 Tourrette-Levens, France
| | - Virginie Raybaud
- Université Côte d'Azur, CNRS, ECOSEAS, 28 Avenue Valrose, 06000 Nice, France.
| | | | - Christophe Serre
- Département des Alpes-Maritimes, Direction Environnement et Gestion des Risques, Centre administratif départemental, 147 boulevard du Mercantour, 06201 Cedex 3 Nice, France.
| | - Cécile Sabourault
- Université Côte d'Azur, CNRS, ECOSEAS, 28 Avenue Valrose, 06000 Nice, France.
| | - Benoit Dérijard
- Université Côte d'Azur, CNRS, ECOSEAS, 28 Avenue Valrose, 06000 Nice, France.
| |
Collapse
|
7
|
Liu Z, Hu C, You W, Li S, Wu Y, Liang Y, Chu L, Yan Y, Zhang C. Comparison Between Environmental DNA Metabarcoding and Traditional Survey Method to Identify Community Composition and Assembly of Stream Fish. Ecol Evol 2024; 14:e70627. [PMID: 39588347 PMCID: PMC11588354 DOI: 10.1002/ece3.70627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/02/2024] [Accepted: 11/10/2024] [Indexed: 11/27/2024] Open
Abstract
Environmental DNA (eDNA) metabarcoding has been widely used in freshwater systems, contributing to the advancements in the monitoring of fish diversity and community species composition. Nevertheless, the accuracy and reliability of eDNA metabarcoding in assessing functional structures and revealing the mechanisms underlying fish community assembly remain unclear. In this study, we combined a traditional survey method (electrofishing) and eDNA metabarcoding to conduct fish stock monitoring in the upper reaches of the Huishui stream. We assessed taxonomic and functional structures, as well as community assembly mechanisms, during dry and wet seasons. The results revealed that, compared with electrofishing surveys, eDNA metabarcoding detected a greater number of species and higher functional richness in both seasons. Despite significant differences in fish taxonomic composition between the seasons, both eDNA and traditional methods indicated that environmental filtering dominated the process of fish community assembly in both dry and wet seasons. We showed that eDNA metabarcoding is comparable to the electrofishing method in monitoring the community composition of stream fish and can accurately and reliably determine fish community assembly mechanisms. Combining functional traits and eDNA is a robust approach for monitoring stream fish community compared to taxonomic uncertainty.
Collapse
Affiliation(s)
- Ziyu Liu
- School of Ecology and EnvironmentAnhui Normal UniversityWuhuChina
| | - Cong Hu
- School of Ecology and EnvironmentAnhui Normal UniversityWuhuChina
| | - Wenhui You
- School of Ecology and EnvironmentAnhui Normal UniversityWuhuChina
| | - Shuxin Li
- School of Ecology and EnvironmentAnhui Normal UniversityWuhuChina
| | - Yongsheng Wu
- School of Ecology and EnvironmentAnhui Normal UniversityWuhuChina
| | - Yangyang Liang
- Anhui Province Key Laboratory of Aquaculture & Stock EnhancementFishery Institute of Anhui Academy of Agricultural SciencesHefeiChina
| | - Ling Chu
- School of Ecology and EnvironmentAnhui Normal UniversityWuhuChina
- Anhui Normal UniversityProvincial Key Laboratory of Biotic Environment and Ecological Safety in AnhuiWuhuChina
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co‐Founded by Anhui Province and Ministry of EducationAnhui Normal UniversityWuhuChina
| | - Yunzhi Yan
- School of Ecology and EnvironmentAnhui Normal UniversityWuhuChina
- Anhui Normal UniversityProvincial Key Laboratory of Biotic Environment and Ecological Safety in AnhuiWuhuChina
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co‐Founded by Anhui Province and Ministry of EducationAnhui Normal UniversityWuhuChina
| | - Chen Zhang
- School of Ecology and EnvironmentAnhui Normal UniversityWuhuChina
- Anhui Normal UniversityProvincial Key Laboratory of Biotic Environment and Ecological Safety in AnhuiWuhuChina
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co‐Founded by Anhui Province and Ministry of EducationAnhui Normal UniversityWuhuChina
| |
Collapse
|
8
|
Ion MC, Bloomer CC, Bărăscu TI, Oficialdegui FJ, Shoobs NF, Williams BW, Scheers K, Clavero M, Grandjean F, Collas M, Baudry T, Loughman Z, Wright JJ, Ruokonen TJ, Chucholl C, Guareschi S, Koese B, Banyai ZM, Hodson J, Hurt M, Kaldre K, Lipták B, Fetzner JW, Cancellario T, Weiperth A, Birzaks J, Trichkova T, Todorov M, Balalaikins M, Griffin B, Petko ON, Acevedo-Alonso A, D’Elía G, Śliwińska K, Alekhnovich A, Choong H, South J, Whiterod N, Zorić K, Haase P, Soto I, Brady DJ, Haubrock PJ, Torres PJ, Şadrin D, Vlach P, Kaya C, Woo Jung S, Kim JY, Vermeersch XH, Bonk M, Guiaşu R, Harlioğlu MM, Devlin J, Kurtul I, Błońska D, Boets P, Masigol H, Cabe PR, Jussila J, Vrålstad T, Beresford DV, Reid SM, Patoka J, Strand DA, Tarkan AS, Steen F, Abeel T, Harwood M, Auer S, Kelly S, Giantsis IA, Maciaszek R, Alvanou MV, Aksu Ö, Hayes DM, Kawai T, Tricarico E, Chakandinakira A, Barnett ZC, Kudor ŞG, Beda AE, Vîlcea L, Mizeranschi AE, Neagul M, Licz A, Cotoarbă AD, Petrusek A, Kouba A, Taylor CA, Pârvulescu L. World of Crayfish™: a web platform towards real-time global mapping of freshwater crayfish and their pathogens. PeerJ 2024; 12:e18229. [PMID: 39421415 PMCID: PMC11485098 DOI: 10.7717/peerj.18229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
Freshwater crayfish are amongst the largest macroinvertebrates and play a keystone role in the ecosystems they occupy. Understanding the global distribution of these animals is often hindered due to a paucity of distributional data. Additionally, non-native crayfish introductions are becoming more frequent, which can cause severe environmental and economic impacts. Management decisions related to crayfish and their habitats require accurate, up-to-date distribution data and mapping tools. Such data are currently patchily distributed with limited accessibility and are rarely up-to-date. To address these challenges, we developed a versatile e-portal to host distributional data of freshwater crayfish and their pathogens (using Aphanomyces astaci, the causative agent of the crayfish plague, as the most prominent example). Populated with expert data and operating in near real-time, World of Crayfish™ is a living, publicly available database providing worldwide distributional data sourced by experts in the field. The database offers open access to the data through specialized standard geospatial services (Web Map Service, Web Feature Service) enabling users to view, embed, and download customizable outputs for various applications. The platform is designed to support technical enhancements in the future, with the potential to eventually incorporate various additional features. This tool serves as a step forward towards a modern era of conservation planning and management of freshwater biodiversity.
Collapse
Affiliation(s)
- Mihaela C. Ion
- Institute of Biology Bucharest, Romanian Academy, Bucharest, Romania
| | - Caitlin C. Bloomer
- Illinois Natural History Survey, Prairie Research Institute, Champaign, IL, United States of America
| | | | - Francisco J. Oficialdegui
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Nathaniel F. Shoobs
- Museum of Biological Diversity, Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, United States of America
| | - Bronwyn W. Williams
- Research Laboratory, North Carolina Museum of Natural Sciences, Raleigh, NC, United States of America
| | - Kevin Scheers
- Unit Freshwater habitats, Research Institute for Nature and Forest, Brussels, Belgium
| | | | - Frédéric Grandjean
- Laboratoire Ecologie et Biologie des Interactions - UMR CNRS 7267, Laboratoire EBI - Equipe Ecologie Evolution Symbiose - Batiment B31, Université de Poitiers, Poitiers, France
| | - Marc Collas
- Office Français de la Biodiversité, Epinal, France
| | - Thomas Baudry
- Laboratoire Ecologie et Biologie des Interactions - UMR CNRS 7267, Laboratoire EBI - Equipe Ecologie Evolution Symbiose - Batiment B31, Université de Poitiers, Poitiers, France
| | - Zachary Loughman
- Department of Organismal Biology, Ecology, and Zoo Science, West Liberty University, West Liberty, WV, United States of America
| | | | | | | | - Simone Guareschi
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Bram Koese
- Naturalis Biodiversity Center, Leiden, Netherlands
| | - Zsombor M. Banyai
- Doctoral School of Environmental Science, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
- Department of Freshwater Fish Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - James Hodson
- School of Biology, Faculty of Biological Science, University of Leeds, Leeds, United Kingdom
| | - Margo Hurt
- Chair of Aquaculture, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Katrin Kaldre
- Chair of Aquaculture, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Boris Lipták
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
- Slovak Environment Agency, Banská Bystrica, Slovakia
| | - James W. Fetzner
- Section of Invertebrate Zoology, Carnegie Museum of Natural History, Pittsburgh, PA, United States of America
| | - Tommaso Cancellario
- Balearic Biodiversity Centre, Department of Biology, University of the Balearic Islands, Palma, Spain
| | - András Weiperth
- Department of Systematic Zoology and Ecology, Eötvös Loránd University, Budapest, Hungary
| | - Jạnis Birzaks
- Institute of Life Sciences and Technology, Department of Biodiversity, Daugavpils University, Daugavpils, Latvia
| | - Teodora Trichkova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Milcho Todorov
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Maksims Balalaikins
- Institute of Life Sciences and Technology, Department of Biodiversity, Daugavpils University, Daugavpils, Latvia
| | | | - Olga N. Petko
- Crayfish Research Centre, Institute for Advanced Environmental Research, West University of Timisoara, Timisoara, Romania
| | | | - Guillermo D’Elía
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
| | - Karolina Śliwińska
- Scientific and Practical Center for Biological Resources of the National Academy of Science of Belarus, Minsk, Belarus
| | - Anatoly Alekhnovich
- Scientific and Practical Center for Biological Resources of the National Academy of Science of Belarus, Minsk, Belarus
| | - Henry Choong
- Royal British Columbia Museum, Victoria, British Columbia, Canada
| | - Josie South
- South African Institute for Aquatic Biodiversity, Makhanda, South Africa
- Water@Leeds, School of Biology, Faculty of Biological Sciences, Leeds, United Kingdom
| | - Nick Whiterod
- Nature Glenelg Trust, South Australia, Australia
- CLLMM Research Centre, Goyder Institute for Water Research, Goolwa, South Australia, Australia
| | - Katarina Zorić
- Department of Hydroecology and Water Protection, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Peter Haase
- Faculty of Biology, University of Duisburg-Essen, Essen, Germany
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
| | - Ismael Soto
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Daniel J. Brady
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Gießen, Germany
| | - Phillip J. Haubrock
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
