1
|
Ghisbain G, Thiery W, Massonnet F, Erazo D, Rasmont P, Michez D, Dellicour S. Projected decline in European bumblebee populations in the twenty-first century. Nature 2024; 628:337-341. [PMID: 37704726 DOI: 10.1038/s41586-023-06471-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/21/2023] [Indexed: 09/15/2023]
Abstract
Habitat degradation and climate change are globally acting as pivotal drivers of wildlife collapse, with mounting evidence that this erosion of biodiversity will accelerate in the following decades1-3. Here, we quantify the past, present and future ecological suitability of Europe for bumblebees, a threatened group of pollinators ranked among the highest contributors to crop production value in the northern hemisphere4-8. We demonstrate coherent declines of bumblebee populations since 1900 over most of Europe and identify future large-scale range contractions and species extirpations under all future climate and land use change scenarios. Around 38-76% of studied European bumblebee species currently classified as 'Least Concern' are projected to undergo losses of at least 30% of ecologically suitable territory by 2061-2080 compared to 2000-2014. All scenarios highlight that parts of Scandinavia will become potential refugia for European bumblebees; it is however uncertain whether these areas will remain clear of additional anthropogenic stressors not accounted for in present models. Our results underline the critical role of global change mitigation policies as effective levers to protect bumblebees from manmade transformation of the biosphere.
Collapse
Affiliation(s)
- Guillaume Ghisbain
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Brussels, Belgium.
- Laboratory of Zoology, Research Institute for Biosciences, Université de Mons, Mons, Belgium.
| | - Wim Thiery
- Department of Hydrology and Hydraulic Engineering, Vrije Universiteit Brussel, Brussels, Belgium
| | - François Massonnet
- Earth and Climate Research Center, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Diana Erazo
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Brussels, Belgium
| | - Pierre Rasmont
- Laboratory of Zoology, Research Institute for Biosciences, Université de Mons, Mons, Belgium
| | - Denis Michez
- Laboratory of Zoology, Research Institute for Biosciences, Université de Mons, Mons, Belgium
| | - Simon Dellicour
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Brussels, Belgium.
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium.
| |
Collapse
|
2
|
Singh AP, De K, Uniyal VP, Sathyakumar S. Unveiling of climate change-driven decline of suitable habitat for Himalayan bumblebees. Sci Rep 2024; 14:4983. [PMID: 38424143 PMCID: PMC10904386 DOI: 10.1038/s41598-024-52340-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 01/17/2024] [Indexed: 03/02/2024] Open
Abstract
Insect pollinators, especially bumblebees are rapidly declining from their natural habitat in the mountain and temperate regions of the world due to climate change and other anthropogenic activities. We still lack reliable information about the current and future habitat conditions of bumblebees in the Himalaya. In this study, we used the maximum entropy algorithm for SDM to look at current and future (in 2050 and 2070) suitable habitats for bumblebees in the Himalaya. We found that the habitat conditions in the Himalayan mountain range do not have a very promising future as suitable habitat for most species will decrease over the next 50 years. By 2050, less than 10% of the Himalayan area will remain a suitable habitat for about 72% of species, and by 2070 this number will be raised to 75%. During this time period, the existing suitable habitat of bumblebees will be declined but some species will find new suitable habitat which clearly indicates possibility of habitat range shift by Himalayan bumblebees. Overall, about 15% of the Himalayan region is currently highly suitable for bumblebees, which should be considered as priority areas for the conservation of these pollinators. Since suitable habitats for bumblebees lie between several countries, nations that share international borders in the Himalayan region should have international agreements for comprehensive pollinator diversity conservation to protect these indispensable ecosystem service providers.
Collapse
Affiliation(s)
- Amar Paul Singh
- Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, 248001, India.
| | - Kritish De
- Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, 248001, India
- Department of Life Sciences, Sri Sathya Sai University for Human Excellence, Navanihal, Okali Post, Kamalapur, Kalaburagi, Karnataka, 585313, India
| | - Virendra Prasad Uniyal
- Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, 248001, India
- Graphic Era (Deemed to be) University, Bell Road, Clement Town, Dehradun, Uttarakhand, 248002, India
| | | |
Collapse
|
3
|
Moens M, Biesmeijer JC, Klumpers SGT, Marshall L. Are threatened species special? An assessment of Dutch bees in relation to land use and climate. Ecol Evol 2023; 13:e10326. [PMID: 37502308 PMCID: PMC10369158 DOI: 10.1002/ece3.10326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 06/14/2023] [Accepted: 07/02/2023] [Indexed: 07/29/2023] Open
Abstract
Red Lists are widely used as an indicator of the status and trends of biodiversity and are often used in directing conservation efforts. However, it is unclear whether species with a Least Concern status share a common relationship to environmental correlates compared to species that are on the Red List. To assess this, we focus here on the contribution and correlates of land use, climate, and soil to the occurrence of wild bees in the Netherlands. We used observation data and species distribution models to explain the relation between wild bees and the environment. Non-threatened bees had a relatively higher variable importance of the land use variables to their models, as opposed to the climate variables for the threatened bees. The threatened bees had a smaller extent of occurrence and occupied areas with more extreme climatic conditions. Bees with a Least Concern status showed more positive responses to urban green spaces and Red List species showed a different response to climatic variables, such as temperature and precipitation. Even though Red List bees were found in areas with a higher cover of natural areas, they showed a more selective response to natural land use types. Pastures and crops were the main contributing land use variables and showed almost exclusively a negative correlation with the distribution of all wild bees. This knowledge supports the implementation of appropriate, species-specific conservation measures, including the preservation of natural areas, and the improvement of land use practices in agricultural and urban areas, which may help mitigate the negative impacts of future global change on species' distributions.
