1
|
Ghasoub M, Scholten C, Geeraert B, Long X, Joshi S, Wedderburn CJ, Roos A, Subramoney S, Hoffman N, Narr K, Woods R, Zar HJ, Stein DJ, Donald K, Lebel C. The Effects of Prenatal Alcohol Exposure on Structural Brain Connectivity and Early Language Skills in a South African Birth Cohort. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2025; 6:nol_a_00161. [PMID: 40201449 PMCID: PMC11977823 DOI: 10.1162/nol_a_00161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 01/17/2025] [Indexed: 04/10/2025]
Abstract
Prenatal alcohol exposure (PAE) is associated with various neurological, behavioral and cognitive deficits, including reading and language. Previous studies have demonstrated altered white matter in children and adolescents with PAE and associations with reading and language performance in children aged 3 years and older. However, little research has focused on the toddler years, despite this being a critical period for behavioral and neural development. We aimed to determine associations between structural brain connectivity and early language skills in toddlers, in the context of PAE. Eighty-eight toddlers (2-3 yr, 56 males), 23 of whom had PAE, underwent a diffusion MRI scan in Cape Town, South Africa, with language skills assessed using the Expressive and Receptive Communication subtests from the Bayley Scales of Infant and Toddler Development, Third Edition (BSID-III). Diffusion scans were preprocessed to create a structural network of regions associated with language skills using graph theory analysis. Linear regression models were used to examine moderation effects of PAE on structural network properties and language skills. Toddlers with PAE had higher structural connectivity in language networks than unexposed children. PAE moderated the relationship between structural network properties and Expressive Communication scores. None of the effects survived correction for multiple comparisons. Our findings show weak moderation effects of PAE on structural language network properties and language skills. Our study sheds light on the structural connectivity correlates of early language skills in an understudied population during a critical neurodevelopmental period, laying the foundation for future research.
Collapse
Affiliation(s)
- Mohammad Ghasoub
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Chloe Scholten
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Bryce Geeraert
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Xiangyu Long
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Shantanu Joshi
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Catherine J. Wedderburn
- Division of Developmental Paediatrics, Department of Paediatrics and Child Health, Red Cross Memorial Children’s Hospital, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Annerine Roos
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Sivenesi Subramoney
- Division of Developmental Paediatrics, Department of Paediatrics and Child Health, Red Cross Memorial Children’s Hospital, University of Cape Town, Cape Town, South Africa
| | - Nadia Hoffman
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Katherine Narr
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Roger Woods
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Heather J. Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council (SAMRC), Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Dan J. Stein
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council (SAMRC), Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Kirsten Donald
- Division of Developmental Paediatrics, Department of Paediatrics and Child Health, Red Cross Memorial Children’s Hospital, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Catherine Lebel
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
2
|
Fiske A, Mortimer A, Collins-Jones L, de Klerk CCJM, Gattas SU, Dvergsdal H, Scerif G, Holmboe K. Inhibitory control development from infancy to early childhood: A longitudinal fNIRS study. Dev Cogn Neurosci 2025; 73:101557. [PMID: 40158324 PMCID: PMC11997363 DOI: 10.1016/j.dcn.2025.101557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 02/14/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025] Open
Abstract
The developmental period from infancy to early childhood is one of substantial change - in advancements in cognitive skills, such as early executive functions, but also in the maturation of the prefrontal and parietal cortices that parallel such advances. The current study aims to investigate the emergence and development of inhibitory control, a core executive function, from infancy to early childhood. We collected longitudinal functional near-infrared spectroscopy (fNIRS) data from the same sample of participants at 10-months, 16-months, and 3½ years of age whilst they completed the Early Childhood Inhibitory Touchscreen Task. In our previous publications, we reported that 10-month-old infants recruited right lateralised regions of the prefrontal and parietal cortex when inhibition was required. Despite no change in response inhibition performance, 16-month-olds recruited broader and bilateral regions of the prefrontal and parietal cortex. Results of the current study found that 3½-year-olds activated regions of the right inferior parietal cortex and the right inferior frontal gyrus when inhibition was required. Response inhibition performance was significantly improved by early childhood, yet there was commonality in the brain regions recruited at 16-months and 3½ years. This could suggest that these brain regions are fundamental neural indices of inhibitory control, even from toddlerhood.
Collapse
Affiliation(s)
- Abigail Fiske
- Department of Experimental Psychology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom; Department of Psychology, Lancaster University, Lancaster, United Kingdom
| | - Alicia Mortimer
- Department of Experimental Psychology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom; Department of Human Development and Quantitative Methodology, University of Maryland, College Park, MD, United States
| | - Liam Collins-Jones
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Carina C J M de Klerk
- Centre for Brain Science, Department of Psychology, University of Essex, Colchester, United Kingdom
| | - Sylvia Ulieta Gattas
- Department of Experimental Psychology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom; Department of Psychology and Human Development, Institute of Education, Faculty of Education and Society, University College London, London, United Kingdom; School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, United Kingdom
| | - Henrik Dvergsdal
- Nord University Business School, Department of Entrepreneurship, Innovation and Organisation, Bodø, Norway
| | - Gaia Scerif
- Department of Experimental Psychology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Karla Holmboe
- School of Psychological Science, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
3
|
Mousley A, Akarca D, Astle DE. Premature birth changes wiring constraints in neonatal structural brain networks. Nat Commun 2025; 16:490. [PMID: 39779695 PMCID: PMC11711473 DOI: 10.1038/s41467-024-55178-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Structural brain organization in infancy is associated with later cognitive, behavioral, and educational outcomes. Due to practical limitations, such as technological advancements and data availability of fetal MRI, there is still much we do not know about the early emergence of topological organization. We combine the developing Human Connectome Project's large infant dataset with generative network modeling to simulate the emergence of network organization over early development. Preterm infants had reduced connectivity, shorter connection lengths, and lower network efficiency compared to term-born infants. The models were able to recapitulate the organizational differences between term and preterm networks and revealed that preterm infant networks are better simulated under tighter wiring constraints than term infants. Tighter constraints for preterm models resulted in shorter connection lengths while preserving vital, long-range rich club connections. These simulations suggest that preterm birth is associated with a renegotiation of the cost-value wiring trade-off that may drive the emergence of different network organization.
