1
|
Indra L, Moser V, Milella M, Errickson D, Lösch S. Of rodents and foxes: Faunal activity and scavenging at carcasses in a Central European (Swiss) forest. J Forensic Sci 2025. [PMID: 40249020 DOI: 10.1111/1556-4029.70056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 04/02/2025] [Accepted: 04/04/2025] [Indexed: 04/19/2025]
Abstract
Vertebrate activity can significantly affect forensic investigations. Trauma interpretation is impaired when vertebrates scavenge on injuries and inflict damage, and scavengers can hinder the recovery of human remains through dispersal. However, forensic scavenging research is scarce in Europe and lacking for Switzerland. We conducted a 2-month baseline study followed by a 5-month experiment with six domestic pig (Sus scrofa domesticus) carcasses in a Swiss forest during summer through fall. We monitored each three caged and uncaged carcasses with camera traps and documented vertebrate activities and taphonomic signatures on the remains and calculated the scavenging rate. Rodents (Apodemus sylvaticus, A. flavicollis, and Myodes glareolus) and red fox (Vulpes vulpes) scavenged and dispersed the remains. All carcasses and ca. 4% of the recovered bones exhibited scavenging marks, including wet bone scavenging (rodents) mainly on small bones and protruding features, and scoring (red fox) on a rib. The presence of a carcass, decomposition stage, sun exposure, and use of cages significantly influenced the number of vertebrate visits at the plots. Rodents preferentially scavenged caged, skeletonized remains at tree-covered plots and modified perimortem wounds beyond recognition. The few carnivore sightings focused on uncaged specimens. The generally low scavenger participation was likely season-related, due to the rapid maggot infestation, or human presence. Future studies should evaluate the influence of these variables, including sun exposure. Our study informs forensic casework by highlighting the importance of rodents and to a lesser degree foxes as vertebrate scavengers and dispersal agents in central European temperate forests.
Collapse
Affiliation(s)
- Lara Indra
- Institute of Forensic Medicine, University of Bern, Bern, Switzerland
| | - Valentin Moser
- Community Ecology, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Marco Milella
- Institute of Forensic Medicine, University of Bern, Bern, Switzerland
| | - David Errickson
- Cranfield Forensic Institute, Cranfield University, Bedford, UK
| | - Sandra Lösch
- Institute of Forensic Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Fielding MW, Yates LA, Buettel JC, Stojanovic D, Brook BW. Carcass use by mesoscavengers varied across modified landscapes in the absence of top carnivores. Oecologia 2025; 207:60. [PMID: 40180641 PMCID: PMC11968553 DOI: 10.1007/s00442-025-05697-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 03/20/2025] [Indexed: 04/05/2025]
Abstract
The decomposition of carrion is crucial to the functioning and nutrient cycling of ecosystems, and many species use this high-quality resource. However, the availability and reliability of carrion differs across environments. Modified landscapes, such as farms and roads, often produce a high density of carcasses, with disproportionate benefits for generalist mesoscavengers that can tolerate, or are attracted to, human presence. In this study, we placed carcasses strategically across two large islands in southern Australia and used camera traps to investigate how different scavengers locate and use carrion in forested, farmland and roadside habitats. Forest ravens, an avian generalist, were the dominant scavengers across all three habitat types but were three times more likely to discover carcasses deployed in modified landscapes. Raptors were twice as likely to discover and use carcasses in farmland habitats, indicating enhanced scavenging opportunities in these areas. The discovery rate and use of carcasses by feral cats did not differ between habitat types. In this setting, differences in carrion use between diurnal and nocturnal scavengers are potentially due to the absence of top mammalian carnivores (Tasmanian devils and quolls). Diurnal scavengers, such as forest ravens and raptors, followed expected habitat preferences, albeit with greater access to carrion due to increased persistence. However, feral cats demonstrated no preference for carcasses across habitats, likely due to the reduced landscape of fear. Overall, our study underscores the important role of native mammalian carnivores in structuring scavenger communities and further validates the value of trophic rewilding to restore key ecological functions.
Collapse
Affiliation(s)
- Matthew W Fielding
- School of Natural Sciences, University of Tasmania, TAS, Private Bag 5, Sandy Bay, 7001, Australia.