Collapse
Affiliation(s)
- Merijn Moens
- Naturalis Biodiversity CenterLeidenThe Netherlands
- Institute of Environmental Sciences (CML)Leiden UniversityLeidenThe Netherlands
| | - Jacobus C. Biesmeijer
- Naturalis Biodiversity CenterLeidenThe Netherlands
- Institute of Environmental Sciences (CML)Leiden UniversityLeidenThe Netherlands
| | | | - Leon Marshall
- Naturalis Biodiversity CenterLeidenThe Netherlands
- Agroecology Lab, Interfaculty School of BioengineeringUniversité libre de Bruxelles (ULB)BrusselsBelgium
| |
Collapse
|
4
|
Cappa F, Baracchi D, Cervo R. Biopesticides and insect pollinators: Detrimental effects, outdated guidelines, and future directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155714. [PMID: 35525339 DOI: 10.1016/j.scitotenv.2022.155714] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/29/2022] [Accepted: 05/01/2022] [Indexed: 06/14/2023]
Abstract
As synthetic pesticides play a major role in pollinator decline worldwide, biopesticides have been gaining increased attention to develop more sustainable methods for pest management in agriculture. These biocontrol agents are usually considered as safe for non-target species, such as pollinators. Unfortunately, when it comes to non-target insects, only the acute or chronic effects on survival following exposure to biopesticides are tested. Although international boards have highlighted the need to include also behavioral and morphophysiological traits when assessing risks of plant protection products on pollinators, no substantial concerns have been raised about the risks associated with sublethal exposure to these substances. Here, we provide a comprehensive review of the studies investigating the potential adverse effects of biopesticides on different taxa of pollinators (bees, butterflies, moths, beetles, flies, and wasps). We highlight the fragmentary knowledge on this topic and the lack of a systematic investigation of these negative effects of biopesticides on insect pollinators. We show that all the major classes of biopesticides, besides their direct toxicity, can also cause a plethora of more subtle detrimental effects in both solitary and social species of pollinators. Although research in this field is growing, the current risk assesment approach does not suffice to properly assess all the potential side-effects that these agents of control may have on pollinating insects. Given the urgent need for a sustainable agriculture and wildlife protection, it appears compelling that these so far neglected detrimental effects should be thoroughly assessed before allegedly safe biopesticides can be used in the field and, in this view, we provide a perspective for future directions.
Collapse
Affiliation(s)
- Federico Cappa
- Department of Biology, University of Florence, Via Madonna del Piano, 6, 50019 Sesto Fiorentino, Italy.
| | - David Baracchi
- Department of Biology, University of Florence, Via Madonna del Piano, 6, 50019 Sesto Fiorentino, Italy
| | - Rita Cervo
- Department of Biology, University of Florence, Via Madonna del Piano, 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
5
|
Ghisbain G. Are Bumblebees Relevant Models for Understanding Wild Bee Decline? FRONTIERS IN CONSERVATION SCIENCE 2021. [DOI: 10.3389/fcosc.2021.752213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The unsustainable use of ecosystems by human societies has put global biodiversity in peril. Bees are, in this context, a popular example of a highly diversified group of pollinators whose collapse is a major concern given the invaluable ecosystem services they provide. Amongst them, bumblebees (Bombus) have increasingly drawn the attention of scientists due to their dramatic population declines globally. This regression has converted them into popular conservation entities, making them the second most studied group of bees worldwide. However, in addition to have become relevant models in the fields of ecology, evolution and biogeography, bumblebees have also been used as models for studying wild bee decline and conservation worldwide. Integrating evidence from the comparative ecology and resilience of bumblebees and wild bees, I discuss the relevance of using Bombus as radars for wild bee decline worldwide. Responses of bumblebees to environmental changes are generally not comparable with those of wild bees because of their relatively long activity period, their inherent sensitivity to high temperatures, their relatively generalist diet breadth and many aspects arising from their eusocial behavior. Moreover, important differences in the available historical data between bumblebees and other bees make comparisons of conservation status even more arduous. Overall, these results reinforce the need for conservation actions that consider a higher level of understanding of ecological diversity in wild bees, highlight the need for an updated and more extensive sampling of these organisms, and emphasize that more caution is required when extrapolating trends from model species.