- CAMB, Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Hawally, Kuwait
| | - Pedro J. Torres
- Biology Department, College of the Holy Cross, Worcester, MA, United States of America
| | - Denis Şadrin
- Crayfish Research Centre, Institute for Advanced Environmental Research, West University of Timisoara, Timisoara, Romania
| | - Pavel Vlach
- Center of Biology, Geosciences and Environmental Education, Faculty of Education, University of West Bohemia, Plzeň, Czech Republic
| | - Cüneyt Kaya
- Faculty of Fisheries, Recep Tayyip Erdogan University, Rize, Turkey
| | - Sang Woo Jung
- DASARI Research Institute of BioResources, Daejeon, Republic of Korea
| | - Jin-Young Kim
- Research Center for Endangered Species, National Institute of Ecology, Yeongyang, Republic of Korea
| | | | - Maciej Bonk
- Institute of Nature Conservation, Polish Academy of Sciences, Kraków, Poland
| | - Radu Guiaşu
- Biology Program, Glendon College, York University, Toronto, Ontario, Canada
| | | | - Jane Devlin
- Ontario Ministry of Natural Resources, Peterborough, Ontario, Canada
| | - Irmak Kurtul
- Marine and Inland Waters Sciences and Technology Department, Faculty of Fisheries, Ege University, Izmir, Turkey
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Poole, Bournemouth, United Kingdom
| | - Dagmara Błońska
- Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland
| | - Pieter Boets
- Provincial Centre of Environmental Research, Ghent, Belgium
| | - Hossein Masigol
- Crayfish Research Centre, Institute for Advanced Environmental Research, West University of Timisoara, Timisoara, Romania
| | - Paul R. Cabe
- Biology Department, Washington and Lee University, Lexington, VA, United States of America
| | - Japo Jussila
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Trude Vrålstad
- Department of Aquatic Animal Health, Norwegian Veterinary Institute, Ås, Norway
| | - David V. Beresford
- Biology and Trent School of the Environment, Trent University, Peterborough, Ontario, Canada
| | - Scott M. Reid
- Ontario Ministry of Natural Resources, Peterborough, Ontario, Canada
| | - Jiří Patoka
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - David A. Strand
- Department of Aquatic Animal Health, Norwegian Veterinary Institute, Ås, Norway
| | - Ali S. Tarkan
- Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland
- Department of Basic Sciences, Faculty of Fisheries, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Frédérique Steen
- Unit Freshwater habitats, Research Institute for Nature and Forest, Brussels, Belgium
| | - Thomas Abeel
- Agro- and Biotechnology, Odisee University of Applied Sciences, Sint-Niklaas, Belgium
| | - Matthew Harwood
- Water@Leeds, School of Biology, Faculty of Biological Sciences, Leeds, United Kingdom
| | | | - Sandor Kelly
- University of Central Florida, Orlando, FL, United States of America
| | - Ioannis A. Giantsis
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, Florina, Greece
- Laboratory of Ichthyology & Fisheries, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Rafał Maciaszek
- Department of Animal Genetics and Conservation, Institute of Animal Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Maria V. Alvanou
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, Florina, Greece
| | - Önder Aksu
- Department of Aquaculture of Fisheries Faculty, Munzur University, Tunceli, Turkey
| | - David M. Hayes
- Eastern Kentucky University, Richmond, KY, United States of America
| | - Tadashi Kawai
- Hokkaido Research Organization, Central Fisheries Research Institute, Yoichi Hokkaido, Japan
| | - Elena Tricarico
- Dipartimento di Biologia, Università di Firenze, Sesto Fiorentino, Italy
| | - Adroit Chakandinakira
- Lake Kariba Fisheries Research Institute, Zimbabwe Parks and Wildlife Management Authority, Kariba, Zimbabwe
| | - Zanethia C. Barnett
- USDA Forest Service, Southern Research Station, Center for Bottomland Hardwoods Research, Clemson, SC, United States of America
| | - Ştefan G. Kudor
- “Simion Mehedinţi - Nature and Sustainable Development” Doctoral School, University of Bucharest, Bucharest, Romania
| | - Andreea E. Beda
- Department of Computer Science and Information Technology, Faculty of Engineering in Foreign Languages, University Politehnica of Bucharest, Bucharest, Romania
| | - Lucian Vîlcea
- Department of Economic Informatics and Cybernetics, Bucharest University of Economic Studies, Bucharest, Romania
| | - Alexandru E. Mizeranschi
- Crayfish Research Centre, Institute for Advanced Environmental Research, West University of Timisoara, Timisoara, Romania
- Research and Development Station for Bovine - Arad, Arad, Romania
| | - Marian Neagul
- Crayfish Research Centre, Institute for Advanced Environmental Research, West University of Timisoara, Timisoara, Romania
| | - Anton Licz
- Information Technology & Communications Department, West University of Timisoara, Timisoara, Romania
| | - Andra D. Cotoarbă
- Department of Biology, Faculty of Chemistry, Biology, Geography, West University of Timisoara, Timisoara, Romania
| | - Adam Petrusek
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Antonín Kouba
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Christopher A. Taylor
- Illinois Natural History Survey, Prairie Research Institute, Champaign, IL, United States of America
| | - Lucian Pârvulescu
- Crayfish Research Centre, Institute for Advanced Environmental Research, West University of Timisoara, Timisoara, Romania
- Department of Biology, Faculty of Chemistry, Biology, Geography, West University of Timisoara, Timisoara, Romania
| |
Collapse
|
9
|
DiBattista JD, Fowler AM, Shalders TC, Williams RJ, Wilkinson S. Tree of life metabarcoding can serve as a biotic benchmark for shifting baselines in urbanized estuaries. ENVIRONMENTAL RESEARCH 2024; 258:119454. [PMID: 38906450 DOI: 10.1016/j.envres.2024.119454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Urbanization of estuaries drastically changed existing shorelines and bathymetric contours, in turn modifying habitat for marine foundational species that host critical biodiversity. And yet we lack approaches to characterize a significant fraction of the biota that inhabit these ecosystems on time scales that align with rates of urbanization. Environmental DNA (or eDNA) metabarcoding that combines multiple assays targeting a broad range of taxonomic groups can provide a solution, but we need to determine whether the biological communities it detects ally with different habitats in these changing aquatic environments. In this study, we tested whether tree of life metabarcoding (ToL-metabarcoding) data extracted from filtered seawater samples correlated with four known geomorphic habitat zones across a heavily urbanized estuary (Sydney Harbour, Australia). Using this method, we substantially expanded our knowledge on the composition and spatial distribution of marine biodiversity across the tree of life in Sydney Harbour, particularly for organisms where existing records are sparse. Excluding terrestrial DNA inputs, we identified significant effects of both distance from the mouth of Sydney Harbour and geomorphic zone on biological community structure in the ToL-metabarcoding dataset (entire community), as well as in each of the taxonomic subgroups that we considered (fish, macroinvertebrates, algae and aquatic plants, bacteria). This effect appeared to be driven by taxa as a collective versus a few individual taxa, with each taxon explaining no more than 0.62% of the variation between geomorphic zones. Similarly, taxonomic richness was significantly higher within geomorphic zones with large sample sizes, but also decreased by 1% with each additional kilometer from the estuary mouth, a result consistent with a reduction in tidal inputs and available habitat in upper catchments. Based on these results, we suggest that ToL-metabarcoding can be used to benchmark biological monitoring in other urbanized estuaries globally, and in Sydney Harbour at future time points based on detection of bioindicators across the tree of life. We also suggest that robust biotic snapshots can be archived following extensive curation of taxonomic assignments that incorporates ecological affinities, supported by records from relevant and regional biodiversity repositories.
Collapse
Affiliation(s)
- Joseph D DiBattista
- School of Environment and Science, Griffith University, Southport, QLD, 4222, Australia; Australian Museum Research Institute, Australian Museum, Sydney, NSW, 2010, Australia.
| | - Ashley M Fowler
- New South Wales Department of Primary Industries, Sydney Institute of Marine Science, Mosman, NSW, 2088, Australia.
| | - Tanika C Shalders
- Faculty of Science and Engineering, National Marine Science Centre, Southern Cross University, Coffs Harbour, NSW, 2450, Australia.
| | - Robert J Williams
- New South Wales Department of Primary Industries, Fisheries (retired), Australia.
| | - Shaun Wilkinson
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6012, New Zealand.
| |
Collapse
|
10
|
Blackman R, Couton M, Keck F, Kirschner D, Carraro L, Cereghetti E, Perrelet K, Bossart R, Brantschen J, Zhang Y, Altermatt F. Environmental DNA: The next chapter. Mol Ecol 2024; 33:e17355. [PMID: 38624076 DOI: 10.1111/mec.17355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/17/2024]
Abstract
Molecular tools are an indispensable part of ecology and biodiversity sciences and implemented across all biomes. About a decade ago, the use and implementation of environmental DNA (eDNA) to detect biodiversity signals extracted from environmental samples opened new avenues of research. Initial eDNA research focused on understanding population dynamics of target species. Its scope thereafter broadened, uncovering previously unrecorded biodiversity via metabarcoding in both well-studied and understudied ecosystems across all taxonomic groups. The application of eDNA rapidly became an established part of biodiversity research, and a research field by its own. Here, we revisit key expectations made in a land-mark special issue on eDNA in Molecular Ecology in 2012 to frame the development in six key areas: (1) sample collection, (2) primer development, (3) biomonitoring, (4) quantification, (5) behaviour of DNA in the environment and (6) reference database development. We pinpoint the success of eDNA, yet also discuss shortfalls and expectations not met, highlighting areas of research priority and identify the unexpected developments. In parallel, our retrospective couples a screening of the peer-reviewed literature with a survey of eDNA users including academics, end-users and commercial providers, in which we address the priority areas to focus research efforts to advance the field of eDNA. With the rapid and ever-increasing pace of new technical advances, the future of eDNA looks bright, yet successful applications and best practices must become more interdisciplinary to reach its full potential. Our retrospect gives the tools and expectations towards concretely moving the field forward.