- ARC Centre of Excellence for Australian Biodiversity and Heritage, Wollongong, Australia.
| | - Luke A Yates
- School of Natural Sciences, University of Tasmania, TAS, Private Bag 5, Sandy Bay, 7001, Australia
- ARC Centre of Excellence for Australian Biodiversity and Heritage, Wollongong, Australia
| | - Jessie C Buettel
- School of Natural Sciences, University of Tasmania, TAS, Private Bag 5, Sandy Bay, 7001, Australia
- ARC Centre of Excellence for Australian Biodiversity and Heritage, Wollongong, Australia
| | - Dejan Stojanovic
- Fenner School of Environment and Society, Australian National University, Canberra, Australia
| | - Barry W Brook
- School of Natural Sciences, University of Tasmania, TAS, Private Bag 5, Sandy Bay, 7001, Australia
- ARC Centre of Excellence for Australian Biodiversity and Heritage, Wollongong, Australia
| |
Collapse
|
3
|
Jameson TJM, Johnston GR, Barr M, Sandow D, Head JJ, Turner EC. Squamate scavenging services: Heath goannas ( Varanus rosenbergi) support carcass removal and may suppress agriculturally damaging blowflies. Ecol Evol 2024; 14:e11535. [PMID: 38919645 PMCID: PMC11197000 DOI: 10.1002/ece3.11535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024] Open
Abstract
Human-induced environmental change has caused widespread loss of species that support important functions for ecosystems and society. For example, vertebrate scavengers contribute to the functional health of ecosystems and provide services to agricultural landscapes by removing carcasses and associated pests. Widespread extirpation of native Australian mammals since the arrival of Europeans in Australia has removed many scavenging species from landscapes, while scavenging mammals such as European red foxes (Vulpes vulpes) have been introduced. In much of Australia, squamate reptiles are the largest native terrestrial scavengers remaining, where large native mammals are extinct and conservation management is being undertaken to remove invasive mammals. The contribution of reptiles to scavenging functions is not well understood. In this study, we investigated the ecosystem functions provided by large reptiles as scavengers to better understand how populations can be managed to support ecosystem services. We investigated the ecosystem services provided by vertebrate scavengers in Australian coastal mallee ecosystems, focusing on the heath goanna (Varanus rosenbergi), the only extant native terrestrial scavenger in the region. We carried out exclosure experiments, isolating the scavenging activity of different taxonomic groups to quantify the contribution of different taxa to scavenging services, specifically the removal of rat carcasses, and its impact on the occurrence of agriculturally damaging blowflies. We compared areas with different native and invasive scavenger communities to investigate the impact of invasive species removal and native species abundance on scavenging services. Our results indicated that vertebrate scavenging significantly contributes to carcass removal and limitation of necrophagous fly breeding in carcasses and that levels of removal are higher in areas associated with high densities of heath goannas and low densities of invasive mammals. Therefore, augmentation of heath goanna populations represents a promising management strategy to restore and maximize scavenging ecosystem services.
Collapse
Affiliation(s)
- Tom J. M. Jameson
- Department of Zoology and University Museum of ZoologyUniversity of CambridgeCambridgeUK
| | - Gregory R. Johnston
- College of Science & EngineeringFlinders UniversityAdelaideSouth AustraliaAustralia
- South Australian MuseumAdelaideSouth AustraliaAustralia
| | - Max Barr
- Northern and Yorke Landscape BoardMinlatonSouth AustraliaAustralia
| | - Derek Sandow
- Northern and Yorke Landscape BoardClareSouth AustraliaAustralia
| | - Jason J. Head
- Department of Zoology and University Museum of ZoologyUniversity of CambridgeCambridgeUK
| | - Edgar C. Turner
- Department of Zoology and University Museum of ZoologyUniversity of CambridgeCambridgeUK
| |
Collapse
|
4
|
Newsome T, Cairncross R, Cunningham CX, Spencer EE, Barton PS, Ripple WJ, Wirsing AJ. Scavenging with invasive species. Biol Rev Camb Philos Soc 2024; 99:562-581. [PMID: 38148253 DOI: 10.1111/brv.13035] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 12/28/2023]
Abstract
Carrion acts as a hotspot of animal activity within many ecosystems globally, attracting scavengers that rely on this food source. However, many scavengers are invasive species whose impacts on scavenging food webs and ecosystem processes linked to decomposition are poorly understood. Here, we use Australia as a case study to review the extent of scavenging by invasive species that have colonised the continent since European settlement, identify the factors that influence their use of carcasses, and highlight the lesser-known ecological effects of invasive scavengers. From 44 published studies we identified six invasive species from 48 vertebrates and four main groups of arthropods (beetles, flies, ants and wasps) that scavenge. Invasive red foxes (Vulpes vulpes), domestic dogs (Canis familiaris), feral pigs (Sus scrofa), black rats (Rattus rattus) and feral cats (Felis catus) were ranked as highly common vertebrate scavengers. Invasive European wasps (Vespula germanica) are also common scavengers where they occur. We found that the diversity of native vertebrate scavengers is lower when the proportion of invasive scavengers is higher. We highlight that the presence of large (apex) native vertebrate scavengers can decrease rates of scavenging by invasive species, but that invasive scavengers can monopolise carcass resources, outcompete native scavengers, predate other species around carcass resources and even facilitate invasion meltdowns that affect other species and ecological processes including altered decomposition rates and nutrient cycling. Such effects are likely to be widespread where invasive scavengers occur and suggest a need to determine whether excessive or readily available carcass loads are facilitating or exacerbating the impacts of invasive species on ecosystems globally.