Collapse
|
6
|
Kenna D, Pawar S, Gill RJ. Thermal flight performance reveals impact of warming on bumblebee foraging potential. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13887] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Daniel Kenna
- Department of Life Sciences Imperial College LondonSilwood Park Campus Ascot UK
| | - Samraat Pawar
- Department of Life Sciences Imperial College LondonSilwood Park Campus Ascot UK
| | - Richard J. Gill
- Department of Life Sciences Imperial College LondonSilwood Park Campus Ascot UK
| |
Collapse
|
7
|
Ghisbain G, Gérard M, Wood TJ, Hines HM, Michez D. Expanding insect pollinators in the Anthropocene. Biol Rev Camb Philos Soc 2021; 96:2755-2770. [PMID: 34288353 PMCID: PMC9292488 DOI: 10.1111/brv.12777] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 01/03/2023]
Abstract
Global changes are severely affecting pollinator insect communities worldwide, resulting in repeated patterns of species extirpations and extinctions. Whilst negative population trends within this functional group have understandably received much attention in recent decades, another facet of global changes has been overshadowed: species undergoing expansion. Here, we review the factors and traits that have allowed a fraction of the pollinating entomofauna to take advantage of global environmental change. Sufficient mobility, high resistance to acute heat stress, and inherent adaptation to warmer climates appear to be key traits that allow pollinators to persist and even expand in the face of climate change. An overall flexibility in dietary and nesting requirements is common in expanding species, although niche specialization can also drive expansion under specific contexts. The numerous consequences of wild and domesticated pollinator expansions, including competition for resources, pathogen spread, and hybridization with native wildlife, are also discussed. Overall, we show that the traits and factors involved in the success stories of expanding pollinators are mostly species specific and context dependent, rendering generalizations of 'winning traits' complicated. This work illustrates the increasing need to consider expansion and its numerous consequences as significant facets of global changes and encourages efforts to monitor the impacts of expanding insect pollinators, particularly exotic species, on natural ecosystems.
Collapse
Affiliation(s)
- Guillaume Ghisbain
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Place du Parc 20, Mons, 7000, Belgium
| | - Maxence Gérard
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Place du Parc 20, Mons, 7000, Belgium.,Department of Zoology, Division of Functional Morphology, INSECT Lab, Stockholm University, Svante Arrhenius väg 18b, Stockholm, 11418, Sweden
| | - Thomas J Wood
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Place du Parc 20, Mons, 7000, Belgium
| | - Heather M Hines
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, U.S.A.,Department of Entomology, The Pennsylvania State University, University Park, PA, 16802, U.S.A
| | - Denis Michez
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Place du Parc 20, Mons, 7000, Belgium
| |
Collapse
|
8
|
Brasero N, Ghisbain G, Lecocq T, Michez D, Valterová I, Biella P, Monfared A, Williams PH, Rasmont P, Martinet B. Resolving the species status of overlooked West‐Palaearctic bumblebees. ZOOL SCR 2021. [DOI: 10.1111/zsc.12486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Nicolas Brasero
- Laboratory of Zoology Research institute for Biosciences, University of Mons MonsBelgium
| | - Guillaume Ghisbain
- Laboratory of Zoology Research institute for Biosciences, University of Mons MonsBelgium
| | - Thomas Lecocq
- Laboratory of Zoology Research institute for Biosciences, University of Mons MonsBelgium
- Université de Lorraine, INRAE, URAFPA Nancy France
| | - Denis Michez
- Laboratory of Zoology Research institute for Biosciences, University of Mons MonsBelgium
| | - Irena Valterová
- Academy of Sciences of the Czech Republic Institute of Organic Chemistry and Biochemistry Prague Czech Republic
- Faculty of Tropical AgriSciences Czech University of Life Sciences Prague Czech Republic
| | - Paolo Biella
- Department of Biotechnology and Biosciences University of Milano‐Bicocca Milano Italy
| | - Alireza Monfared
- Department of Plant Protection, Faculty of Agriculture Yasouj University Yasouj Iran
| | | | - Pierre Rasmont
- Laboratory of Zoology Research institute for Biosciences, University of Mons MonsBelgium
| | - Baptiste Martinet
- Laboratory of Zoology Research institute for Biosciences, University of Mons MonsBelgium
- Evolutionary Biology & Ecology Université Libre de Bruxelles Bruxelles Belgium
| |
Collapse
|