Collapse
Affiliation(s)
- Alexa Mousley
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK.
| | - Danyal Akarca
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
- Department of Electrical and Electronic Engineering, Imperial College London, London, UK
- Imperial-X, Imperial College London, London, UK
| | - Duncan E Astle
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| |
Collapse
|
4
|
Lou C, Cross AM, Peters L, Ansari D, Joanisse MF. Patterns of the left thalamus embedding into the connectome associated with reading skills in children with reading disabilities. Netw Neurosci 2024; 8:1507-1528. [PMID: 39735512 PMCID: PMC11675173 DOI: 10.1162/netn_a_00414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/12/2024] [Indexed: 12/31/2024] Open
Abstract
We examined how thalamocortical connectivity structure reflects children's reading performance. Diffusion-weighted MRI at 3 T and a series of reading measures were collected from 64 children (33 girls) ages 8-14 years with and without dyslexia. The topological properties of the left and right thalamus were computed based on the whole-brain white matter network and a hub-attached reading network, and were correlated with scores on several tests of children's reading and reading-related abilities. Significant correlations between topological metrics of the left thalamus and reading scores were observed only in the hub-attached reading network. Local efficiency was negatively correlated with rapid automatized naming. Transmission cost was positively correlated with phonemic decoding, and this correlation was independent of network efficiency scores; follow-up analyses further demonstrated that this effect was specific to the pulvinar and mediodorsal nuclei of the left thalamus. We validated these results using an independent dataset and demonstrated that that the relationship between thalamic connectivity and phonemic decoding was specifically robust. Overall, the results highlight the role of the left thalamus and thalamocortical network in understanding the neurocognitive bases of skilled reading and dyslexia in children.
Collapse
Affiliation(s)
- Chenglin Lou
- Department of Special Education, Peabody College of Education, Vanderbilt University, Nashville, TN, USA
- Department of Psychology, The University of Western Ontario, London, Canada
- Centre for Brain and Mind, The University of Western Ontario, London, Canada
| | - Alexandra M. Cross
- Centre for Brain and Mind, The University of Western Ontario, London, Canada
- Health and Rehabilitation Sciences, The University of Western Ontario, London, Canada
| | - Lien Peters
- Department of Psychology, The University of Western Ontario, London, Canada
- Centre for Brain and Mind, The University of Western Ontario, London, Canada
- Faculty of Psychology and Educational Science, Department of Experimental Clinical and Health Psychology, Research in Developmental Disorder Lab, Ghent University, Ghent, Belgium
| | - Daniel Ansari
- Department of Psychology, The University of Western Ontario, London, Canada
- Centre for Brain and Mind, The University of Western Ontario, London, Canada
- Faculty of Education, The University of Western Ontario, London, Canada
| | - Marc F. Joanisse
- Department of Psychology, The University of Western Ontario, London, Canada
- Centre for Brain and Mind, The University of Western Ontario, London, Canada
- Haskins Laboratories, New Haven CT, USA
| |
Collapse
|
5
|
Lou C, Joanisse MF. Control energy detects discrepancies in good vs. poor readers' structural-functional coupling during a rhyming task. Neuroimage 2024; 303:120941. [PMID: 39561914 DOI: 10.1016/j.neuroimage.2024.120941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 11/08/2024] [Accepted: 11/16/2024] [Indexed: 11/21/2024] Open
Abstract
Neuroimaging studies have identified functional and structural brain circuits that support reading. However, much less is known about how reading-related functional dynamics are constrained by white matter structure. Network control theory proposes that cortical brain dynamics are linearly determined by the white matter connectome, using control energy to evaluate the difficulty of the transition from one cognitive state to another. Here we apply this approach to linking brain dynamics with reading ability and disability in school-age children. A total of 51 children ages 8.25 -14.6 years performed an in-scanner rhyming task in visual and auditory modalities, with orthographic (spelling) and phonological (rhyming) similarity manipulated across trials. White matter structure and fMRI activation were used conjointly to compute the control energy of the reading network in each condition relative to a null fixation state. We then tested differences in control energy across trial types, finding higher control energy during non-word trials than word trials, and during incongruent trials than congruent trials. ROI analyses further showed a dissociation between control energy of the left fusiform and superior temporal gyrus depending on stimulus modality, with higher control energy for visual modalities in fusiform and higher control energy for auditory modalities in STG. Together, this study highlights that control theory can explain variations on cognitive demands in higher-level abilities such as reading, beyond what can be inferred from either functional or structural MRI measures alone.
Collapse
Affiliation(s)
- Chenglin Lou
- Department of Special Education, Peabody College of Education, Vanderbilt University, Nashville, TN, USA; Department of Psychology, The University of Western Ontario, London, Canada; Brain and Mind Institute, The University of Western Ontario, London, Canada.