Collapse
Affiliation(s)
- Rosetta Blackman
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Marjorie Couton
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - François Keck
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Dominik Kirschner
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, Ecosystems and Landscape Evolution, ETH Zürich, Zürich, Switzerland
- Department of Landscape Dynamics & Ecology, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Luca Carraro
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Eva Cereghetti
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Kilian Perrelet
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
- Department of Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
- Department of Urban Water Management, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Raphael Bossart
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Jeanine Brantschen
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Yan Zhang
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Florian Altermatt
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| |
Collapse
|
11
|
Carvalho CO, Gromstad W, Dunthorn M, Karlsen HE, Schrøder-Nielsen A, Ready JS, Haugaasen T, Sørnes G, de Boer H, Mauvisseau Q. Harnessing eDNA metabarcoding to investigate fish community composition and its seasonal changes in the Oslo fjord. Sci Rep 2024; 14:10154. [PMID: 38698067 PMCID: PMC11065990 DOI: 10.1038/s41598-024-60762-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/26/2024] [Indexed: 05/05/2024] Open
Abstract
In the face of global ecosystem changes driven by anthropogenic activities, effective biomonitoring strategies are crucial for mitigating impacts on vulnerable aquatic habitats. Time series analysis underscores a great significance in understanding the dynamic nature of marine ecosystems, especially amidst climate change disrupting established seasonal patterns. Focusing on Norway's Oslo fjord, our research utilises eDNA-based monitoring for temporal analysis of aquatic biodiversity during a one year period, with bi-monthly sampling along a transect. To increase the robustness of the study, a taxonomic assignment comparing BLAST+ and SINTAX approaches was done. Utilising MiFish and Elas02 primer sets, our study detected 63 unique fish species, including several commercially important species. Our findings reveal a substantial increase in read abundance during specific migratory cycles, highlighting the efficacy of eDNA metabarcoding for fish composition characterization. Seasonal dynamics for certain species exhibit clear patterns, emphasising the method's utility in unravelling ecological complexities. eDNA metabarcoding emerges as a cost-effective tool with considerable potential for fish community monitoring for conservation purposes in dynamic marine environments like the Oslo fjord, contributing valuable insights for informed management strategies.
Collapse
Affiliation(s)
- Cintia Oliveira Carvalho
- Natural History Museum, University of Oslo, Oslo, Norway
- Group for Integrated Biological Investigation, Center for Advanced Studies of Biodiversity, Federal University of Pará, Belém, Brazil
| | | | - Micah Dunthorn
- Natural History Museum, University of Oslo, Oslo, Norway
| | | | | | - Jonathan Stuart Ready
- Group for Integrated Biological Investigation, Center for Advanced Studies of Biodiversity, Federal University of Pará, Belém, Brazil
| | - Torbjørn Haugaasen
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Aas, Norway
| | - Grete Sørnes
- Marine Research Station Drøbak, University of Oslo, Oslo, Norway
| | - Hugo de Boer
- Natural History Museum, University of Oslo, Oslo, Norway
| | | |
Collapse
|
12
|
Jaquier M, Albouy C, Bach W, Waldock C, Marques V, Maire E, Juhel JB, Andrello M, Valentini A, Manel S, Dejean T, Mouillot D, Pellissier L. Environmental DNA recovers fish composition turnover of the coral reefs of West Indian Ocean islands. Ecol Evol 2024; 14:e11337. [PMID: 38766310 PMCID: PMC11099785 DOI: 10.1002/ece3.11337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/23/2024] [Accepted: 04/03/2024] [Indexed: 05/22/2024] Open
Abstract
Islands have been used as model systems to study ecological and evolutionary processes, and they provide an ideal set-up for validating new biodiversity monitoring methods. The application of environmental DNA metabarcoding for monitoring marine biodiversity requires an understanding of the spatial scale of the eDNA signal, which is best tested in island systems. Here, we investigated the variation in Actinopterygii and Elasmobranchii species composition recovered from eDNA metabarcoding along a gradient of distance-to-reef in four of the five French Scattered Islands in the Western Indian Ocean. We collected surface water samples at an increasing distance from reefs (0 m, 250 m, 500 m, 750 m). We used a metabarcoding protocol based on the 'teleo' primers to target marine reef fishes and classified taxa according to their habitat types (benthic or pelagic). We investigated the effect of distance-to-reef on β diversity variation using generalised linear mixed models and estimated species-specific distance-to-reef effects using a model-based approach for community data. Environmental DNA metabarcoding analyses recovered distinct fish species compositions across the four inventoried islands and variations along the distance-to-reef gradient. The analysis of β-diversity variation showed significant taxa turnover between the eDNA samples on and away from the reefs. In agreement with a spatially localised signal from eDNA, benthic species were distributed closer to the reef than pelagic ones. Our findings demonstrate that the combination of eDNA inventories and spatial modelling can provide insights into species habitat preferences related to distance-to-reef gradients at a small scale. As such, eDNA can not only recover large compositional differences among islands but also help understand habitat selection and distribution of marine species at a finer spatial scale.
Collapse
Affiliation(s)
- Mélissa Jaquier
- Ecosystems and Landscape Evolution, Institute of Terrestrial Ecosystems, Department of Environmental Systems ScienceETH ZürichZürichSwitzerland
- Unit of Land Change ScienceSwiss Federal Research Institute WSLBirmensdorfSwitzerland
| | - Camille Albouy
- Ecosystems and Landscape Evolution, Institute of Terrestrial Ecosystems, Department of Environmental Systems ScienceETH ZürichZürichSwitzerland
- Unit of Land Change ScienceSwiss Federal Research Institute WSLBirmensdorfSwitzerland
| | - Wilhelmine Bach
- Ecosystems and Landscape Evolution, Institute of Terrestrial Ecosystems, Department of Environmental Systems ScienceETH ZürichZürichSwitzerland
- Unit of Land Change ScienceSwiss Federal Research Institute WSLBirmensdorfSwitzerland
| | - Conor Waldock
- Ecosystems and Landscape Evolution, Institute of Terrestrial Ecosystems, Department of Environmental Systems ScienceETH ZürichZürichSwitzerland
- Unit of Land Change ScienceSwiss Federal Research Institute WSLBirmensdorfSwitzerland
| | - Virginie Marques
- Ecosystems and Landscape Evolution, Institute of Terrestrial Ecosystems, Department of Environmental Systems ScienceETH ZürichZürichSwitzerland
- Unit of Land Change ScienceSwiss Federal Research Institute WSLBirmensdorfSwitzerland
- CEFE, Univ. Montpellier, CNRS, EPHE‐PSL University, IRDMontpellierFrance
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRDMontpellierFrance
| | - Eva Maire
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRDMontpellierFrance
- Lancaster Environment CentreLancaster UniversityLancasterUK
| | | | - Marco Andrello
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRDMontpellierFrance
| | | | - Stéphanie Manel
- CEFE, Univ. Montpellier, CNRS, EPHE‐PSL University, IRDMontpellierFrance
| | | | - David Mouillot
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRDMontpellierFrance
- Institut Universitaire de FranceParisFrance
| | - Loïc Pellissier
- Ecosystems and Landscape Evolution, Institute of Terrestrial Ecosystems, Department of Environmental Systems ScienceETH ZürichZürichSwitzerland
- Unit of Land Change ScienceSwiss Federal Research Institute WSLBirmensdorfSwitzerland
| |
Collapse
|
13
|
Muenzel D, Bani A, De Brauwer M, Stewart E, Djakiman C, Halwi, Purnama R, Yusuf S, Santoso P, Hukom FD, Struebig M, Jompa J, Limmon G, Dumbrell A, Beger M. Combining environmental DNA and visual surveys can inform conservation planning for coral reefs. Proc Natl Acad Sci U S A 2024; 121:e2307214121. [PMID: 38621123 PMCID: PMC11047114 DOI: 10.1073/pnas.2307214121] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/14/2023] [Indexed: 04/17/2024] Open
Abstract
Environmental DNA (eDNA) metabarcoding has the potential to revolutionize conservation planning by providing spatially and taxonomically comprehensive data on biodiversity and ecosystem conditions, but its utility to inform the design of protected areas remains untested. Here, we quantify whether and how identifying conservation priority areas within coral reef ecosystems differs when biodiversity information is collected via eDNA analyses or traditional visual census records. We focus on 147 coral reefs in Indonesia's hyper-diverse Wallacea region and show large discrepancies in the allocation and spatial design of conservation priority areas when coral reef species were surveyed with underwater visual techniques (fishes, corals, and algae) or eDNA metabarcoding (eukaryotes and metazoans). Specifically, incidental protection occurred for 55% of eDNA species when targets were set for species detected by visual surveys and 71% vice versa. This finding is supported by generally low overlap in detection between visual census and eDNA methods at species level, with more overlap at higher taxonomic ranks. Incomplete taxonomic reference databases for the highly diverse Wallacea reefs, and the complementary detection of species by the two methods, underscore the current need to combine different biodiversity data sources to maximize species representation in conservation planning.
Collapse
Affiliation(s)
- Dominic Muenzel
- School of Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
- Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, University of Kent, CanterburyCT2 7NR, United Kingdom
| | - Alessia Bani
- School of Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
- School of Life Sciences, University of Essex, ColchesterCO4 3SQ, United Kingdom
- College of Science and Engineering, School of Built and Natural Environment,University of Derby, DerbyDE22 1 GB, United Kingdom
| | - Maarten De Brauwer
- School of Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
- Commonwealth Scientific and Industrial Research Organisation Oceans & Atmosphere, Battery Point, Hobart, TAS7004, Australia
| | - Eleanor Stewart
- Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, University of Kent, CanterburyCT2 7NR, United Kingdom
| | - Cilun Djakiman
- School of Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
- Maritime and Marine Science Center of Excellence, Pattimura University, Ambon85XW+H66, Indonesia
| | - Halwi
- Graduate School, Universitas Hasanuddin, Makassar90245, Indonesia
| | - Ray Purnama
- Maritime and Marine Science Center of Excellence, Pattimura University, Ambon85XW+H66, Indonesia
| | - Syafyuddin Yusuf
- Faculty of Marine Science and Fisheries, Universitas Hasanuddin, Makassar90245, Indonesia
| | - Prakas Santoso
- Department of Marine Science and Technology, Institut Pertanian Bogor, Bogor16680, Indonesia
| | - Frensly D. Hukom
- Research Centre for Oceanography, Badan Riset dan Inovasi Nasional, Jakarta14430, Indonesia
- The Center for Collaborative Research on Aquatic Ecosystem in Eastern Indonesia, Pattimura University, Ambon97234, Indonesia
| | - Matthew Struebig
- Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, University of Kent, CanterburyCT2 7NR, United Kingdom
| | - Jamaluddin Jompa
- Faculty of Marine Science and Fisheries, Universitas Hasanuddin, Makassar90245, Indonesia
| | - Gino Limmon
- Maritime and Marine Science Center of Excellence, Pattimura University, Ambon85XW+H66, Indonesia
- The Center for Collaborative Research on Aquatic Ecosystem in Eastern Indonesia, Pattimura University, Ambon97234, Indonesia
| | - Alex Dumbrell
- School of Life Sciences, University of Essex, ColchesterCO4 3SQ, United Kingdom
| | - Maria Beger
- School of Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
- Centre for Biodiversity and Conservation Science, School of Biological Sciences, University of Queensland, Brisbane, QLD4072, Australia
| |
Collapse
|
14
|
Saenz‐Agudelo P, Ramirez P, Beldade R, Campoy AN, Garmendia V, Search FV, Fernández M, Wieters EA, Navarrete SA, Landaeta MF, Pérez‐Matus A. Environmental DNA reveals temporal variation in mesophotic reefs of the Humboldt upwelling ecosystems of central Chile: Toward a baseline for biodiversity monitoring of unexplored marine habitats. Ecol Evol 2024; 14:e10999. [PMID: 38390005 PMCID: PMC10881902 DOI: 10.1002/ece3.10999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/12/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Temperate mesophotic reef ecosystems (TMREs) are among the least known marine habitats. Information on their diversity and ecology is geographically and temporally scarce, especially in highly productive large upwelling ecosystems. Lack of information remains an obstacle to understanding the importance of TMREs as habitats, biodiversity reservoirs and their connections with better-studied shallow reefs. Here, we use environmental DNA (eDNA) from water samples to characterize the community composition of TMREs on the central Chilean coast, generating the first baseline for monitoring the biodiversity of these habitats. We analyzed samples from two depths (30 and 60 m) over four seasons (spring, summer, autumn, and winter) and at two locations approximately 16 km apart. We used a panel of three metabarcodes, two that target all eukaryotes (18S rRNA and mitochondrial COI) and one specifically targeting fishes (16S rRNA). All panels combined encompassed eDNA assigned to 42 phyla, 90 classes, 237 orders, and 402 families. The highest family richness was found for the phyla Arthropoda, Bacillariophyta, and Chordata. Overall, family richness was similar between depths but decreased during summer, a pattern consistent at both locations. Our results indicate that the structure (composition) of the mesophotic communities varied predominantly with seasons. We analyzed further the better-resolved fish assemblage and compared eDNA with other visual methods at the same locations and depths. We recovered eDNA from 19 genera of fish, six of these have also been observed on towed underwater videos, while 13 were unique to eDNA. We discuss the potential drivers of seasonal differences in community composition and richness. Our results suggest that eDNA can provide valuable insights for monitoring TMRE communities but highlight the necessity of completing reference DNA databases available for this region.