Collapse
Affiliation(s)
- Thomas Newsome
- School of Life and Environmental Science, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Rhys Cairncross
- School of Life and Environmental Science, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Calum X Cunningham
- School of Environmental and Forest Sciences, University of Washington, College of the Environment, Box 352100, Seattle, WA, 98195-2100, USA
| | - Emma E Spencer
- School of Life and Environmental Science, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Philip S Barton
- School of Life and Environmental Science, Deakin University, Geelong, Victoria, 3216, Australia
| | - William J Ripple
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, 97331, USA
| | - Aaron J Wirsing
- School of Environmental and Forest Sciences, University of Washington, College of the Environment, Box 352100, Seattle, WA, 98195-2100, USA
| |
Collapse
|
5
|
Krige Z, Spencer EE, Crowther MS, Dickman CR, Newsome TM. Flooding, season and habitat interact to drive changes in vertebrate scavenging and carcass persistence rates. Oecologia 2024; 204:861-874. [PMID: 38589583 PMCID: PMC11062959 DOI: 10.1007/s00442-024-05531-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 02/19/2024] [Indexed: 04/10/2024]
Abstract
Scavenging dynamics are influenced by many abiotic and biotic factors, but there is little knowledge of how scavengers respond to extreme weather events. As carrion is a major driver of the organisation and structure of food webs within ecological communities, understanding the response of scavengers to extreme weather events is critical in a world that is increasingly subject to climate change. In this study, vertebrate scavenging and carcass persistence rates were quantified in the Simpson Desert of central Australia; a system that experiences major fluctuations and extremes in weather conditions. Specifically, a total of 80 adult red kangaroo (Osphranter rufus) carcasses were placed on the landscape and monitored using remote sensor cameras. This included 40 carcasses monitored before and then 40 carcasses monitored after a major flooding event. The carcasses were monitored equally before and after the flood across different seasons (warm and cool) and in dune and interdune habitats. Overall, a total of 8124 scavenging events for 97,976 visitation minutes were recorded for 11 vertebrate species within 30 days of carcass placement pre- and post-flood. Vertebrate scavenging increased post-flood in the warm season, especially by corvids which quadrupled their scavenging events during this time. There was little difference in carcass persistence between habitats, but carcasses persisted 5.3-fold longer post-flood in warm seasons despite increased vertebrate scavenging. The results demonstrate that a flood event can influence scavenging dynamics and suggest a need to further understand how seasons, habitats and extreme weather events can drive changes in carrion-based food webs.
Collapse
Affiliation(s)
- Zyna Krige
- The University of Sydney, Sydney, NSW, Australia
| | | | | | | | | |
Collapse
|
6
|
Bartel SL, Stephenson T, Crowder DW, Jones ME, Storfer A, Strickland MS, Lynch L. Global change influences scavenging and carrion decomposition. Trends Ecol Evol 2024; 39:152-164. [PMID: 37816662 DOI: 10.1016/j.tree.2023.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 10/12/2023]
Abstract
Carrion decomposition is fundamental to nutrient cycling in terrestrial ecosystems because it provides a high-quality resource to diverse organisms. A conceptual framework incorporating all phases of carrion decomposition with the full community of scavengers is needed to predict the effects of global change on core ecosystem processes. Because global change can differentially impact scavenger guilds and rates of carrion decomposition, our framework explicitly incorporates complex interactions among microbial, invertebrate, and vertebrate scavenger communities across three distinct phases of carcass decomposition. We hypothesize that carrion decomposition rates will be the most impacted when global change affects carcass discovery rates and the foraging behavior of competing scavenger guilds.