| | - Marc F Joanisse
- Department of Psychology, The University of Western Ontario, London, Canada; Brain and Mind Institute, The University of Western Ontario, London, Canada; Haskins Laboratories, New Haven CT, USA
| |
Collapse
|
6
|
Mecklenbrauck F, Gruber M, Siestrup S, Zahedi A, Grotegerd D, Mauritz M, Trempler I, Dannlowski U, Schubotz RI. The significance of structural rich club hubs for the processing of hierarchical stimuli. Hum Brain Mapp 2024; 45:e26543. [PMID: 38069537 PMCID: PMC10915744 DOI: 10.1002/hbm.26543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/17/2023] [Accepted: 11/09/2023] [Indexed: 03/07/2024] Open
Abstract
The brain's structural network follows a hierarchy that is described as rich club (RC) organization, with RC hubs forming the well-interconnected top of this hierarchy. In this study, we tested whether RC hubs are involved in the processing of hierarchically higher structures in stimulus sequences. Moreover, we explored the role of previously suggested cortical gradients along anterior-posterior and medial-lateral axes throughout the frontal cortex. To this end, we conducted a functional magnetic resonance imaging (fMRI) experiment and presented participants with blocks of digit sequences that were structured on different hierarchically nested levels. We additionally collected diffusion weighted imaging data of the same subjects to identify RC hubs. This classification then served as the basis for a region of interest analysis of the fMRI data. Moreover, we determined structural network centrality measures in areas that were found as activation clusters in the whole-brain fMRI analysis. Our findings support the previously found anterior and medial shift for processing hierarchically higher structures of stimuli. Additionally, we found that the processing of hierarchically higher structures of the stimulus structure engages RC hubs more than for lower levels. Areas involved in the functional processing of hierarchically higher structures were also more likely to be part of the structural RC and were furthermore more central to the structural network. In summary, our results highlight the potential role of the structural RC organization in shaping the cortical processing hierarchy.
Collapse
Affiliation(s)
- Falko Mecklenbrauck
- Department of Psychology, Biological PsychologyUniversity of MünsterMünsterGermany
- Otto Creutzfeldt Center for Cognitive and Behavioral NeuroscienceUniversity of MünsterMünsterGermany
| | - Marius Gruber
- Institute for Translational PsychiatryUniversity of MünsterMünsterGermany
- Department for Psychiatry, Psychosomatic Medicine and PsychotherapyUniversity Hospital Frankfurt, Goethe UniversityFrankfurtGermany
| | - Sophie Siestrup
- Department of Psychology, Biological PsychologyUniversity of MünsterMünsterGermany
- Otto Creutzfeldt Center for Cognitive and Behavioral NeuroscienceUniversity of MünsterMünsterGermany
| | - Anoushiravan Zahedi
- Department of Psychology, Biological PsychologyUniversity of MünsterMünsterGermany
- Otto Creutzfeldt Center for Cognitive and Behavioral NeuroscienceUniversity of MünsterMünsterGermany
| | - Dominik Grotegerd
- Institute for Translational PsychiatryUniversity of MünsterMünsterGermany
| | - Marco Mauritz
- Institute for Translational PsychiatryUniversity of MünsterMünsterGermany
- Institute for Computational and Applied MathematicsUniversity of MünsterMünsterGermany
| | - Ima Trempler
- Department of Psychology, Biological PsychologyUniversity of MünsterMünsterGermany
- Otto Creutzfeldt Center for Cognitive and Behavioral NeuroscienceUniversity of MünsterMünsterGermany
| | - Udo Dannlowski
- Otto Creutzfeldt Center for Cognitive and Behavioral NeuroscienceUniversity of MünsterMünsterGermany
- Institute for Translational PsychiatryUniversity of MünsterMünsterGermany
| | - Ricarda I. Schubotz
- Department of Psychology, Biological PsychologyUniversity of MünsterMünsterGermany
- Otto Creutzfeldt Center for Cognitive and Behavioral NeuroscienceUniversity of MünsterMünsterGermany
| |
Collapse
|
7
|
Ghasoub M, Perdue M, Long X, Donnici C, Dewey D, Lebel C. Structural neural connectivity correlates with pre-reading abilities in preschool children. Dev Cogn Neurosci 2024; 65:101332. [PMID: 38171053 PMCID: PMC10793080 DOI: 10.1016/j.dcn.2023.101332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/24/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
Pre-reading abilities are predictive of later reading ability and can be assessed before reading begins. However, the neural correlates of pre-reading abilities in young children are not fully understood. To address this, we examined 246 datasets collected in an accelerated longitudinal design from 81 children aged 2-6 years (age = 4.6 ± 0.98 years, 47 males). Children completed pre-reading assessments (NEPSY-II Phonological Processing and Speeded Naming) and underwent a diffusion magnetic resonance imaging (MRI) scan to assess white matter connectivity. We defined a core neural network of reading and language regions based on prior literature, and structural connections within this network were assessed using graph theory analysis. Linear mixed models accounting for repeated measures were used to test associations between children's pre-reading performance and graph theory measures for the whole bilateral reading network and each hemisphere separately. Phonological Processing scores were positively associated with global efficiency, local efficiency, and clustering coefficient in the bilateral and right hemisphere networks, as well as local efficiency and clustering coefficient in the left hemisphere network. Our findings provide further evidence that structural neural correlates of Phonological Processing emerge in early childhood, before and during early reading instruction.
Collapse
Affiliation(s)
- Mohammad Ghasoub
- Cumming School of Medicine, Canada; Hotchkiss Brain Institute, Canada; Alberta Children's Hospital Research Institute, Canada
| | - Meaghan Perdue
- Cumming School of Medicine, Canada; Hotchkiss Brain Institute, Canada; Alberta Children's Hospital Research Institute, Canada; Department of Radiology, University of Calgary, Canada
| | - Xiangyu Long
- Cumming School of Medicine, Canada; Hotchkiss Brain Institute, Canada; Alberta Children's Hospital Research Institute, Canada; Department of Radiology, University of Calgary, Canada
| | | | - Deborah Dewey
- Cumming School of Medicine, Canada; Hotchkiss Brain Institute, Canada; Alberta Children's Hospital Research Institute, Canada; Department of Pediatrics, University of Calgary, Canada; Community Health Sciences, University of Calgary, Canada
| | - Catherine Lebel
- Cumming School of Medicine, Canada; Hotchkiss Brain Institute, Canada; Alberta Children's Hospital Research Institute, Canada; Department of Radiology, University of Calgary, Canada.