Collapse
Affiliation(s)
- Pablo Saenz‐Agudelo
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de ChileValdiviaChile
- Millennium Nucleus for Ecology and Conservation of Temperate Marine Ecosystems, NUTMELas CrucesChile
| | - Paula Ramirez
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de ChileValdiviaChile
- Millennium Nucleus for Ecology and Conservation of Temperate Marine Ecosystems, NUTMELas CrucesChile
| | - Ricardo Beldade
- Millennium Nucleus for Ecology and Conservation of Temperate Marine Ecosystems, NUTMELas CrucesChile
- Estación Costera de Investigaciones MarinasPontificia Universidad CatólicaLas CrucesChile
| | - Ana N. Campoy
- Center of Marine Sciences (CCMAR‐CIMAR)University of the AlgarveFaroPortugal
| | - Vladimir Garmendia
- Millennium Nucleus for Ecology and Conservation of Temperate Marine Ecosystems, NUTMELas CrucesChile
- Estación Costera de Investigaciones MarinasPontificia Universidad CatólicaLas CrucesChile
| | - Francesca V. Search
- Millennium Nucleus for Ecology and Conservation of Temperate Marine Ecosystems, NUTMELas CrucesChile
| | - Miriam Fernández
- Millennium Nucleus for Ecology and Conservation of Temperate Marine Ecosystems, NUTMELas CrucesChile
- Estación Costera de Investigaciones MarinasPontificia Universidad CatólicaLas CrucesChile
| | - Evie A. Wieters
- Millennium Nucleus for Ecology and Conservation of Temperate Marine Ecosystems, NUTMELas CrucesChile
- Estación Costera de Investigaciones MarinasPontificia Universidad CatólicaLas CrucesChile
| | - Sergio A. Navarrete
- Millennium Nucleus for Ecology and Conservation of Temperate Marine Ecosystems, NUTMELas CrucesChile
- Estación Costera de Investigaciones MarinasPontificia Universidad CatólicaLas CrucesChile
- Center for Applied Ecology and Sustainability (CAPES) and Coastal Socio‐Ecological Millennium Institute (SECOS)Pontificia Universidad Católica de ChileSantiagoChile
- Center for Oceanographic Research COASTAL‐COASTALUniversidad de ConcepciónConcepciónChile
| | - Mauricio F. Landaeta
- Millennium Nucleus for Ecology and Conservation of Temperate Marine Ecosystems, NUTMELas CrucesChile
- Laboratorio de Ictiología e Interacciones Biofísicas (LABITI)Instituto de Biología, Facultad de Ciencias, Universidad de ValparaísoValparaísoChile
| | - Alejandro Pérez‐Matus
- Millennium Nucleus for Ecology and Conservation of Temperate Marine Ecosystems, NUTMELas CrucesChile
- Estación Costera de Investigaciones MarinasPontificia Universidad CatólicaLas CrucesChile
| |
Collapse
|
15
|
Curd EE, Gal L, Gallego R, Silliman K, Nielsen S, Gold Z. rCRUX: A Rapid and Versatile Tool for Generating Metabarcoding Reference libraries in R. ENVIRONMENTAL DNA (HOBOKEN, N.J.) 2024; 6:e489. [PMID: 38370872 PMCID: PMC10871694 DOI: 10.1002/edn3.489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/19/2023] [Indexed: 02/20/2024]
Abstract
The sequencing revolution requires accurate taxonomic classification of DNA sequences. Key to making accurate taxonomic assignments are curated, comprehensive reference barcode databases. However, the generation and curation of such databases has remained challenging given the large and continuously growing volumes of both DNA sequence data and novel reference barcode targets. Monitoring and research applications require a greater diversity of specialized gene regions and targeted taxa then are currently curated by professional staff. Thus there is a growing need for an easy to implement computational tool that can generate comprehensive metabarcoding reference libraries for any bespoke locus. We address this need by reimagining CRUX from the Anacapa Toolkit and present the rCRUX package in R which, like it's predecessor, relies on sequence homology and PCR primer compatibility instead of keyword-searches to avoid limitations of user-defined metadata. The typical workflow involves searching for plausible seed amplicons (get_seeds_local() or get_seeds_remote()) by simulating in silico PCR to acquire a set of sequences analogous to PCR products containing a user-defined set of primer sequences. Next, these seeds are used to iteratively blast search seed sequences against a local copy of the National Center for Biotechnology Information (NCBI) formatted nt database using a taxonomic-rank based stratified random sampling approach ( blast_seeds() ). This results in a comprehensive set of sequence matches. This database is dereplicated and cleaned (derep_and_clean_db()) by identifying identical reference sequences and collapsing the taxonomic path to the lowest taxonomic agreement across all matching reads. This results in a curated, comprehensive database of primer-specific reference barcode sequences from NCBI. Databases can then be compared (compare_db()) to determine read and taxonomic overlap. We demonstrate that rCRUX provides more comprehensive reference databases for the MiFish Universal Teleost 12S, Taberlet trnl, fungal ITS, and Leray CO1 loci than CRABS, MetaCurator, RESCRIPt, and ecoPCR reference databases. We then further demonstrate the utility of rCRUX by generating 24 reference databases for 20 metabarcoding loci, many of which lack dedicated reference database curation efforts. The rCRUX package provides a simple to use tool for the generation of curated, comprehensive reference databases for user-defined loci, facilitating accurate and effective taxonomic classification of metabarcoding and DNA sequence efforts broadly.
Collapse
Affiliation(s)
- Emily E. Curd
- Vermont Biomedical Research Network, University of Vermont, VT, USA
| | - Luna Gal
- Landmark College, VT, USA
- California Cooperative Oceanic Fisheries Investigations (CalCOFI), Scripps Institution of Oceanography, University of California San Diego (UCSD), La Jolla, CA, USA
| | - Ramon Gallego
- Departamento de Biología, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Katherine Silliman
- Northern Gulf Institute, Mississippi State University, Starkville, MS, USA
- NOAA Atlantic Oceanographic and Meteorological Laboratory, Miami, FL, USA
| | | | - Zachary Gold
- California Cooperative Oceanic Fisheries Investigations (CalCOFI), Scripps Institution of Oceanography, University of California San Diego (UCSD), La Jolla, CA, USA
- NOAA Pacific Marine Environmental Laboratory, Seattle, WA, USA
| |
Collapse
|
16
|
Gwiazdowski R. Principles for Constructing DNA Barcode Reference Libraries. Methods Mol Biol 2024; 2744:491-502. [PMID: 38683337 DOI: 10.1007/978-1-0716-3581-0_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
All DNA barcode methods rely on reference sequences linked to well-curated voucher specimens. Definitions for and locations of DNA barcode reference libraries are not standardized, and vary throughout the literature. Standardizing, and centralizing reference specimens would provide an unambiguous source, analogous to reference genomes, to reproduce identifications and improve a library. This chapter proposes a working definition of a DNA barcode reference library, consistent with DNA barcode data standards, along with principles and methods to consider when producing or using such a library. These methods allow explicit traceback to sequence-sources which elevate the value of voucher specimens, and create a potential for community curation.
Collapse
Affiliation(s)
- Rodger Gwiazdowski
- Department of Environmental Conservation, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
17
|
Lamperti L, Sanchez T, Si Moussi S, Mouillot D, Albouy C, Flück B, Bruno M, Valentini A, Pellissier L, Manel S. New deep learning-based methods for visualizing ecosystem properties using environmental DNA metabarcoding data. Mol Ecol Resour 2023; 23:1946-1958. [PMID: 37702270 DOI: 10.1111/1755-0998.13861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/29/2023] [Accepted: 08/14/2023] [Indexed: 09/14/2023]
Abstract
Environmental DNA (eDNA) metabarcoding provides an efficient approach for documenting biodiversity patterns in marine and terrestrial ecosystems. The complexity of these data prevents current methods from extracting and analyzing all the relevant ecological information they contain, and new methods may provide better dimensionality reduction and clustering. Here we present two new deep learning-based methods that combine different types of neural networks (NNs) to ordinate eDNA samples and visualize ecosystem properties in a two-dimensional space: the first is based on variational autoencoders and the second on deep metric learning. The strength of our new methods lies in the combination of two inputs: the number of sequences found for each molecular operational taxonomic unit (MOTU) detected and their corresponding nucleotide sequence. Using three different datasets, we show that our methods accurately represent several biodiversity indicators in a two-dimensional latent space: MOTU richness per sample, sequence α-diversity per sample, Jaccard's and sequence β-diversity between samples. We show that our nonlinear methods are better at extracting features from eDNA datasets while avoiding the major biases associated with eDNA. Our methods outperform traditional dimension reduction methods such as Principal Component Analysis, t-distributed Stochastic Neighbour Embedding, Nonmetric Multidimensional Scaling and Uniform Manifold Approximation and Projection for dimension reduction. Our results suggest that NNs provide a more efficient way of extracting structure from eDNA metabarcoding data, thereby improving their ecological interpretation and thus biodiversity monitoring.