Collapse
Affiliation(s)
- Savannah L Bartel
- Department of Entomology, Washington State University, 166 FSHN, 100 Dairy Road, Pullman, WA 99164, USA; School of Biological Sciences, Washington State University, 301 Abelson Hall, Pullman, WA 99164, USA.
| | - Torrey Stephenson
- Department of Soil and Water Systems, University of Idaho, 875 Perimeter Drive, Moscow, ID 83844, USA
| | - David W Crowder
- Department of Entomology, Washington State University, 166 FSHN, 100 Dairy Road, Pullman, WA 99164, USA
| | - Menna E Jones
- School of Natural Sciences, University of Tasmania, Life Sciences Building, Hobart, TAS 7001, Australia
| | - Andrew Storfer
- School of Biological Sciences, Washington State University, 301 Abelson Hall, Pullman, WA 99164, USA
| | - Michael S Strickland
- Department of Soil and Water Systems, University of Idaho, 875 Perimeter Drive, Moscow, ID 83844, USA
| | - Laurel Lynch
- Department of Soil and Water Systems, University of Idaho, 875 Perimeter Drive, Moscow, ID 83844, USA
| |
Collapse
|
7
|
Hampton JO, Lohr MT, Specht AJ, Nzabanita D, Hufschmid J, Berger L, McGinnis K, Melville J, Bennett E, Pay JM. Lead exposure of mainland Australia's top avian predator. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:122004. [PMID: 37302786 DOI: 10.1016/j.envpol.2023.122004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/24/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
Lead (Pb) toxicity, through ingestion of lead ammunition in carcasses, is a threat to scavenging birds worldwide, but has received little attention in Australia. We analyzed lead exposure in the wedge-tailed eagle (Aquila audax), the largest raptor species found in mainland Australia and a facultative scavenger. Eagle carcasses were collected opportunistically throughout south-eastern mainland Australia between 1996 and 2022. Lead concentrations were measured in bone samples from 62 animals via portable X-ray fluorescence (XRF). Lead was detected (concentration >1 ppm) in 84% (n = 52) of the bone samples. The mean lead concentration of birds in which lead was detected was 9.10 ppm (±SE 1.66). Bone lead concentrations were elevated (10-20 ppm) in 12.9% of samples, and severe (>20 ppm) in 4.8% of samples. These proportions are moderately higher than equivalent data for the same species from the island of Tasmania, and are comparable to data from threatened eagle species from other continents. Lead exposure at these levels is likely to have negative impacts on wedge-tailed eagles at the level of the individual and perhaps at a population level. Our results suggest that studies of lead exposure in other Australian avian scavenger species are warranted.
Collapse
Affiliation(s)
- Jordan O Hampton
- Faculty of Science, University of Melbourne, Parkville, Victoria, 3052, Australia; Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, Western Australia, 6150, Australia.