| |
Collapse
|
8
|
Estévez-Pérez N, Sanabria-Díaz G, Castro-Cañizares D, Reigosa-Crespo V, Melie-García L. Anatomical connectivity in children with developmental dyscalculia: A graph theory study. PROGRESS IN BRAIN RESEARCH 2023; 282:17-47. [PMID: 38035908 DOI: 10.1016/bs.pbr.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Current theories postulate that numerical processing depends upon a brain circuit formed by regions and their connections; specialized in the representation and manipulation of the numerical properties of stimuli. It has been suggested that the damage of these network may cause Developmental Dyscalculia (DD): a persistent neurodevelopmental disorder that significantly interferes with academic performance and daily life activities that require mastery of mathematical notions and operations. However, most of the studies on the brain foundations of DD have focused on regions of interest associated with numerical processing, and have not addressed numerical cognition as a complex network phenomenon. The present study explored DD using a Graph Theory network approach. We studied the association between topological measures of integration and segregation of information processing in the brain proposed by Graph Theory; and individual variability in numerical performance in a group of 11 school-aged children with DD (5 of which presented with comorbidity with Developmental Dyslexia, the specific learning disorder for reading) and 17 typically developing peers. A statistically significant correlation was found between the Weber fraction (a measure of numerical representations' precision) and the Clustering Index (a measure of segregation of information processing) in the whole sample. The DD group showed significantly lower Characteristic Path Length (average shortest path length among all pairs of regions in the brain network) compared to controls. Also, differences in critical regions for the brain network performance (hubs) were found between groups. The presence of limbic hubs characterized the DD brain network while right Temporal and Frontal hubs found in controls were absent in the DD group. Our results suggest that the DD may be associated with alterations in anatomical brain connectivity that hinder the capacity to integrate and segregate numerical information.
Collapse
Affiliation(s)
- Nancy Estévez-Pérez
- Neurodevelopment Department, Brain Mapping Division, Cuban Neurosciences Center, Playa, Cuba.
| | - Gretel Sanabria-Díaz
- Neurology Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland; Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Danilka Castro-Cañizares
- Center for Advanced Research in Education, Institute of Education. Universidad de Chile, Santiago, Chile; School of Psychology, Universidad Mayor, Santiago, Chile
| | - Vivian Reigosa-Crespo
- Catholic University of Uruguay, Montevideo, Uruguay; Stella Maris College, Montevideo, Uruguay
| | - Lester Melie-García
- Neurology Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland; Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| |
Collapse
|
9
|
Bagonis M, Cornea E, Girault JB, Stephens RL, Kim S, Prieto JC, Styner M, Gilmore JH. Early Childhood Development of Node Centrality in the White Matter Connectome and Its Relationship to IQ at Age 6 Years. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:1024-1032. [PMID: 36162754 PMCID: PMC10033460 DOI: 10.1016/j.bpsc.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND The white matter (WM) connectome is important for cognitive development and intelligence and is altered in neuropsychiatric illnesses. Little is known about how the WM connectome develops or its relationship to IQ in early childhood. METHODS The development of node centrality in the WM connectome was studied in a longitudinal cohort of 226 (123 female) children from the University of North Carolina Early Brain Development Study. Structural and diffusion-weighted images were acquired after birth and at 1, 2, 4, and 6 years, and IQ was assessed at 6 years. Eigenvector centrality, betweenness centrality, and the global graph metrics of global efficiency, small worldness, and modularity were determined at each age. RESULTS The greatest developmental change in eigenvector centrality and betweenness centrality occurred during the first year of life, with relative stability between ages 1 and 6 years. Most of the high-centrality hubs at age 6 were also high-centrality hubs at 1 year, and many were already high-centrality hubs at birth. There were generally small but significant changes in global efficiency and modularity from birth to 6 years, while small worldness increased between 2 and 4 years. Individual node centrality was not significantly correlated with IQ at 6 years. CONCLUSIONS Node centrality in the WM connectome is established very early in childhood and is relatively stable from age 1 to 6 years. Many high-centrality hubs are established before birth, and most are present by age 1.
Collapse
Affiliation(s)
- Maria Bagonis
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Emil Cornea
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jessica B Girault
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Rebecca L Stephens
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - SunHyung Kim
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Juan Carlos Prieto
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Martin Styner
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - John H Gilmore
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| |
Collapse
|
10
|
Zdorovtsova N, Jones J, Akarca D, Benhamou E, The Calm Team, Astle DE. Exploring neural heterogeneity in inattention and hyperactivity. Cortex 2023; 164:90-111. [PMID: 37207412 DOI: 10.1016/j.cortex.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/21/2023] [Accepted: 04/04/2023] [Indexed: 05/21/2023]
Abstract
Inattention and hyperactivity are cardinal symptoms of Attention Deficit Hyperactivity Disorder (ADHD). These characteristics have also been observed across a range of other neurodevelopmental conditions, such as autism and dyspraxia, suggesting that they might best be studied across diagnostic categories. Here, we evaluated the associations between inattention and hyperactivity behaviours and features of the structural brain network (connectome) in a large transdiagnostic sample of children (Centre for Attention, Learning, and Memory; n = 383). In our sample, we found that a single latent factor explains 77.6% of variance in scores across multiple questionnaires measuring inattention and hyperactivity. Partial Least-Squares (PLS) regression revealed that variability in this latent factor could not be explained by a linear component representing nodewise properties of connectomes. We then investigated the type and extent of neural heterogeneity in a subset of our sample with clinically-elevated levels of inattention and hyperactivity. Multidimensional scaling combined with k-means clustering revealed two neural subtypes in children with elevated levels of inattention and hyperactivity (n = 232), differentiated primarily by nodal communicability-a measure which demarcates the extent to which neural signals propagate through specific brain regions. These different clusters had similar behavioural profiles, which included high levels of inattention and hyperactivity. However, one of the clusters scored higher on multiple cognitive assessment measures of executive function. We conclude that inattention and hyperactivity are so common in children with neurodevelopmental difficulties because they emerge through multiple different trajectories of brain development. In our own data, we can identify two of these possible trajectories, which are reflected by measures of structural brain network topology and cognition.
