1
|
Dinarello A, May M, Amo-Aparicio J, Azam T, Gaballa JM, Marchetti C, Tesoriere A, Ghirardo R, Redzic JS, Webber WS, Atif SM, Li S, Eisenmesser EZ, de Graaf DM, Dinarello CA. IL-38 regulates intestinal stem cell homeostasis by inducing WNT signaling and beneficial IL-1β secretion. Proc Natl Acad Sci U S A 2023; 120:e2306476120. [PMID: 37906644 PMCID: PMC10636342 DOI: 10.1073/pnas.2306476120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/13/2023] [Indexed: 11/02/2023] Open
Abstract
The IL-1 Family member IL-38 has been characterized primarily as an antiinflammatory cytokine in human and mouse models of systemic diseases. Here, we examined the role of IL-38 in the murine small intestine (SI). Immunostaining of SI revealed that IL-38 expression partially confines to intestinal stem cells. Cultures of intestinal organoids reveal IL-38 functions as a growth factor by increasing organoid size via inducing WNT3a. In contrast, organoids from IL-38-deficient mice develop more slowly. This reduction in size is likely due to the downregulation of intestinal stemness markers (i.e., Fzd5, Ephb2, and Olfm4) expression compared with wild-type organoids. The IL-38 binding to IL-1R6 and IL-1R9 is still a matter of debate. Therefore, to analyze the molecular mechanisms of IL-38 signaling, we also examined organoids from IL-1R9-deficient mice. Unexpectedly, these organoids, although significantly smaller than wild type, respond to IL-38, suggesting that IL-1R9 is not involved in IL-38 signaling in the stem cell crypt. Nevertheless, silencing of IL-1R6 disabled the organoid response to the growth property of IL-38, thus suggesting IL-1R6 as the main receptor used by IL-38 in the crypt compartment. In organoids from wild-type mice, IL-38 stimulation induced low concentrations of IL-1β which contribute to organoid growth. However, high concentrations of IL-1β have detrimental effects on the cultures that were prevented by treatment with recombinant IL-38. Overall, our data demonstrate an important regulatory function of IL-38 as a growth factor, and as an antiinflammatory molecule in the SI, maintaining homeostasis.
Collapse
Affiliation(s)
- Alberto Dinarello
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO80045
| | - Makenna May
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO80045
| | - Jesus Amo-Aparicio
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO80045
| | - Tania Azam
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO80045
| | - Joseph M. Gaballa
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO80045
| | - Carlo Marchetti
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO80045
| | | | | | - Jasmina S. Redzic
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, Aurora, CO80045
| | - William S. Webber
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO80045
| | - Shaikh M. Atif
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO80045
| | - Suzhao Li
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO80045
| | - Elan Z. Eisenmesser
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, Aurora, CO80045
| | - Dennis M. de Graaf
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO80045
| | - Charles A. Dinarello
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO80045
| |
Collapse
|
2
|
Cui C, Wang X, Li L, Wei H, Peng J. Multifaceted involvements of Paneth cells in various diseases within intestine and systemically. Front Immunol 2023; 14:1115552. [PMID: 36993974 PMCID: PMC10040535 DOI: 10.3389/fimmu.2023.1115552] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/02/2023] [Indexed: 03/14/2023] Open
Abstract
Serving as the guardians of small intestine, Paneth cells (PCs) play an important role in intestinal homeostasis maintenance. Although PCs uniquely exist in intestine under homeostasis, the dysfunction of PCs is involved in various diseases not only in intestine but also in extraintestinal organs, suggesting the systemic importance of PCs. The mechanisms under the participation of PCs in these diseases are multiple as well. The involvements of PCs are mostly characterized by limiting intestinal bacterial translocation in necrotizing enterocolitis, liver disease, acute pancreatitis and graft-vs-host disease. Risk genes in PCs render intestine susceptible to Crohn’s disease. In intestinal infection, different pathogens induce varied responses in PCs, and toll-like receptor ligands on bacterial surface trigger the degranulation of PCs. The increased level of bile acid dramatically impairs PCs in obesity. PCs can inhibit virus entry and promote intestinal regeneration to alleviate COVID-19. On the contrary, abundant IL-17A in PCs aggravates multi-organ injury in ischemia/reperfusion. The pro-angiogenic effect of PCs aggravates the severity of portal hypertension. Therapeutic strategies targeting PCs mainly include PC protection, PC-derived inflammatory cytokine elimination, and substituting AMP treatment. In this review, we discuss the influence and importance of Paneth cells in both intestinal and extraintestinal diseases as reported so far, as well as the potential therapeutic strategies targeting PCs.