| | - Michael T Lohr
- School of Science, Edith Cowan University, 100 Joondalup Drive, Joondalup, Western Australia, 6027, Australia; SLR Consulting, 500 Hay St, Subiaco, Western Australia, 6008, Australia
| | - Aaron J Specht
- Purdue University, 610 Purdue Mall, West Lafayette, IN, 47907, United States
| | - Damien Nzabanita
- School of Science, RMIT University, 264 Plenty Road, Bundoora, Victoria, 3083, Australia
| | - Jasmin Hufschmid
- Faculty of Science, University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Lee Berger
- Faculty of Science, University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Kate McGinnis
- Faculty of Science, University of Melbourne, Parkville, Victoria, 3052, Australia; Animal Welfare League Queensland, Shelter Road, Coombabah, Queensland, 4216, Australia
| | - Jane Melville
- Museums Victoria Research Institute, 11 Nicholson Street, Carlton, Victoria, 3053, Australia; School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, Victoria, 3800, Australia
| | - Emma Bennett
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, Victoria, 3800, Australia
| | - James M Pay
- University of Tasmania, Churchill Avenue, Hobart, Tasmania, 7005, Australia
| |
Collapse
|
8
|
Fielding MW, Cunningham CX, Buettel JC, Stojanovic D, Yates LA, Jones ME, Brook BW. Dominant carnivore loss benefits native avian and invasive mammalian scavengers. Proc Biol Sci 2022; 289:20220521. [PMID: 36285494 PMCID: PMC9597402 DOI: 10.1098/rspb.2022.0521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Scavenging by large carnivores is integral for ecosystem functioning by limiting the build-up of carrion and facilitating widespread energy flows. However, top carnivores have declined across the world, triggering trophic shifts within ecosystems. Here, we compare findings from previous work on predator decline against areas with recent native mammalian carnivore loss. Specifically, we investigate top-down control on utilization of experimentally placed carcasses by two mesoscavengers—the invasive feral cat and native forest raven. Ravens profited most from carnivore loss, scavenging for five times longer in the absence of native mammalian carnivores. Cats scavenged on half of all carcasses in the region without dominant native carnivores. This was eight times more than in areas where other carnivores were at high densities. All carcasses persisted longer than the three-week monitoring period in the absence of native mammalian carnivores, while in areas with high carnivore abundance, all carcasses were fully consumed. Our results reveal that top-carnivore loss amplifies impacts associated with carnivore decline—increased carcass persistence and carrion access for smaller scavengers. This suggests that even at low densities, native mammalian carnivores can fulfil their ecological functions, demonstrating the significance of global carnivore conservation and supporting management approaches, such as trophic rewilding.
Collapse
Affiliation(s)
- Matthew W. Fielding
- School of Natural Sciences, University of Tasmania, Sandy Bay, Tasmania 7001, Australia
- ARC Centre of Excellence for Australian Biodiversity and Heritage, Sandy Bay, Tasmania 7001, Australia
| | - Calum X. Cunningham
- School of Natural Sciences, University of Tasmania, Sandy Bay, Tasmania 7001, Australia
- School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA 98195-2100, USA
| | - Jessie C. Buettel
- School of Natural Sciences, University of Tasmania, Sandy Bay, Tasmania 7001, Australia
- ARC Centre of Excellence for Australian Biodiversity and Heritage, Sandy Bay, Tasmania 7001, Australia
| | - Dejan Stojanovic
- Fenner School of Environment and Society, Australian National University, Canberra, Australia
| | - Luke A. Yates
- School of Natural Sciences, University of Tasmania, Sandy Bay, Tasmania 7001, Australia
- ARC Centre of Excellence for Australian Biodiversity and Heritage, Sandy Bay, Tasmania 7001, Australia
| | - Menna E. Jones
- School of Natural Sciences, University of Tasmania, Sandy Bay, Tasmania 7001, Australia
| | - Barry W. Brook
- School of Natural Sciences, University of Tasmania, Sandy Bay, Tasmania 7001, Australia
- ARC Centre of Excellence for Australian Biodiversity and Heritage, Sandy Bay, Tasmania 7001, Australia
| |
Collapse
|
9
|
Brun M, Oliver AS, Alves J, Nankivell A, Letnic M. Irrupting prey populations in the absence of a mammalian apex predator drive shifts in prey selection by eagles. Naturwissenschaften 2022; 109:32. [PMID: 35674814 PMCID: PMC9177467 DOI: 10.1007/s00114-022-01804-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 11/30/2022]
Abstract
Removal of apex predators can have far-reaching effects on the organization and structure of ecosystems. This occurs because apex predators can exert strong suppressive effects on their prey and competitors and perturbation of these interactions can shift the balance of interactions between dyads of species at lower trophic levels and trigger trophic cascades. Dingoes (Canis dingo) are Australia’s largest mammalian carnivore. Because they are a pest to livestock producers, dingo populations are suppressed in many regions. Suppression of dingo populations has been linked to a suite of ecosystem changes due to ensuing population irruptions of their prey and competitors. Here, we investigate the impact that the suppression of dingoes has on the diet of wedge-tailed eagles (Aquila audax) in Australia’s Strzelecki Desert. Wedge-tailed eagles are generalist predators that readily shift their diet in relation to prey availability. We assessed the abundance of species frequently preyed on by eagles and quantified prey remains at eagle nests located on either side of a dingo-proof fence where dingoes were common and rare, respectively. Wedge-tailed eagles consumed more species where dingoes were rare compared to where dingoes were common. Kangaroos (Macropodidae) and western bearded dragons (Pogona vitticeps) were more abundant and were consumed more frequently by eagles where dingoes were rare. Introduced European rabbits (Oryctolagus cuniculus) were the prey item most frequently identified at eagle nests. However, rabbits were more abundant and their remains were found at a higher proportion of nests where dingoes were common. Our results provide evidence that shifts in the composition of vertebrate assemblages associated with the presence/absence of dingoes, particularly the irruption of kangaroos, influence the diet of wedge-tailed eagles. More generally, by showing that the presence/absence of dingoes can influence the diet of wedge-tailed eagles, our study highlights how pervasive apex predators’ effects on ecosystems can be.