Collapse
Affiliation(s)
- Natalia Zdorovtsova
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK.
| | - Jonathan Jones
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Danyal Akarca
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Elia Benhamou
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - The Calm Team
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Duncan E Astle
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK; Department of Psychiatry, University of Cambridge, Cambridge, UK
| |
Collapse
|
11
|
Mareva S, Akarca D, Holmes J. Transdiagnostic profiles of behaviour and communication relate to academic and socioemotional functioning and neural white matter organisation. J Child Psychol Psychiatry 2023; 64:217-233. [PMID: 36127748 PMCID: PMC10087495 DOI: 10.1111/jcpp.13685] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/07/2022] [Indexed: 01/17/2023]
Abstract
BACKGROUND Behavioural and language difficulties co-occur in multiple neurodevelopmental conditions. Our understanding of these problems has arguably been slowed by an overreliance on study designs that compare diagnostic groups and fail to capture the overlap across different neurodevelopmental disorders and the heterogeneity within them. METHODS We recruited a large transdiagnostic cohort of children with complex needs (N = 805) to identify distinct subgroups of children with common profiles of behavioural and language strengths and difficulties. We then investigated whether and how these data-driven groupings could be distinguished from a comparison sample (N = 158) on measures of academic and socioemotional functioning and patterns of global and local white matter connectome organisation. Academic skills were assessed via standardised measures of reading and maths. Socioemotional functioning was captured by the parent-rated version of the Strengths and Difficulties Questionnaire. RESULTS We identified three distinct subgroups of children, each with different levels of difficulties in structural language, pragmatic communication, and hot and cool executive functions. All three subgroups struggled with academic and socioemotional skills relative to the comparison sample, potentially representing three alternative but related developmental pathways to difficulties in these areas. The children with the weakest language skills had the most widespread difficulties with learning, whereas those with more pronounced difficulties with hot executive skills experienced the most severe difficulties in the socioemotional domain. Each data-driven subgroup could be distinguished from the comparison sample based on both shared and subgroup-unique patterns of neural white matter organisation. Children with the most pronounced deficits in language, cool executive, or hot executive function were differentiated from the comparison sample by altered connectivity in predominantly thalamocortical, temporal-parietal-occipital, and frontostriatal circuits, respectively. CONCLUSIONS These findings advance our understanding of commonly co-morbid behavioural and language problems and their relationship to behavioural outcomes and neurobiological substrates.
Collapse
Affiliation(s)
- Silvana Mareva
- Medical Research Council Cognition and Brain Sciences UnitUniversity of CambridgeCambridgeUK
| | - Danyal Akarca
- Medical Research Council Cognition and Brain Sciences UnitUniversity of CambridgeCambridgeUK
| | - Joni Holmes
- Medical Research Council Cognition and Brain Sciences UnitUniversity of CambridgeCambridgeUK
- School of Psychology, Faculty of Social SciencesUniversity of East AngliaNorwichUK
| |
Collapse
|
12
|
Sokolowski HM, Levine B. Common neural substrates of diverse neurodevelopmental disorders. Brain 2022; 146:438-447. [PMID: 36299249 PMCID: PMC9924912 DOI: 10.1093/brain/awac387] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/02/2022] [Accepted: 09/19/2022] [Indexed: 11/14/2022] Open
Abstract
Neurodevelopmental disorders are categorized and studied according to their manifestations as distinct syndromes. For instance, congenital prosopagnosia and dyslexia have largely non-overlapping research literatures and clinical pathways for diagnosis and intervention. On the other hand, the high incidence of neurodevelopmental comorbidities or co-existing extreme strengths and weaknesses suggest that transdiagnostic commonalities may be greater than currently appreciated. The core-periphery model holds that brain regions within the stable core perceptual and motor regions are more densely connected to one another compared to regions in the flexible periphery comprising multimodal association regions. This model provides a framework for the interpretation of neural data in normal development and clinical disorders. Considering network-level commonalities reported in studies of neurodevelopmental disorders, variability in multimodal association cortex connectivity may reflect a shared origin of seemingly distinct neurodevelopmental disorders. This framework helps to explain both comorbidities in neurodevelopmental disorders and profiles of strengths and weaknesses attributable to competitive processing between cognitive systems within an individual.
Collapse
Affiliation(s)
- H Moriah Sokolowski
- Correspondence may also be addressed to: H. Moriah Sokolowski E-mail: Twitter: https://twitter.com/hm_sokolowski
| | - Brian Levine
- Correspondence to: Brian Levine 3560 Bathurst St, North York, ON M6A 2E1, Canada E-mail: Website: www.LevineLab.ca Twitter: https://twitter.com/briantlevine
| |
Collapse
|
13
|
Oyefiade A, Moxon-Emre I, Beera K, Bouffet E, Taylor M, Ramaswamy V, Laughlin S, Skocic J, Mabbott D. Abnormalities of Structural Brain Connectivity in Pediatric Brain Tumor Survivors. Neurooncol Adv 2022; 4:vdac064. [PMID: 35875689 PMCID: PMC9297943 DOI: 10.1093/noajnl/vdac064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Background Pediatric brain tumor survivors are at an increased risk for white matter (WM) injury. However, damage to whole-brain structural connectivity is unelucidated. The impact of treatment on WM connectivity was investigated. Methods Whole-brain WM networks were derived from diffusion tensor imaging data acquired for 28 irradiated patients (radiotherapy, RT) (mean age = 13.74 ± 3.32 years), 13 patients not irradiated (No RT) (mean age = 12.57 ± 2.87), and 41 typically developing children (TDC) (mean age = 13.32 ± 2.92 years). Differences in network properties were analyzed using robust regressions. Results Participation coefficient was lower in both patient groups (RT: adj. P = .015; No RT: adj. P = .042). Compared to TDC, RT had greater clustering (adj. P = .015), local efficiency (adj. P = .003), and modularity (adj. P = .000003). WM traced from hubs was damaged in patients: left hemisphere pericallosal sulcus (FA [F = 4.97; q < 0.01]; MD [F = 11.02; q < 0.0001]; AD [F = 10.00; q < 0.0001]; RD [F = 8.53; q < 0.0001]), right hemisphere pericallosal sulcus (FA [F = 8.87; q < 0.0001]; RD [F = 8.27; q < 0.001]), and right hemisphere parietooccipital sulcus (MD [F = 5.78; q < 0.05]; RD [F = 5.12; q < 0.05]). Conclusions Findings indicate greater segregation of WM networks after RT. Intermodular connectivity was lower after treatment with and without RT. No significant network differences were observed between patient groups. Our results are discussed in the context of a network approach that emphasizes interactions between brain regions.