Collapse
Affiliation(s)
- Letizia Lamperti
- CEFE, Univ Montpellier, CNRS, EPHE-PSL University, IRD, Montpellier, France
- Ecosystems and Landscape Evolution, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
- Ecosystems and Landscape Evolution, Land Change Science Research Unit, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Switzerland
| | - Théophile Sanchez
- Ecosystems and Landscape Evolution, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
- Ecosystems and Landscape Evolution, Land Change Science Research Unit, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Switzerland
| | - Sara Si Moussi
- Laboratoire d'Ecologie Alpine, Univ. Grenoble Alpes, Univ. Savoie MontBlanc, CNRS, Grenoble, France
| | - David Mouillot
- MARBEC, Univ Montpellier, CNRS, IFREMER, IRD, Montpellier, France
- Institut Universitaire de France, Paris, France
| | - Camille Albouy
- Ecosystems and Landscape Evolution, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
- Ecosystems and Landscape Evolution, Land Change Science Research Unit, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Switzerland
| | - Benjamin Flück
- Ecosystems and Landscape Evolution, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
- Ecosystems and Landscape Evolution, Land Change Science Research Unit, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Switzerland
| | - Morgane Bruno
- CEFE, Univ Montpellier, CNRS, EPHE-PSL University, IRD, Montpellier, France
| | | | - Loïc Pellissier
- Ecosystems and Landscape Evolution, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
- Ecosystems and Landscape Evolution, Land Change Science Research Unit, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Switzerland
| | - Stéphanie Manel
- CEFE, Univ Montpellier, CNRS, EPHE-PSL University, IRD, Montpellier, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
18
|
Curd EE, Gal L, Gallego R, Nielsen S, Gold Z. rCRUX: A Rapid and Versatile Tool for Generating Metabarcoding Reference libraries in R. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.31.543005. [PMID: 37397980 PMCID: PMC10312559 DOI: 10.1101/2023.05.31.543005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Key to making accurate taxonomic assignments are curated, comprehensive reference barcode databases. However, the generation and curation of such databases has remained challenging given the large and continuously growing volumes of DNA sequence data and novel reference barcode targets. Monitoring and research applications require a greater diversity of specialized gene regions and targeted taxa to meet taxonomic classification goals then are currently curated by professional staff. Thus, there is a growing need for an easy to implement tool that can generate comprehensive metabarcoding reference libraries for any bespoke locus. We address this need by reimagining CRUX from the Anacapa Toolkit and present the rCRUX package in R. The typical workflow involves searching for plausible seed amplicons (get_seeds_local() or get_seeds_remote()) by simulating in silico PCR to acquire seed sequences containing a user-defined primer set. Next these seeds are used to iteratively blast search seed sequences against a local NCBI formatted database using a taxonomic rank based stratified random sampling approach (blast_seeds()) that results in a comprehensive set of sequence matches. This database is dereplicated and cleaned (derep_and_clean_db()) by identifying identical reference sequences and collapsing the taxonomic path to the lowest taxonomic agreement across all matching reads. This results in a curated, comprehensive database of primer specific reference barcode sequences from NCBI. We demonstrate that rCRUX provides more comprehensive reference databases for the MiFish Universal Teleost 12S, Taberlet trnl, and fungal ITS locus than CRABS, METACURATOR, RESCRIPt, and ECOPCR reference databases. We then further demonstrate the utility of rCRUX by generating 16 reference databases for metabarcoding loci that lack dedicated reference database curation efforts. The rCRUX package provides a simple to use tool for the generation of curated, comprehensive reference databases for user-defined loci, facilitating accurate and effective taxonomic classification of metabarcoding and DNA sequence efforts broadly.
Collapse
Affiliation(s)
- Emily E. Curd
- Vermont Biomedical Research Network, University of Vermont, VT, USA
| | - Luna Gal
- Landmark College, VT, USA
- California Cooperative Oceanic Fisheries Investigations (CalCOFI), Scripps Institution of Oceanography, University of California San Diego (UCSD), La Jolla, CA, USA
| | - Ramon Gallego
- Universidad Autónoma de Madrid - Unidad de Genética, Spain
| | | | - Zachary Gold
- California Cooperative Oceanic Fisheries Investigations (CalCOFI), Scripps Institution of Oceanography, University of California San Diego (UCSD), La Jolla, CA, USA
- NOAA Pacific Marine Environmental Laboratory, Seattle, WA, USA
| |
Collapse
|
19
|
Kopp D, Faillettaz R, Le Joncour A, Simon J, Morandeau F, Le Bourdonnec P, Bouché L, Méhault S. Assessing without harvesting: Pros and cons of environmental DNA sampling and image analysis for marine biodiversity evaluation. MARINE ENVIRONMENTAL RESEARCH 2023; 188:106004. [PMID: 37127004 DOI: 10.1016/j.marenvres.2023.106004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
Marine stock assessments or biodiversity monitoring studies, which historically relied on extractive techniques (e.g., trawl or grab surveys), are being progressively replaced by non-extractive approaches. For instance, species abundance indices can be calculated using data obtained from high-definition underwater cameras that enable to identify taxa at low taxonomical level. In biodiversity studies, environmental DNA (eDNA) has proven to be a useful tool for characterising fish species richness. However, several marine phyla remain poorly represented in reference gene databases or release limited amounts of DNA, restricting their detection. The absence of amplification of some invertebrate taxa might also reflect primer bias. We here explore and compare the performance of eDNA and image data in describing the marine communities of several sites in the Bay of Biscay. This was achieved by deploying a remotely operated vehicle to both record images and collect seawater samples. A total of 88 taxa were identified from the eDNA samples and 121 taxa from the images. For both methods, the best characterised phylum was Chordata, with 29 and 27 Actinopterygii species detected using image versus eDNA, respectively. Neither Bryozoa nor Cnidaria was detected in the eDNA samples while the phyla were easily identifiable by imagery. Similarly, Asteroidea (Echinodermata) and Cephalopoda (Mollusca) were scarcely detected in the eDNA samples but present on the images, while Annelida were mostly identified by eDNA (18 taxa vs 7 taxa from imagery). The complementary community descriptions we highlight from these two methods therefore advocate for using both eDNA and imagery in tandem in order to capture the macroscopic biodiversity of bentho-demersal marine communities.
Collapse
Affiliation(s)
- Dorothée Kopp
- DECOD (Ecosystem Dynamics and Sustainability), IFREMER, INRAE, Institut Agro, Lorient, France.
| | - Robin Faillettaz
- DECOD (Ecosystem Dynamics and Sustainability), IFREMER, INRAE, Institut Agro, Lorient, France
| | - Anna Le Joncour
- DECOD (Ecosystem Dynamics and Sustainability), IFREMER, INRAE, Institut Agro, Lorient, France
| | - Julien Simon
- DECOD (Ecosystem Dynamics and Sustainability), IFREMER, INRAE, Institut Agro, Lorient, France
| | - Fabien Morandeau
- DECOD (Ecosystem Dynamics and Sustainability), IFREMER, INRAE, Institut Agro, Lorient, France
| | - Pierre Le Bourdonnec
- DECOD (Ecosystem Dynamics and Sustainability), IFREMER, INRAE, Institut Agro, Lorient, France
| | - Ludovic Bouché
- DECOD (Ecosystem Dynamics and Sustainability), IFREMER, INRAE, Institut Agro, Lorient, France
| | - Sonia Méhault
- DECOD (Ecosystem Dynamics and Sustainability), IFREMER, INRAE, Institut Agro, Lorient, France
| |
Collapse
|
20
|
Kawakami T, Yamazaki A, Asami M, Goto Y, Yamanaka H, Hyodo S, Ueno H, Kasai A. Evaluating the sampling effort for the metabarcoding‐based detection of fish environmental DNA in the open ocean. Ecol Evol 2023; 13:e9921. [PMID: 36969932 PMCID: PMC10037434 DOI: 10.1002/ece3.9921] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/24/2023] [Accepted: 03/03/2023] [Indexed: 03/26/2023] Open
Abstract
Clarifying the effect of the sampling protocol on the detection of environmental DNA (eDNA) is essential for appropriately designing biodiversity research. However, technical issues influencing eDNA detection in the open ocean, which consists of water masses with varying environmental conditions, have not been thoroughly investigated. This study evaluated the sampling effort for the metabarcoding‐based detection of fish eDNA using replicate sampling with filters of different pore sizes (0.22 and 0.45 μm) in the subtropical and subarctic northwestern Pacific Ocean and Arctic Chukchi Sea. The asymptotic analysis predicted that the accumulation curves for detected taxa did not saturate in most cases, indicating that our sampling effort (7 or 8 replicates, corresponding to 10.5–40 L of filtration in total) was insufficient to fully assess the species diversity in the open ocean and that tens of replicates or a substantial filtration volume were required. The Jaccard dissimilarities between filtration replicates were comparable with those between the filter types at any site. In subtropical and subarctic sites, turnover dominated the dissimilarity, suggesting that the filter pore size had a negligible effect. In contrast, nestedness dominated the dissimilarity in the Chukchi Sea, implying that the 0.22 μm filter could collect a broader range of eDNA than the 0.45 μm filter. Therefore, the effect of filter selection on the collection of fish eDNA likely varies depending on the region. These findings highlight the highly stochastic nature of fish eDNA collection in the open ocean and the difficulty of standardizing the sampling protocol across various water masses.