Collapse
Affiliation(s)
- Matthew Brun
- Evolution and Ecology Research Centre, University of New South Wales, Sydney, 2052, Australia.
| | - Amoi Stubbs Oliver
- Evolution and Ecology Research Centre, University of New South Wales, Sydney, 2052, Australia
| | - Joel Alves
- CIBIO, Centro de Investigação Em Biodiversidade E Recursos Genéticos, InBIO Laboratório Associado, Universidade Do Porto, 4485-661, Vairão, Porto, Portugal
- Palaeogenomics & Bio-Archaeology Research Network Research Laboratory for Archaeology and History of Art, University of Oxford, Dyson Perrins Building, South Parks Road, Oxford, OX1 3QY, UK
| | - Alex Nankivell
- Nature Foundation, PO Box 34, Prospect, SA, 5082, Australia
| | - Mike Letnic
- Evolution and Ecology Research Centre, University of New South Wales, Sydney, 2052, Australia
| |
Collapse
|
10
|
Doherty TS, Geary WL, Jolly CJ, Macdonald KJ, Miritis V, Watchorn DJ, Cherry MJ, Conner LM, González TM, Legge SM, Ritchie EG, Stawski C, Dickman CR. Fire as a driver and mediator of predator-prey interactions. Biol Rev Camb Philos Soc 2022; 97:1539-1558. [PMID: 35320881 PMCID: PMC9546118 DOI: 10.1111/brv.12853] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 01/08/2023]
Abstract
Both fire and predators have strong influences on the population dynamics and behaviour of animals, and the effects of predators may either be strengthened or weakened by fire. However, knowledge of how fire drives or mediates predator–prey interactions is fragmented and has not been synthesised. Here, we review and synthesise knowledge of how fire influences predator and prey behaviour and interactions. We develop a conceptual model based on predator–prey theory and empirical examples to address four key questions: (i) how and why do predators respond to fire; (ii) how and why does prey vulnerability change post‐fire; (iii) what mechanisms do prey use to reduce predation risk post‐fire; and (iv) what are the outcomes of predator–fire interactions for prey populations? We then discuss these findings in the context of wildlife conservation and ecosystem management before outlining priorities for future research. Fire‐induced changes in vegetation structure, resource availability, and animal behaviour influence predator–prey encounter rates, the amount of time prey are vulnerable during an encounter, and the conditional probability of prey death given an encounter. How a predator responds to fire depends on fire characteristics (e.g. season, severity), their hunting behaviour (ambush or pursuit predator), movement behaviour, territoriality, and intra‐guild dynamics. Prey species that rely on habitat structure for avoiding predation often experience increased predation rates and lower survival in recently burnt areas. By contrast, some prey species benefit from the opening up of habitat after fire because it makes it easier to detect predators and to modify their behaviour appropriately. Reduced prey body condition after fire can increase predation risk either through impaired ability to escape predators, or increased need to forage in risky areas due to being energetically stressed. To reduce risk of predation in the post‐fire environment, prey may change their habitat use, increase sheltering behaviour, change their movement behaviour, or use camouflage through cryptic colouring and background matching. Field experiments and population viability modelling show instances where fire either amplifies or does not amplify the impacts of predators on prey populations, and vice versa. In some instances, intense and sustained post‐fire predation may lead to local extinctions of prey populations. Human disruption of fire regimes is impacting faunal communities, with consequences for predator and prey behaviour and population dynamics. Key areas for future research include: capturing data continuously before, during and after fires; teasing out the relative importance of changes in visibility and shelter availability in different contexts; documenting changes in acoustic and olfactory cues for both predators and prey; addressing taxonomic and geographic biases in the literature; and predicting and testing how changes in fire‐regime characteristics reshape predator–prey interactions. Understanding and managing the consequences for predator–prey communities will be critical for effective ecosystem management and species conservation in this era of global change.