Collapse
Affiliation(s)
- Adeoye Oyefiade
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario
- Department of Psychology, University of Toronto, Toronto, Ontario
| | - Iska Moxon-Emre
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario
| | - Kiran Beera
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario
| | - Eric Bouffet
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, Ontario
| | - Michael Taylor
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, Ontario
| | - Vijay Ramaswamy
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, Ontario
| | - Suzanne Laughlin
- Division of Radiology, The Hospital for Sick Children, Toronto, Ontario
| | - Jovanka Skocic
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario
| | - Donald Mabbott
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, Ontario
- Department of Psychology, University of Toronto, Toronto, Ontario
| |
Collapse
|
14
|
Jones JS, Astle DE. Segregation and integration of the functional connectome in neurodevelopmentally 'at risk' children. Dev Sci 2022; 25:e13209. [PMID: 34873798 PMCID: PMC7613070 DOI: 10.1111/desc.13209] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/08/2021] [Accepted: 11/22/2021] [Indexed: 01/22/2023]
Abstract
Functional connectivity within and between Intrinsic Connectivity Networks (ICNs) transforms over development and is thought to support high order cognitive functions. But how variable is this process, and does it diverge with altered cognitive development? We investigated age-related changes in integration and segregation within and between ICNs in neurodevelopmentally 'at-risk' children, identified by practitioners as experiencing cognitive difficulties in attention, learning, language, or memory. In our analysis we used performance on a battery of 10 cognitive tasks alongside resting-state functional magnetic resonance imaging in 175 at-risk children and 62 comparison children aged 5-16. We observed significant age-by-group interactions in functional connectivity between two network pairs. Integration between the ventral attention and visual networks and segregation of the limbic and fronto-parietal networks increased with age in our comparison sample, relative to at-risk children. Furthermore, functional connectivity between the ventral attention and visual networks in comparison children significantly mediated age-related improvements in executive function, compared to at-risk children. We conclude that integration between ICNs show divergent neurodevelopmental trends in the broad population of children experiencing cognitive difficulties, and that these differences in functional brain organisation may partly explain the pervasive cognitive difficulties within this group over childhood and adolescence.
Collapse
Affiliation(s)
- Jonathan S Jones
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Duncan E Astle
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
15
|
Astle DE, Holmes J, Kievit R, Gathercole SE. Annual Research Review: The transdiagnostic revolution in neurodevelopmental disorders. J Child Psychol Psychiatry 2022; 63:397-417. [PMID: 34296774 DOI: 10.1111/jcpp.13481] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/04/2021] [Indexed: 12/11/2022]
Abstract
Practitioners frequently use diagnostic criteria to identify children with neurodevelopmental disorders and to guide intervention decisions. These criteria also provide the organising framework for much of the research focussing on these disorders. Study design, recruitment, analysis and theory are largely built on the assumption that diagnostic criteria reflect an underlying reality. However, there is growing concern that this assumption may not be a valid and that an alternative transdiagnostic approach may better serve our understanding of this large heterogeneous population of young people. This review draws on important developments over the past decade that have set the stage for much-needed breakthroughs in understanding neurodevelopmental disorders. We evaluate contemporary approaches to study design and recruitment, review the use of data-driven methods to characterise cognition, behaviour and neurobiology, and consider what alternative transdiagnostic models could mean for children and families. This review concludes that an overreliance on ill-fitting diagnostic criteria is impeding progress towards identifying the barriers that children encounter, understanding underpinning mechanisms and finding the best route to supporting them.
Collapse
Affiliation(s)
- Duncan E Astle
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Joni Holmes
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Rogier Kievit
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Susan E Gathercole
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK.,Department of Psychiatry, University of Cambridge, Cambridge, UK
| |
Collapse
|
16
|
Jones JS, The Calm Team, Astle DE. A transdiagnostic data-driven study of children's behaviour and the functional connectome. Dev Cogn Neurosci 2021; 52:101027. [PMID: 34700195 PMCID: PMC8551598 DOI: 10.1016/j.dcn.2021.101027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 10/06/2021] [Accepted: 10/19/2021] [Indexed: 10/24/2022] Open
Abstract
Behavioural difficulties are seen as hallmarks of many neurodevelopmental conditions. Differences in functional brain organisation have been observed in these conditions, but little is known about how they are related to a child's profile of behavioural difficulties. We investigated whether behavioural difficulties are associated with how the brain is functionally organised in an intentionally heterogeneous and transdiagnostic sample of 957 children aged 5-15. We used consensus community detection to derive data-driven profiles of behavioural difficulties and constructed functional connectomes from a subset of 238 children with resting-state functional Magnetic Resonance Imaging (fMRI) data. We identified three distinct profiles of behaviour that were characterised by principal difficulties with hot executive function, cool executive function, and learning. Global organisation of the functional connectome did not differ between the groups, but multivariate patterns of connectivity at the level of Intrinsic Connectivity Networks (ICNs), nodes, and hubs significantly predicted group membership in held-out data. Fronto-parietal connector hubs were under-connected in all groups relative to a comparison sample and children with hot vs cool executive function difficulties were distinguished by connectivity in ICNs associated with cognitive control, emotion processing, and social cognition. This demonstrates both general and specific neurodevelopmental risk factors in the functional connectome.