Collapse
Affiliation(s)
- Tatsuya Kawakami
- Faculty of Fisheries SciencesHokkaido UniversityHakodateHokkaidoJapan
| | - Aya Yamazaki
- Research and Educational Unit for Studies on Connectivity of Hills, Humans and OceansKyoto UniversityKyotoJapan
| | - Maki Asami
- Center for Biodiversity ScienceRyukoku UniversityOtsuShigaJapan
| | - Yuko Goto
- Center for Biodiversity ScienceRyukoku UniversityOtsuShigaJapan
| | - Hiroki Yamanaka
- Center for Biodiversity ScienceRyukoku UniversityOtsuShigaJapan
- Faculty of Advanced Science and TechnologyRyukoku UniversityOtsuShigaJapan
| | - Susumu Hyodo
- Atmosphere and Ocean Research Institute, The University of TokyoKashiwaChibaJapan
| | - Hiromichi Ueno
- Faculty of Fisheries SciencesHokkaido UniversityHakodateHokkaidoJapan
| | - Akihide Kasai
- Faculty of Fisheries SciencesHokkaido UniversityHakodateHokkaidoJapan
| |
Collapse
|
21
|
Bourret A, Nozères C, Parent E, Parent GJ. Maximizing the reliability and the number of species assignments in metabarcoding studies using a curated regional library and a public repository. METABARCODING AND METAGENOMICS 2023. [DOI: 10.3897/mbmg.7.98539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Biodiversity assessments relying on DNA have increased rapidly over the last decade. However, the reliability of taxonomic assignments in metabarcoding studies is variable and affected by the reference databases and the assignment methods used. Species level assignments are usually considered as reliable using regional libraries but unreliable using public repositories. In this study, we aimed to test this assumption for metazoan species detected in the Gulf of St. Lawrence in the Northwest Atlantic. We first created a regional library (GSL-rl) by data mining COI barcode sequences from BOLD, and included a reliability ranking system for species assignments. We then estimated 1) the accuracy and precision of the public repository NCBI-nt for species assignments using sequences from the regional library and 2) compared the detection and reliability of species assignments of a metabarcoding dataset using either NCBI-nt or the regional library and popular assignment methods. With NCBI-nt and sequences from the regional library, the BLAST-LCA (least common ancestor) method was the most precise method for species assignments, but the accuracy was higher with the BLAST-TopHit method (>80% over all taxa, between 70% and 90% amongst taxonomic groups). With the metabarcoding dataset, the reliability of species assignments was greater using GSL-rl compared to NCBI-nt. However, we also observed that the total number of reliable species assignments could be maximized using both GSL-rl and NCBI-nt with different optimized assignment methods. The use of a two-step approach for species assignments, i.e., using a regional library and a public repository, could improve the reliability and the number of detected species in metabarcoding studies.
Collapse
|
22
|
Duhamet A, Albouy C, Marques V, Manel S, Mouillot D. The global depth range of marine fishes and their genetic coverage for environmental DNA metabarcoding. Ecol Evol 2023; 13:e9672. [PMID: 36699576 PMCID: PMC9846838 DOI: 10.1002/ece3.9672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/25/2022] [Accepted: 12/06/2022] [Indexed: 01/19/2023] Open
Abstract
The bathymetric and geographical distribution of marine species represent a key information in biodiversity conservation. Yet, deep-sea ecosystems are among the least explored on Earth and are increasingly impacted by human activities. Environmental DNA (eDNA) metabarcoding has emerged as a promising method to study fish biodiversity but applications to the deep-sea are still scarce. A major limitation in the application of eDNA metabarcoding is the incompleteness of species sequences available in public genetic databases which reduces the extent of detected species. This incompleteness by depth is still unknown. Here, we built the global bathymetric and geographical distribution of 10,826 actinopterygian and 960 chondrichthyan fish species. We assessed their genetic coverage by depth and by ocean for three main metabarcoding markers used in the literature: teleo and MiFish-U/E. We also estimated the number of primer mismatches per species amplified by in silico polymerase chain reaction which influence the probability of species detection. Actinopterygians show a stronger decrease in species richness with depth than Chondrichthyans. These richness gradients are accompanied by a continuous species turnover between depths. Fish species coverage with the MiFish-U/E markers is higher than with teleo while threatened species are more sequenced than the others. "Deep-endemic" species, those not ascending to the shallow depth layer, are less sequenced than not threatened species. The number of primer mismatches is not higher for deep-sea species than for shallower ones. eDNA metabarcoding is promising for species detection in the deep-sea to better account for the 3-dimensional structure of the ocean in marine biodiversity monitoring and conservation. However, we argue that sequencing efforts on "deep-endemic" species are needed.
Collapse
Affiliation(s)
- Agnès Duhamet
- MARBECUniv Montpellier, CNRS, IRD, IfremerMontpellierFrance
- CEFEUniv Montpellier, CNRS, EPHE‐PSL University, IRDMontpellierFrance
| | - Camille Albouy
- Ecosystem and Landscape Evolution, Institute of Terrestrial Ecosystems, Department of Environmental Systems ScienceETH ZürichZürichSwitzerland
- Unit of Land Change ScienceSwiss Federal Research Institute WSLBirmensdorfSwitzerland
| | - Virginie Marques
- Ecosystem and Landscape Evolution, Institute of Terrestrial Ecosystems, Department of Environmental Systems ScienceETH ZürichZürichSwitzerland
- Unit of Land Change ScienceSwiss Federal Research Institute WSLBirmensdorfSwitzerland
| | - Stephanie Manel
- CEFEUniv Montpellier, CNRS, EPHE‐PSL University, IRDMontpellierFrance
| | - David Mouillot
- MARBECUniv Montpellier, CNRS, IRD, IfremerMontpellierFrance
- Institut Universitaire de FranceParisFrance
| |
Collapse
|
23
|
Mahon AR, Grey EK, Jerde CL. Integrating invasive species risk assessment into environmental DNA metabarcoding reference libraries. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2730. [PMID: 36054696 PMCID: PMC10078450 DOI: 10.1002/eap.2730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 05/12/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Environmental DNA (eDNA) metabarcoding has shown promise as a tool for estimating biodiversity and early detection of invasive species. In aquatic systems, advantages of this method include the ability to concurrently monitor biodiversity and detect incipient invasions simply through the collection and analysis of water samples. However, depending on the molecular markers chosen for a given study, reference libraries containing target sequences from present species may limit the usefulness of eDNA metabarcoding. To explore the extent of this issue and how it may be resolved to aid biodiversity and invasive species early detection goals, we focus on fishes in the well-studied Laurentian Great Lakes region. First, we provide a synthesis of species currently known from the region and of non-indigenous species identified as threats by international, national, regional, and introduction pathway-specific fish risk assessments. With these species lists, we then evaluate 23 primer pairs commonly used in fish eDNA metabarcoding with available databases of sequence coverage and species specificity. Finally, we identify established and potentially invasive non-indigenous fish that should be prioritized for genetic sequencing to ensure robust eDNA metabarcoding for the region. Our results should increase confidence in using eDNA metabarcoding for fisheries conservation and management in the Great Lakes region and help prioritize reference sequencing efforts. The ultimate utility of eDNA metabarcoding approaches will come when conservation management of existing fish communities is integrated with early detection efforts for invasive species surveillance to assess total fish biodiversity.
Collapse
Affiliation(s)
- Andrew R. Mahon
- Department of BiologyCentral Michigan UniversityMount PleasantMichiganUSA
| | - Erin K. Grey
- School of Biology and Ecology and Maine Center for Genetics in the EnvironmentUniversity of MaineOronoMaineUSA
| | - Christopher L. Jerde
- Marine Science InstituteUniversity of California Santa BarbaraSanta BarbaraCaliforniaUSA
| |
Collapse
|
24
|
Kestel JH, Field DL, Bateman PW, White NE, Allentoft ME, Hopkins AJM, Gibberd M, Nevill P. Applications of environmental DNA (eDNA) in agricultural systems: Current uses, limitations and future prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157556. [PMID: 35882340 DOI: 10.1016/j.scitotenv.2022.157556] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/29/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Global food production, food supply chains and food security are increasingly stressed by human population growth and loss of arable land, becoming more vulnerable to anthropogenic and environmental perturbations. Numerous mutualistic and antagonistic species are interconnected with the cultivation of crops and livestock and these can be challenging to identify on the large scales of food production systems. Accurate identifications to capture this diversity and rapid scalable monitoring are necessary to identify emerging threats (i.e. pests and pathogens), inform on ecosystem health (i.e. soil and pollinator diversity), and provide evidence for new management practices (i.e. fertiliser and pesticide applications). Increasingly, environmental DNA (eDNA) is providing rapid and accurate classifications for specific organisms and entire species assemblages in substrates ranging from soil to air. Here, we aim to discuss how eDNA is being used for monitoring of agricultural ecosystems, what current limitations exist, and how these could be managed to expand applications into the future. In a systematic review we identify that eDNA-based monitoring in food production systems accounts for only 4 % of all eDNA studies. We found that the majority of these eDNA studies target soil and plant substrates (60 %), predominantly to identify microbes and insects (60 %) and are biased towards Europe (42 %). While eDNA-based monitoring studies are uncommon in many of the world's food production systems, the trend is most pronounced in emerging economies often where food security is most at risk. We suggest that the biggest limitations to eDNA for agriculture are false negatives resulting from DNA degradation and assay biases, as well as incomplete databases and the interpretation of abundance data. These require in silico, in vitro, and in vivo approaches to carefully design, test and apply eDNA monitoring for reliable and accurate taxonomic identifications. We explore future opportunities for eDNA research which could further develop this useful tool for food production system monitoring in both emerging and developed economies, hopefully improving monitoring, and ultimately food security.
Collapse
Affiliation(s)
- Joshua H Kestel
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Perth 6102, WA, Australia; Molecular Ecology and Evolution Group (MEEG), School of Science, Edith Cowan University, Joondalup 6027, Australia.
| | - David L Field
- Molecular Ecology and Evolution Group (MEEG), School of Science, Edith Cowan University, Joondalup 6027, Australia
| | - Philip W Bateman
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Perth 6102, WA, Australia; Behavioural Ecology Laboratory, School of Molecular and Life Sciences, Curtin University, Perth 6102, WA, Australia
| | - Nicole E White
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Perth 6102, WA, Australia
| | - Morten E Allentoft
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Perth 6102, WA, Australia; Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen, Denmark
| | - Anna J M Hopkins
- Molecular Ecology and Evolution Group (MEEG), School of Science, Edith Cowan University, Joondalup 6027, Australia
| | - Mark Gibberd
- Centre for Crop Disease Management (CCDM), School of Molecular and Life Sciences, Curtin University, Perth 6102, WA, Australia
| | - Paul Nevill
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Perth 6102, WA, Australia
| |
Collapse
|
25
|
Dopheide A, Brav-Cubitt T, Podolyan A, Leschen RAB, Ward D, Buckley TR, Dhami MK. Fast-tracking bespoke DNA reference database generation from museum collections for biomonitoring and conservation. Mol Ecol Resour 2022. [PMID: 36345645 DOI: 10.1111/1755-0998.13733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/17/2022] [Accepted: 10/25/2022] [Indexed: 11/10/2022]
Abstract
Despite recent advances in high-throughput DNA sequencing technologies, a lack of locally relevant DNA reference databases limits the potential for DNA-based monitoring of biodiversity for conservation and biosecurity applications. Museums and national collections represent a compelling source of authoritatively identified genetic material for DNA database development, yet obtaining DNA barcodes from long-stored specimens may be difficult due to sample degradation. Here we demonstrate a sensitive and efficient laboratory and bioinformatic process for generating DNA barcodes from hundreds of invertebrate specimens simultaneously via the Illumina MiSeq system. Using this process, we recovered full-length (334) or partial (105) COI barcodes from 439 of 450 (98%) national collection-held invertebrate specimens. This included full-length barcodes from 146 specimens which produced low-yield DNA and no visible PCR bands, and which produced as little as a single sequence per specimen, demonstrating high sensitivity of the process. In many cases, the identity of the most abundant sequences per specimen were not the correct barcodes, necessitating the development of a taxonomy-informed process for identifying correct sequences among the sequencing output. The recovery of only partial barcodes for some taxa indicates a need to refine certain PCR primers. Nonetheless, our approach represents a highly sensitive, accurate and efficient method for targeted reference database generation, providing a foundation for DNA-based assessments and monitoring of biodiversity.