Collapse
Affiliation(s)
- Chenbin Cui
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xinru Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lindeng Li
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- *Correspondence: Jian Peng,
| |
Collapse
|
3
|
Biancolin AD, Jeong H, Mak KWY, Yuan Z, Brubaker PL. Disrupted and Elevated Circadian Secretion of Glucagon-Like Peptide-1 in a Murine Model of Type 2 Diabetes. Endocrinology 2022; 163:6649564. [PMID: 35876276 PMCID: PMC9368029 DOI: 10.1210/endocr/bqac118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Indexed: 11/19/2022]
Abstract
Metabolism and circadian rhythms are intimately linked, with circadian glucagon-like peptide-1 (GLP-1) secretion by the intestinal L-cell entraining rhythmic insulin release. GLP-1 secretion has been explored in the context of obesogenic diets, but never in a rodent model of type 2 diabetes (T2D). There is also considerable disagreement regarding GLP-1 levels in human T2D. Furthermore, recent evidence has demonstrated decreased expression of the β-cell exocytotic protein secretagogin (SCGN) in T2D. To extend these findings to the L-cell, we administered oral glucose tolerance tests at 6 time points in 4-hour intervals to the high-fat diet/streptozotocin (HFD-STZ) mouse model of T2D. This revealed a 10-fold increase in peak GLP-1 secretion with a phase shift of the peak from the normal feeding period into the fasting-phase. This was accompanied by impairments in the rhythms of glucose, glucagon, mucosal clock genes (Arntl and Cry2), and Scgn. Immunostaining revealed that L-cell GLP-1 intensity was increased in the HFD-STZ model, as was the proportion of L-cells that expressed SCGN; however, this was not found in L-cells from humans with T2D, which exhibited decreased GLP-1 staining but maintained their SCGN expression. Gcg expression in isolated L-cells was increased along with pathways relating to GLP-1 secretion and electron transport chain activity in the HFD-STZ condition. Further investigation into the mechanisms responsible for this increase in GLP-1 secretion may give insights into therapies directed toward upregulating endogenous GLP-1 secretion.
Collapse
Affiliation(s)
- Andrew D Biancolin
- Departments of Physiology, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Hyerin Jeong
- Departments of Physiology, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Kimberly W Y Mak
- Departments of Physiology, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Zixuan Yuan
- Departments of Physiology, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Patricia L Brubaker
- Correspondence: Patricia L. Brubaker, Ph.D., Rm 3366 Medical Sciences Building, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
4
|
Miao D, Wang Y, Jia Y, Tong J, Jiang S, Liu L. ZRANB1 enhances stem-cell-like features and accelerates tumor progression by regulating Sox9-mediated USP22/Wnt/β-catenin pathway in colorectal cancer. Cell Signal 2021; 90:110200. [PMID: 34798260 DOI: 10.1016/j.cellsig.2021.110200] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/08/2021] [Accepted: 11/13/2021] [Indexed: 12/18/2022]
Abstract
The pathogenesis of colorectal cancer (CRC) is a multistep process characterized by the accumulation of gene mutations and epigenetic alterations. Tumor necrosis factor receptor-associated factor-binding protein domain (ZRANB1) is a deubiquitinase that mediates tumor growth and metastasis by deubiquitinating target proteins. In this study, we examined the regulatory effects of ZRANB1 on the maintenance of cancer stem cell (CSC) properties and tumor growth in CRC. Human CRC tissue samples and matched normal tissues were collected for the analysis of ZRANB1 expression. ZRANB1 was upregulated in CRC human tissues and cell lines, and its expression was positively correlated with advanced tumor stage and poor survival of CRC patients. The overexpression of ZRANB1 also induced the expression of CSC markers in CRC cells. Then, a xenograft model was established by inoculating BALB/c mice with CRC cells. The upregulation of ZRANB1 promoted tumorigenesis in vivo. Sox9 is a transcription factor that acts as an oncogene in human cancers. ZRANB1 increased the stability of Sox9 in CRC cells by decelerating its ubiquitination. Further analysis revealed that Sox9 regulated the transcription activity of USP22 by binding to its promoter. Moreover, ZRANB1 enhances stem-cell-like features of CRC cells and activated the Wnt/β-catenin pathway through USP22. Our results highlighted the role of ZRANB1 as a molecular target for CRC treatment, which may contribute to the development of novel therapies with better efficacy.