Collapse
Affiliation(s)
- Jonathan S Jones
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF, UK.
| | - The Calm Team
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF, UK
| | - Duncan E Astle
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF, UK
| |
Collapse
|
17
|
Akarca D, Vértes PE, Bullmore ET, Astle DE. A generative network model of neurodevelopmental diversity in structural brain organization. Nat Commun 2021; 12:4216. [PMID: 34244490 PMCID: PMC8270998 DOI: 10.1038/s41467-021-24430-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
The formation of large-scale brain networks, and their continual refinement, represent crucial developmental processes that can drive individual differences in cognition and which are associated with multiple neurodevelopmental conditions. But how does this organization arise, and what mechanisms drive diversity in organization? We use generative network modeling to provide a computational framework for understanding neurodevelopmental diversity. Within this framework macroscopic brain organization, complete with spatial embedding of its organization, is an emergent property of a generative wiring equation that optimizes its connectivity by renegotiating its biological costs and topological values continuously over time. The rules that govern these iterative wiring properties are controlled by a set of tightly framed parameters, with subtle differences in these parameters steering network growth towards different neurodiverse outcomes. Regional expression of genes associated with the simulations converge on biological processes and cellular components predominantly involved in synaptic signaling, neuronal projection, catabolic intracellular processes and protein transport. Together, this provides a unifying computational framework for conceptualizing the mechanisms and diversity in neurodevelopment, capable of integrating different levels of analysis-from genes to cognition.
Collapse
Affiliation(s)
- Danyal Akarca
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK.
| | - Petra E Vértes
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- The Alan Turing Institute, London, UK
| | - Edward T Bullmore
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | - Duncan E Astle
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
18
|
Lou C, Cross AM, Peters L, Ansari D, Joanisse MF. Rich-club structure contributes to individual variance of reading skills via feeder connections in children with reading disabilities. Dev Cogn Neurosci 2021; 49:100957. [PMID: 33894677 PMCID: PMC8093404 DOI: 10.1016/j.dcn.2021.100957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/29/2021] [Accepted: 04/15/2021] [Indexed: 01/18/2023] Open
Abstract
The present work considers how connectome-wide differences in brain organization might distinguish good and poor readers. The connectome comprises a ‘rich-club’ organization in which a small number of hub regions play a focal role in assisting global communication across the whole brain. Prior work indicates that this rich-club structure is associated with typical and impaired cognitive function although no work so far has examined how this relates to skilled reading or its disorders. Here we investigated the rich-club structure of brain’s white matter connectome and its relationship to reading subskills in 64 children with and without reading disabilities. Among three types of white matter connections, the strength of feeder connections that connect hub and non-hub nodes was significantly correlated with word reading efficiency and phonemic decoding. Phonemic decoding was also positively correlated with connectivity between connectome-wide hubs and nodes within the left-hemisphere reading network, as well as the local efficiency of the reading network. Exploratory analyses also identified sex differences indicating these effects were stronger in girls. This work highlights the independent roles of connectome-wide structure and the more narrowly-defined reading network in understanding the neural bases of skilled and impaired reading in children.
Collapse
Affiliation(s)
- Chenglin Lou
- Department of Psychology, The University of Western Ontario, London, Canada; Brain and Mind Institute, The University of Western Ontario, London, Canada.
| | - Alexandra M Cross
- Brain and Mind Institute, The University of Western Ontario, London, Canada; Health and Rehabilitation Sciences, The University of Western Ontario, London, Canada
| | - Lien Peters
- Department of Psychology, The University of Western Ontario, London, Canada; Brain and Mind Institute, The University of Western Ontario, London, Canada
| | - Daniel Ansari
- Department of Psychology, The University of Western Ontario, London, Canada; Brain and Mind Institute, The University of Western Ontario, London, Canada; Faculty of Education, The University of Western Ontario, London, Canada
| | - Marc F Joanisse
- Department of Psychology, The University of Western Ontario, London, Canada; Brain and Mind Institute, The University of Western Ontario, London, Canada; Haskins Laboratories, New Haven, CT, USA
| |
Collapse
|
19
|
Johnson A, Bathelt J, Akarca D, Crickmore G, Astle DE. Far and wide: Associations between childhood socio-economic status and brain connectomics. Dev Cogn Neurosci 2021; 48:100888. [PMID: 33453544 PMCID: PMC7811130 DOI: 10.1016/j.dcn.2020.100888] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 11/07/2020] [Accepted: 11/16/2020] [Indexed: 12/30/2022] Open
Abstract
Previous studies have identified localized associations between childhood environment - namely their socio-economic status (SES) - and particular neural structures. The primary aim of the current study was to test whether associations between SES and brain structure are widespread or limited to specific neural pathways. We employed advances in whole-brain structural connectomics to address this. Diffusion tensor imaging was used to construct whole-brain connectomes in 113 6-12 year olds. We then applied an adapted multi-block partial-least squares (PLS) regression to explore how connectome organisation is associated with childhood SES (parental income, education levels, and neighbourhood deprivation). The Fractional Anisotropy (FA) connectome was significantly associated with childhood SES and this effect was widespread. We then pursued a secondary aim, and demonstrated that the connectome mediated the relationship between SES and cognitive ability (matrix reasoning and vocabulary). However, the connectome did not significantly mediate SES relationships with academic ability (maths and reading) or internalising and externalising behavior. This multivariate approach is important for advancing our theoretical understanding of how brain development may be shaped by childhood environment, and the role that it plays in predicting key outcomes. We also discuss the limitations with this new methodological approach.