Collapse
Affiliation(s)
- Tim S Doherty
- School of Life and Environmental Sciences, Heydon-Laurence Building A08, The University of Sydney, Sydney, NSW, 2006, Australia
| | - William L Geary
- Biodiversity Strategy and Knowledge Branch, Biodiversity Division, Department of Environment, Land, Water and Planning, 8 Nicholson Street, East Melbourne, VIC, 3002, Australia.,Centre for Integrative Ecology, School of Life and Environmental Sciences (Burwood Campus), Deakin University, 75 Pigdons Road, Waurn Ponds, VIC, 3216, Australia
| | - Chris J Jolly
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Gungalman Drive, Albury, NSW, 2640, Australia.,School of Natural Sciences, G17, Macquarie University, 205B Culloden Road, Macquarie Park, NSW, 2109, Australia
| | - Kristina J Macdonald
- Centre for Integrative Ecology, School of Life and Environmental Sciences (Burwood Campus), Deakin University, 75 Pigdons Road, Waurn Ponds, VIC, 3216, Australia
| | - Vivianna Miritis
- School of Life and Environmental Sciences, Heydon-Laurence Building A08, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Darcy J Watchorn
- Centre for Integrative Ecology, School of Life and Environmental Sciences (Burwood Campus), Deakin University, 75 Pigdons Road, Waurn Ponds, VIC, 3216, Australia
| | - Michael J Cherry
- Caesar Kleberg Wildlife Research Institute, Texas A&M University-Kingsville, 700 University Boulevard, MSC 218, Kingsville, TX, 78363, U.S.A
| | - L Mike Conner
- The Jones Center at Ichauway, 3988 Jones Center Drive, Newton, GA, 39870, U.S.A
| | - Tania Marisol González
- Laboratorio de Ecología del Paisaje y Modelación de Ecosistemas ECOLMOD, Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia, Edificio 421, Bogotá, 111321, Colombia
| | - Sarah M Legge
- Fenner School of Environment & Society, The Australian National University, Linnaeus Way, Canberra, ACT, 2601, Australia.,Centre for Biodiversity Conservation Science, University of Queensland, Level 5 Goddard Building, St Lucia, QLD, 4072, Australia
| | - Euan G Ritchie
- Centre for Integrative Ecology, School of Life and Environmental Sciences (Burwood Campus), Deakin University, 75 Pigdons Road, Waurn Ponds, VIC, 3216, Australia
| | - Clare Stawski
- Department of Biology, Norwegian University of Science and Technology, Trondheim, NO-7491, Norway.,School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD, 4558, Australia
| | - Chris R Dickman
- School of Life and Environmental Sciences, Heydon-Laurence Building A08, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
11
|
Nimmo DG, Andersen AN, Archibald S, Boer MM, Brotons L, Parr CL, Tingley MW. Fire ecology for the 21st century: Conserving biodiversity in the age of megafire. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Dale G. Nimmo
- Gulbali Institute, School of Agricultural, Environmental and Veterinary Sciences Charles Sturt University Albury New South Wales Australia
| | - Alan N. Andersen
- Research Institute for the Environment and Livelihoods Charles Darwin University Ellengown Drive Brinkin Northern Territory Australia
| | - Sally Archibald
- Centre for African Ecology, School of Animal, Plant and Environmental Sciences University of the Witwatersrand Johannesburg South Africa
| | - Matthias M. Boer
- Hawkesbury Institute for the Environment Western Sydney University Richmond New South Wales Australia
| | - Lluís Brotons
- CTFC Solsona Spain
- CREAF Cerdanyola del Vallès Spain
- CSIC Cerdanyola del Vallès Spain
| | - Catherine L. Parr
- School of Environmental Sciences University of Liverpool Liverpool UK
- Department of Zoology & Entomology University of Pretoria Pretoria South Africa
- School of Animal, Plant and Environmental Sciences University of the Witwatersrand Wits South Africa
| | - Morgan W. Tingley
- Ecology and Evolutionary Biology University of California – Los Angeles Los Angeles CA USA
| |
Collapse
|