Collapse
Affiliation(s)
| | | | | | | | - Darren Ward
- Manaaki Whenua Landcare Research, Auckland, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Thomas R Buckley
- Manaaki Whenua Landcare Research, Auckland, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
26
|
Yao M, Zhang S, Lu Q, Chen X, Zhang SY, Kong Y, Zhao J. Fishing for fish environmental DNA: Ecological applications, methodological considerations, surveying designs, and ways forward. Mol Ecol 2022; 31:5132-5164. [PMID: 35972241 DOI: 10.1111/mec.16659] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 12/15/2022]
Abstract
Vast global declines of freshwater and marine fish diversity and population abundance pose serious threats to both ecosystem sustainability and human livelihoods. Environmental DNA (eDNA)-based biomonitoring provides robust, efficient, and cost-effective assessment of species occurrences and population trends in diverse aquatic environments. Thus, it holds great potential for improving conventional surveillance frameworks to facilitate fish conservation and fisheries management. However, the many technical considerations and rapid developments underway in the eDNA arena can overwhelm researchers and practitioners new to the field. Here, we systematically analysed 416 fish eDNA studies to summarize research trends in terms of investigated targets, research aims, and study systems, and reviewed the applications, rationales, methodological considerations, and limitations of eDNA methods with an emphasis on fish and fisheries research. We highlighted how eDNA technology may advance our knowledge of fish behaviour, species distributions, population genetics, community structures, and ecological interactions. We also synthesized the current knowledge of several important methodological concerns, including the qualitative and quantitative power eDNA has to recover fish biodiversity and abundance, and the spatial and temporal representations of eDNA with respect to its sources. To facilitate ecological applications implementing fish eDNA techniques, recent literature was summarized to generate guidelines for effective sampling in lentic, lotic, and marine habitats. Finally, we identified current gaps and limitations, and pointed out newly emerging research avenues for fish eDNA. As methodological optimization and standardization improve, eDNA technology should revolutionize fish monitoring and promote biodiversity conservation and fisheries management that transcends geographic and temporal boundaries.
Collapse
Affiliation(s)
- Meng Yao
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Shan Zhang
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Qi Lu
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Xiaoyu Chen
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Si-Yu Zhang
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Yueqiao Kong
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Jindong Zhao
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
27
|
Brun L, Schneider J, Carrió EM, Dongre P, Taberlet P, van de Waal, Fumagalli L. Focal vs. fecal: Seasonal variation in the diet of wild vervet monkeys from observational and DNA metabarcoding data. Ecol Evol 2022; 12:e9358. [PMID: 36203642 PMCID: PMC9526031 DOI: 10.1002/ece3.9358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 08/12/2022] [Accepted: 09/05/2022] [Indexed: 11/08/2022] Open
Abstract
Assessing the diet of wild animals reveals valuable information about their ecology and trophic relationships that may help elucidate dynamic interactions in ecosystems and forecast responses to environmental changes. Advances in molecular biology provide valuable research tools in this field. However, comparative empirical research is still required to highlight strengths and potential biases of different approaches. Therefore, this study compares environmental DNA and observational methods for the same study population and sampling duration. We employed DNA metabarcoding assays targeting plant and arthropod diet items in 823 fecal samples collected over 12 months in a wild population of an omnivorous primate, the vervet monkey (Chlorocebus pygerythrus). DNA metabarcoding data were subsequently compared to direct observations. We observed the same seasonal patterns of plant consumption with both methods; however, DNA metabarcoding showed considerably greater taxonomic coverage and resolution compared to observations, mostly due to the construction of a local plant DNA database. We found a strong effect of season on variation in plant consumption largely shaped by the dry and wet seasons. The seasonal effect on arthropod consumption was weaker, but feeding on arthropods was more frequent in spring and summer, showing overall that vervets adapt their diet according to available resources. The DNA metabarcoding assay outperformed also direct observations of arthropod consumption in both taxonomic coverage and resolution. Combining traditional techniques and DNA metabarcoding data can therefore not only provide enhanced assessments of complex diets and trophic interactions to the benefit of wildlife conservationists and managers but also opens new perspectives for behavioral ecologists studying whether diet variation in social species is induced by environmental differences or might reflect selective foraging behaviors.
Collapse
Affiliation(s)
- Loïc Brun
- Laboratory for Conservation Biology, Department of Ecology and Evolution, BiophoreUniversity of LausanneLausanneSwitzerland
| | - Judith Schneider
- Laboratory for Conservation Biology, Department of Ecology and Evolution, BiophoreUniversity of LausanneLausanneSwitzerland
| | - Eduard Mas Carrió
- Laboratory for Conservation Biology, Department of Ecology and Evolution, BiophoreUniversity of LausanneLausanneSwitzerland
| | - Pooja Dongre
- Department of Ecology and Evolution, BiophoreUniversity of LausanneLausanneSwitzerland
- Inkawu Vervet ProjectMawana Game Reserve, Swart MfoloziKwaZulu NatalSouth Africa
| | - Pierre Taberlet
- Laboratoire d'Ecologie AlpineUniversité Grenoble Alpes, CNRSGrenobleFrance
- UiT – The Arctic University of Norway, Tromsø MuseumTromsøNorway
| | - van de Waal
- Department of Ecology and Evolution, BiophoreUniversity of LausanneLausanneSwitzerland
- Inkawu Vervet ProjectMawana Game Reserve, Swart MfoloziKwaZulu NatalSouth Africa
| | - Luca Fumagalli
- Laboratory for Conservation Biology, Department of Ecology and Evolution, BiophoreUniversity of LausanneLausanneSwitzerland
- Swiss Human Institute of Forensic Taphonomy, University Centre of Legal Medicine Lausanne‐Geneva, Lausanne University Hospital and University of LausanneLausanneSwitzerland
| |
Collapse
|
28
|
Flück B, Mathon L, Manel S, Valentini A, Dejean T, Albouy C, Mouillot D, Thuiller W, Murienne J, Brosse S, Pellissier L. Applying convolutional neural networks to speed up environmental DNA annotation in a highly diverse ecosystem. Sci Rep 2022; 12:10247. [PMID: 35715444 PMCID: PMC9205931 DOI: 10.1038/s41598-022-13412-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 05/24/2022] [Indexed: 01/04/2023] Open
Abstract
High-throughput DNA sequencing is becoming an increasingly important tool to monitor and better understand biodiversity responses to environmental changes in a standardized and reproducible way. Environmental DNA (eDNA) from organisms can be captured in ecosystem samples and sequenced using metabarcoding, but processing large volumes of eDNA data and annotating sequences to recognized taxa remains computationally expensive. Speed and accuracy are two major bottlenecks in this critical step. Here, we evaluated the ability of convolutional neural networks (CNNs) to process short eDNA sequences and associate them with taxonomic labels. Using a unique eDNA data set collected in highly diverse Tropical South America, we compared the speed and accuracy of CNNs with that of a well-known bioinformatic pipeline (OBITools) in processing a small region (60 bp) of the 12S ribosomal DNA targeting freshwater fishes. We found that the taxonomic labels from the CNNs were comparable to those from OBITools, with high correlation levels for the composition of the regional fish fauna. The CNNs enabled the processing of raw fastq files at a rate of approximately 1 million sequences per minute, which was about 150 times faster than with OBITools. Given the good performance of CNNs in the highly diverse ecosystem considered here, the development of more elaborate CNNs promises fast deployment for future biodiversity inventories using eDNA.
Collapse
Affiliation(s)
- Benjamin Flück
- Department of Environmental System Science, ETH Zürich, 8092, Zurich, Switzerland.
- Swiss Federal Research Institute WSL, 8903, Birmensdorf, Switzerland.
| | - Laëtitia Mathon
- CEFE, Univ. Montpellier, CNRS, EPHE-PSL University, IRD, Montpellier, France
| | - Stéphanie Manel
- CEFE, Univ. Montpellier, CNRS, EPHE-PSL University, IRD, Montpellier, France
| | | | | | - Camille Albouy
- DECOD (Ecosystem Dynamics and Sustainability), IFREMER, INRAE, Institut Agro - Agrocampus Ouest, Rue de l'Ile d'Yeu, BP21105, 44311, Nantes Cedex 3, France
| | - David Mouillot
- MARBEC, Univ. Montpellier,CNRS, IRD, Ifremer, Montpellier, France
- Institut Universitaire de France, IUF, 75231, Paris, France
| | - Wilfried Thuiller
- CNRS, LECA, Laboratoire d'Écologie Alpine, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, 38000, Grenoble, France
| | - Jérôme Murienne
- Laboratoire Evolution et Diversité Biologique (UMR5174), CNRS, IRD, Université Paul Sabatier, Toulouse, France
| | - Sébastien Brosse
- Laboratoire Evolution et Diversité Biologique (UMR5174), CNRS, IRD, Université Paul Sabatier, Toulouse, France
| | - Loïc Pellissier
- Department of Environmental System Science, ETH Zürich, 8092, Zurich, Switzerland.
- Swiss Federal Research Institute WSL, 8903, Birmensdorf, Switzerland.
| |
Collapse
|
29
|
Mathon L, Marques V, Mouillot D, Albouy C, Andrello M, Baletaud F, Borrero-Pérez GH, Dejean T, Edgar GJ, Grondin J, Guerin PE, Hocdé R, Juhel JB, Kadarusman, Maire E, Mariani G, McLean M, Polanco F. A, Pouyaud L, Stuart-Smith RD, Sugeha HY, Valentini A, Vigliola L, Vimono IB, Pellissier L, Manel S. Cross-ocean patterns and processes in fish biodiversity on coral reefs through the lens of eDNA metabarcoding. Proc Biol Sci 2022; 289:20220162. [PMID: 35440210 PMCID: PMC9019517 DOI: 10.1098/rspb.2022.0162] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/24/2022] [Indexed: 12/11/2022] Open
Abstract
Increasing speed and magnitude of global change threaten the world's biodiversity and particularly coral reef fishes. A better understanding of large-scale patterns and processes on coral reefs is essential to prevent fish biodiversity decline but it requires new monitoring approaches. Here, we use environmental DNA metabarcoding to reconstruct well-known patterns of fish biodiversity on coral reefs and uncover hidden patterns on these highly diverse and threatened ecosystems. We analysed 226 environmental DNA (eDNA) seawater samples from 100 stations in five tropical regions (Caribbean, Central and Southwest Pacific, Coral Triangle and Western Indian Ocean) and compared those to 2047 underwater visual censuses from the Reef Life Survey in 1224 stations. Environmental DNA reveals a higher (16%) fish biodiversity, with 2650 taxa, and 25% more families than underwater visual surveys. By identifying more pelagic, reef-associated and crypto-benthic species, eDNA offers a fresh view on assembly rules across spatial scales. Nevertheless, the reef life survey identified more species than eDNA in 47 shared families, which can be due to incomplete sequence assignment, possibly combined with incomplete detection in the environment, for some species. Combining eDNA metabarcoding and extensive visual census offers novel insights on the spatial organization of the richest marine ecosystems.