Collapse
Affiliation(s)
- Amy Johnson
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, United Kingdom
| | - Joe Bathelt
- Department of Psychology, Royal Holloway, University of London, United Kingdom
| | - Danyal Akarca
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, United Kingdom
| | - Gemma Crickmore
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, United Kingdom
| | - Duncan E Astle
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, United Kingdom.
| |
Collapse
|
20
|
Astle DE, Fletcher-Watson S. Beyond the Core-Deficit Hypothesis in Developmental Disorders. CURRENT DIRECTIONS IN PSYCHOLOGICAL SCIENCE 2020; 29:431-437. [PMID: 33071483 PMCID: PMC7539596 DOI: 10.1177/0963721420925518] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Developmental disorders and childhood learning difficulties encompass complex constellations of relative strengths and weaknesses across multiple aspects of learning, cognition, and behavior. Historically, debate in developmental psychology has been focused largely on the existence and nature of core deficits—the shared mechanistic origin from which all observed profiles within a diagnostic category emerge. The pitfalls of this theoretical approach have been articulated multiple times, but reductionist, core-deficit accounts remain remarkably prevalent. They persist because developmental science still follows the methodological template that accompanies core-deficit theories—highly selective samples, case-control designs, and voxel-wise neuroimaging methods. Fully moving beyond “core-deficit” thinking will require more than identifying its theoretical flaws. It will require a wholesale rethink about the way we design, collect, and analyze developmental data.
Collapse
Affiliation(s)
- Duncan E Astle
- MRC Cognition and Brain Sciences Unit, University of Cambridge
| | | |
Collapse
|
21
|
White matter microstructure correlates with mathematics but not word reading performance in 13-year-old children born very preterm and full-term. NEUROIMAGE-CLINICAL 2019; 24:101944. [PMID: 31426019 PMCID: PMC6706654 DOI: 10.1016/j.nicl.2019.101944] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/04/2019] [Accepted: 07/17/2019] [Indexed: 01/24/2023]
Abstract
Individuals born very preterm (VPT; <32 weeks' gestational age) are at increased risk of impaired mathematics and word reading performance, as well as widespread white matter microstructural alterations compared with individuals born full term (FT; ≥37 weeks' gestational age). To date, the link between academic performance and white matter microstructure is not well understood. This study aimed to investigate the associations between mathematics and reading performance with white matter microstructure in 114 VPT and 36 FT 13-year-old children. Additionally, we aimed to investigate whether the association of mathematics and reading performance with white matter microstructure in VPT children varied as a function of impairment. To do this, we used diffusion tensor imaging and advanced diffusion modelling techniques (Neurite Orientation Dispersion and Density Imaging and the Spherical Mean Technique), combined with a whole-brain analysis approach (Tract-Based Spatial Statistics). Mathematics performance across VPT and FT groups was positively associated with white matter microstructural measurements of fractional anisotropy and neurite density, and negatively associated with radial and mean diffusivities in widespread, bilateral regions. Furthermore, VPT children with a mathematics impairment (>1 standard deviation below FT mean) had significantly reduced neurite density compared with VPT children without an impairment. Reading performance was not significantly associated with any of the white matter microstructure parameters. Additionally, the associations between white matter microstructure and mathematics and reading performance did not differ significantly between VPT and FT groups. Our findings suggest that alterations in white matter microstructure, and more specifically lower neurite density, are associated with poorer mathematics performance in 13-year-old VPT and FT children. More research is required to understand the association between reading performance and white matter microstructure in 13-year-old children. Diffusion tensor and neurite density metrics were associated with mathematics. Associations were present in very preterm and full-term children. Associations were widespread throughout the white matter microstructure. Decreased neurite density was evident in children with a mathematics impairment. Limited evidence of associations between white matter microstructure and reading.
Collapse
|
22
|
Abstract
In the last decade, advances in neuroimaging technologies have given rise to a large number of research studies that investigate the neural underpinnings of executive function (EF). EF has long been associated with the prefrontal cortex (PFC) and involves both a unified, general element, as well as the distinct, separable elements of working memory, inhibitory control and set shifting. We will highlight the value of utilising advances in neuroimaging techniques to uncover answers to some of the most pressing questions in the field of early EF development. First, this review will explore the development and neural substrates of each element of EF. Second, the structural, anatomical and biochemical changes that occur in the PFC during infancy and throughout childhood will be examined, in order to address the importance of these changes for the development of EF. Third, the importance of connectivity between regions of the PFC and other brain areas in EF development is reviewed. Finally, throughout this review more recent developments in neuroimaging techniques will be addressed, alongside the implications for further elucidating the neural substrates of early EF development in the future.
Collapse
Affiliation(s)
- Abigail Fiske
- School of Psychology, University of Nottingham, Nottingham, United Kingdom
| | - Karla Holmboe
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
23
|
Bathelt J, Gathercole SE, Butterfield S, Astle DE. Children's academic attainment is linked to the global organization of the white matter connectome. Dev Sci 2018. [PMID: 29532626 PMCID: PMC6175394 DOI: 10.1111/desc.12662] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Literacy and numeracy are important skills that are typically learned during childhood, a time that coincides with considerable shifts in large-scale brain organization. However, most studies emphasize focal brain contributions to literacy and numeracy development by employing case-control designs and voxel-by-voxel statistical comparisons. This approach has been valuable, but may underestimate the contribution of overall brain network organization. The current study includes children (N = 133 children; 86 male; mean age = 9.42, SD = 1.715; age range = 5.92-13.75y) with a broad range of abilities, and uses whole-brain structural connectomics based on diffusion-weighted MRI data. The results indicate that academic attainment is associated with differences in structural brain organization, something not seen when focusing on the integrity of specific regions. Furthermore, simulated disruption of highly-connected brain regions known as hubs suggests that the role of these regions for maintaining the architecture of the network may be more important than specific aspects of processing. Our findings indicate that distributed brain systems contribute to the etiology of difficulties with academic learning, which cannot be captured using a more traditional voxel-wise statistical approach.
Collapse
Affiliation(s)
- Joe Bathelt
- MRC Cognition and Brain Sciences Unit, Cambridge University, Cambridge, UK
| | - Susan E Gathercole
- MRC Cognition and Brain Sciences Unit, Cambridge University, Cambridge, UK
| | - Sally Butterfield
- MRC Cognition and Brain Sciences Unit, Cambridge University, Cambridge, UK
| | | | - Duncan E Astle
- MRC Cognition and Brain Sciences Unit, Cambridge University, Cambridge, UK
| |
Collapse
|