1
|
Wang Z, Zeng C, Cao L. Mapping the biodiversity conservation gaps in the East China sea. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 336:117667. [PMID: 36878059 DOI: 10.1016/j.jenvman.2023.117667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/30/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Being one of the most productive China seas, the East China Sea is facing the challenge of unprecedented biodiversity loss and habitat degradation under the dual pressure of anthropogenic disturbance and climate change. Although marine protected areas (MPAs) are considered an effective conservation tool, it remains unclear whether existing MPAs adequately protect marine biodiversity. To investigate this issue, we first constructed a maximum entropy model to predict the distributions of 359 threatened species and identified its species richness hotspots in the East China Sea. Then we identified priority conservation areas (PCAs1) under different protection scenarios. Since the actual conservation in the East China Sea is far from the goals proposed by Convention on Biological Diversity, we calculated a more realistic conservation goal by quantifying the relationship between the percentage of protected areas in the East China Sea and the average proportion of habitats covered for all species. Finally, we mapped conservation gaps by comparing the PCAs under the proposed goal and existing MPAs. Our results showed that these threatened species were very heterogeneously distributed, and their abundance was highest at low latitudes and in nearshore areas. The identified PCAs were distributed mainly in nearshore areas, especially in the Yangtze River estuary and along the Taiwan Strait. Based on the current distribution of threatened species, we suggest a minimum conservation goal of 20.4% of the total area of the East China Sea. Only 8.8% of the recommended PCAs are currently within the existing MPAs. We recommend expanding the MPAs in six areas to achieve the minimum conservation target. Our findings provide a solid scientific reference and a reasonable short-term target for China to realize the vision of protecting 30% of its oceans by 2030.
Collapse
Affiliation(s)
- Zihan Wang
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Cong Zeng
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Ling Cao
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, 200030, China.
| |
Collapse
|
2
|
Carroll KA, Farwell LS, Pidgeon AM, Razenkova E, Gudex-Cross D, Helmers DP, Lewińska KE, Elsen PR, Radeloff VC. Mapping breeding bird species richness at management-relevant resolutions across the United States. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2624. [PMID: 35404493 DOI: 10.1002/eap.2624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/26/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Human activities alter ecosystems everywhere, causing rapid biodiversity loss and biotic homogenization. These losses necessitate coordinated conservation actions guided by biodiversity and species distribution spatial data that cover large areas yet have fine-enough resolution to be management-relevant (i.e., ≤5 km). However, most biodiversity products are too coarse for management or are only available for small areas. Furthermore, many maps generated for biodiversity assessment and conservation do not explicitly quantify the inherent tradeoff between resolution and accuracy when predicting biodiversity patterns. Our goals were to generate predictive models of overall breeding bird species richness and species richness of different guilds based on nine functional or life-history-based traits across the conterminous United States at three resolutions (0.5, 2.5, and 5 km) and quantify the tradeoff between resolution and accuracy and, hence, relevance for management of the resulting biodiversity maps. We summarized 18 years of North American Breeding Bird Survey data (1992-2019) and modeled species richness using random forests, including 66 predictor variables (describing climate, vegetation, geomorphology, and anthropogenic conditions), 20 of which we newly derived. Among the three spatial resolutions, the percentage variance explained ranged from 27% to 60% (median = 54%; mean = 57%) for overall species richness and 12% to 87% (median = 61%; mean = 58%) for our different guilds. Overall species richness and guild-specific species richness were best explained at 5-km resolution using ~24 predictor variables based on percentage variance explained, symmetric mean absolute percentage error, and root mean square error values. However, our 2.5-km-resolution maps were almost as accurate and provided more spatially detailed information, which is why we recommend them for most management applications. Our results represent the first consistent, occurrence-based, and nationwide maps of breeding bird richness with a thorough accuracy assessment that are also spatially detailed enough to inform local management decisions. More broadly, our findings highlight the importance of explicitly considering tradeoffs between resolution and accuracy to create management-relevant biodiversity products for large areas.
Collapse
Affiliation(s)
- Kathleen A Carroll
- SILVIS Lab, Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Laura S Farwell
- SILVIS Lab, Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Anna M Pidgeon
- SILVIS Lab, Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Elena Razenkova
- SILVIS Lab, Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - David Gudex-Cross
- SILVIS Lab, Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - David P Helmers
- SILVIS Lab, Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Katarzyna E Lewińska
- SILVIS Lab, Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Paul R Elsen
- SILVIS Lab, Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Volker C Radeloff
- SILVIS Lab, Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
3
|
Liu X, Mei Z, Zhang J, Sun J, Zhang N, Guo Y, Wang K, Hao Y, Wang D. Seasonal Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis) movements in the Poyang Lake, China: Implications on flexible management for aquatic animals in fluctuating freshwater ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150782. [PMID: 34619183 DOI: 10.1016/j.scitotenv.2021.150782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Identifying seasonal high-use habitats and migration corridors is the basis for migratory species conservation. Previous studies have focused on Marine Protected Areas, while freshwater ecosystems, often accompanied by severe hydrological fluctuations, suggest new perspectives for flexible management. Poyang Lake is an essential habitat for the critically endangered Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis, YFP), supporting almost half of their natural population. However, studies on the movement patterns and habitat preferences of YFPs still lack there, preventing potential protected areas' effectiveness. In this study, we conducted 10 surveys for the YFP population in the main body and tributaries of Poyang Lake from October 2018 to August 2020. We used habitat modeling to analyze their seasonal habitat use and the environmental predictors. YFPs showed a seasonal movement pattern consistent with water level fluctuations. They entered the tributaries from the main lake body in low and medium water levels and returned to the main lake during high water level periods. The water depth was the most important environmental variable in each hydrological season that affects YFPs' habitat selection. The suitable water depth was about 4-8 m during the low water level, 6-12 m during the medium water level, and 7-20 m during the high water level. YFPs' 50% core habitats distribution showed noticeable seasonal changes. The proportion of their suitable habitats in the whole lake was relatively low, which was highest during high water level (16.89%), and the weakest during low water level (12.11%). Considering the seasonal movements of the YFPs in the lake, we recommend flexible management measures for their core habitats to alleviate human interference and restore their movement rhythm between the river and the lake, which shed light on protected area management for aquatic animals in such seasonal fluctuating habitats.
Collapse
Affiliation(s)
- Xin Liu
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhigang Mei
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Jinxiu Zhang
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingjing Sun
- Jiangxi Association for Research and Promotion of Ecological Civilization, Nanchang 330029, China
| | - Nongnong Zhang
- Jiangxi Association for Research and Promotion of Ecological Civilization, Nanchang 330029, China
| | - Yuyin Guo
- Poyang Lake Hydrological Bureau of Jiangxi Province, Jiujiang 332005, China
| | - Kexiong Wang
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yujiang Hao
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Ding Wang
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|