Collapse
Affiliation(s)
- Laetitia Mathon
- CEFE, Univ. Montpellier, CNRS, EPHE-PSL University, IRD, Montpellier, France
- ENTROPIE, Institut de Recherche pour le Développement (IRD), Univ. Réunion, UNC, CNRS, Q1 IFREMER, Nouméa, New Caledonia, France
| | - Virginie Marques
- CEFE, Univ. Montpellier, CNRS, EPHE-PSL University, IRD, Montpellier, France
- MARBEC, Univ Montpellier, CNRS, IFREMER, IRD, Montpellier, France
| | - David Mouillot
- MARBEC, Univ Montpellier, CNRS, IFREMER, IRD, Montpellier, France
- Institut Universitaire de France, France
| | - Camille Albouy
- DECOD (Ecosystem Dynamics and Sustainability), IFREMER, INRAE, Institut Agro - Agrocampus Ouest, Nantes, France
| | - Marco Andrello
- MARBEC, Univ Montpellier, CNRS, IFREMER, IRD, Montpellier, France
- Institute for the study of Anthropic Impacts and Sustainability in the marine environment, National Research Council (CNR-IAS), Rome, Italy
| | - Florian Baletaud
- ENTROPIE, Institut de Recherche pour le Développement (IRD), Univ. Réunion, UNC, CNRS, Q1 IFREMER, Nouméa, New Caledonia, France
- MARBEC, Univ Montpellier, CNRS, IFREMER, IRD, Montpellier, France
- SOPRONER, groupe GINGER, 98000 Noumea, New Caledonia, France
| | - Giomar H. Borrero-Pérez
- Programa de Biodiversidad y Ecosistemas Marinos, Museo de Historia Natural Marina de Colombia (MHNMC), Instituto de Investigaciones Marinas y Costeras- INVEMAR, Santa Marta, Colombia
| | | | - Graham J. Edgar
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | | | | | - Régis Hocdé
- MARBEC, Univ Montpellier, CNRS, IFREMER, IRD, Montpellier, France
| | | | - Kadarusman
- Politeknik Kelautan dan Perikanan Sorong, KKD BP Sumberdaya Genetik, Konservasi dan Domestikasi, Papua Barat, Indonesia
| | - Eva Maire
- MARBEC, Univ Montpellier, CNRS, IFREMER, IRD, Montpellier, France
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Gael Mariani
- MARBEC, Univ Montpellier, CNRS, IFREMER, IRD, Montpellier, France
| | - Matthew McLean
- Department of Biology, Dalhousie University, Halifax NSB3H4R2, Canada
| | - Andrea Polanco F.
- Programa de Biodiversidad y Ecosistemas Marinos, Museo de Historia Natural Marina de Colombia (MHNMC), Instituto de Investigaciones Marinas y Costeras- INVEMAR, Santa Marta, Colombia
| | - Laurent Pouyaud
- ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Rick D. Stuart-Smith
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Hagi Yulia Sugeha
- Research Center for Oceanography, National Research and Innovation Agency, Jl. Pasir Putih 1, Ancol Timur, Jakarta Utara 14430, Indonesia
| | | | - Laurent Vigliola
- ENTROPIE, Institut de Recherche pour le Développement (IRD), Univ. Réunion, UNC, CNRS, Q1 IFREMER, Nouméa, New Caledonia, France
| | - Indra B. Vimono
- Research Center for Oceanography, National Research and Innovation Agency, Jl. Pasir Putih 1, Ancol Timur, Jakarta Utara 14430, Indonesia
| | - Loïc Pellissier
- Landscape Ecology, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
- Unit of Land Change Science, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Stéphanie Manel
- CEFE, Univ. Montpellier, CNRS, EPHE-PSL University, IRD, Montpellier, France
| |
Collapse
|
30
|
Evaluating eDNA for Use within Marine Environmental Impact Assessments. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10030375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In this review, the use of environmental DNA (eDNA) within Environmental Impact Assessment (EIA) is evaluated. EIA documents provide information required by regulators to evaluate the potential impact of a development project. Currently eDNA is being incorporated into biodiversity assessments as a complementary method for detecting rare, endangered or invasive species. However, questions have been raised regarding the maturity of the field and the suitability of eDNA information as evidence for EIA. Several key issues are identified for eDNA information within a generic EIA framework for marine environments. First, it is challenging to define the sampling unit and optimal sampling strategy for eDNA with respect to the project area and potential impact receptor. Second, eDNA assay validation protocols are preliminary at this time. Third, there are statistical issues around the probability of obtaining both false positives (identification of taxa that are not present) and false negatives (non-detection of taxa that are present) in results. At a minimum, an EIA must quantify the uncertainty in presence/absence estimates by combining series of Bernoulli trials with ad hoc occupancy models. Finally, the fate and transport of DNA fragments is largely unknown in environmental systems. Shedding dynamics, biogeochemical and physical processes that influence DNA fragments must be better understood to be able to link an eDNA signal with the receptor’s state. The biggest challenge is that eDNA is a proxy for the receptor and not a direct measure of presence. Nonetheless, as more actors enter the field, technological solutions are likely to emerge for these issues. Environmental DNA already shows great promise for baseline descriptions of the presence of species surrounding a project and can aid in the identification of potential receptors for EIA monitoring using other methods.
Collapse
|
31
|
Marques V, Castagné P, Polanco A, Borrero-Pérez GH, Hocdé R, Guérin PÉ, Juhel JB, Velez L, Loiseau N, Letessier TB, Bessudo S, Valentini A, Dejean T, Mouillot D, Pellissier L, Villéger S. Use of environmental DNA in assessment of fish functional and phylogenetic diversity. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2021; 35:1944-1956. [PMID: 34224158 DOI: 10.1111/cobi.13802] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/19/2021] [Accepted: 05/03/2021] [Indexed: 06/13/2023]
Abstract
Assessing the impact of global changes and protection effectiveness is a key step in monitoring marine fishes. Most traditional census methods are demanding or destructive. Nondisturbing and nonlethal approaches based on video and environmental DNA are alternatives to underwater visual census or fishing. However, their ability to detect multiple biodiversity factors beyond traditional taxonomic diversity is still unknown. For bony fishes and elasmobranchs, we compared the performance of eDNA metabarcoding and long-term remote video to assess species' phylogenetic and functional diversity. We used 10 eDNA samples from 30 L of water each and 25 hr of underwater videos over 4 days on Malpelo Island (pacific coast of Colombia), a remote marine protected area. Metabarcoding of eDNA detected 66% more molecular operational taxonomic units (MOTUs) than species on video. We found 66 and 43 functional entities with a single eDNA marker and videos, respectively, and higher functional richness for eDNA than videos. Despite gaps in genetic reference databases, eDNA also detected a higher fish phylogenetic diversity than videos; accumulation curves showed how 1 eDNA transect detected as much phylogenetic diversity as 25 hr of video. Environmental DNA metabarcoding can be used to affordably, efficiently, and accurately census biodiversity factors in marine systems. Although taxonomic assignments are still limited by species coverage in genetic reference databases, use of MOTUs highlights the potential of eDNA metabarcoding once reference databases have expanded.
Collapse
Affiliation(s)
- Virginie Marques
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Montpellier, France
- CEFE, Univ. Montpellier, CNRS, EPHE-PSL University, IRD, Univ Paul Valery Montpellier 3, Montpellier, France
| | - Paul Castagné
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Andréa Polanco
- Instituto de Investigaciones Marinas y Costeras-INVEMAR, Colombia, Museo de Historia Natural Marina de Colombia (MHNMC), Programa de Biodiversidad y Ecosistemas Marinos, Santa Marta, Colombia
| | - Giomar Helena Borrero-Pérez
- Instituto de Investigaciones Marinas y Costeras-INVEMAR, Colombia, Museo de Historia Natural Marina de Colombia (MHNMC), Programa de Biodiversidad y Ecosistemas Marinos, Santa Marta, Colombia
| | - Régis Hocdé
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Pierre-Édouard Guérin
- CEFE, Univ. Montpellier, CNRS, EPHE-PSL University, IRD, Univ Paul Valery Montpellier 3, Montpellier, France
| | | | - Laure Velez
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Nicolas Loiseau
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | | | - Sandra Bessudo
- Fundación Malpelo y Otros Ecosistemas Marinos, Bogotá, Colombia
| | | | | | - David Mouillot
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Montpellier, France
- Institut Universitaire de France, Paris, France
| | - Loïc Pellissier
- Landscape Ecology, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | | |
Collapse
|
32
|
Yang J, Zhang X, Jin X, Seymour M, Richter C, Logares R, Khim JS, Klymus K. Recent advances in environmental DNA‐based biodiversity assessment and conservation. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Jun Yang
- Aquatic EcoHealth Group Fujian Key Laboratory of Watershed Ecology Key Laboratory of Urban Environment and Health Institute of Urban Environment Chinese Academy of Sciences Xiamen China
| | - Xiaowei Zhang
- School of the Environment State Key Laboratory of Pollution Control & Resource Reuse Nanjing University Nanjing China
| | - Xiaowei Jin
- China National Environmental Monitoring CentreMinistry of Ecology and Environment of the People's Republic of China Beijing China
| | - Mathew Seymour
- Department of Ecology Swedish University of Agricultural Sciences Uppsala Sweden
| | - Catherine Richter
- Columbia Environmental Research CenterU.S. Geological Survey Columbia MO USA
| | - Ramiro Logares
- Institute of Marine Sciences CSICPasseig Marítim de la Barceloneta Barcelona Spain
| | - Jong Seong Khim
- School of Earth & Environmental Sciences College of Natural Sciences Seoul National University Seoul Republic of Korea
| | - Katy Klymus
- Columbia Environmental Research CenterU.S. Geological Survey Columbia MO USA
| |
Collapse
|