Collapse
Affiliation(s)
- Dazhuang Miao
- Colorectal Cancer Surgical Ward 2, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150081, China
| | - Yan Wang
- Colorectal Cancer Surgical Ward 2, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150081, China
| | - Yunhe Jia
- Colorectal Cancer Surgical Ward 2, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150081, China.
| | - Jinxue Tong
- Colorectal Cancer Surgical Ward 2, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150081, China.
| | - Shixiong Jiang
- Colorectal Cancer Surgical Ward 2, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150081, China
| | - Lixiu Liu
- Colorectal Cancer Surgical Ward 2, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150081, China
| |
Collapse
|
5
|
Ambrosini YM, Park Y, Jergens AE, Shin W, Min S, Atherly T, Borcherding DC, Jang J, Allenspach K, Mochel JP, Kim HJ. Recapitulation of the accessible interface of biopsy-derived canine intestinal organoids to study epithelial-luminal interactions. PLoS One 2020; 15:e0231423. [PMID: 32302323 PMCID: PMC7164685 DOI: 10.1371/journal.pone.0231423] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023] Open
Abstract
Recent advances in canine intestinal organoids have expanded the option for building a better in vitro model to investigate translational science of intestinal physiology and pathology between humans and animals. However, the three-dimensional geometry and the enclosed lumen of canine intestinal organoids considerably hinder the access to the apical side of epithelium for investigating the nutrient and drug absorption, host-microbiome crosstalk, and pharmaceutical toxicity testing. Thus, the creation of a polarized epithelial interface accessible from apical or basolateral side is critical. Here, we demonstrated the generation of an intestinal epithelial monolayer using canine biopsy-derived colonic organoids (colonoids). We optimized the culture condition to form an intact monolayer of the canine colonic epithelium on a nanoporous membrane insert using the canine colonoids over 14 days. Transmission and scanning electron microscopy revealed a physiological brush border interface covered by the microvilli with glycocalyx, as well as the presence of mucin granules, tight junctions, and desmosomes. The population of stem cells as well as differentiated lineage-dependent epithelial cells were verified by immunofluorescence staining and RNA in situ hybridization. The polarized expression of P-glycoprotein efflux pump was confirmed at the apical membrane. Also, the epithelial monolayer formed tight- and adherence-junctional barrier within 4 days, where the transepithelial electrical resistance and apparent permeability were inversely correlated. Hence, we verified the stable creation, maintenance, differentiation, and physiological function of a canine intestinal epithelial barrier, which can be useful for pharmaceutical and biomedical researches.
Collapse
Affiliation(s)
- Yoko M. Ambrosini
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States of America
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States of America
| | - Yejin Park
- Department of Creative IT Engineering, Pohang University of Science and Technology, Pohang, Korea
| | - Albert E. Jergens
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA, United States of America
| | - Woojung Shin
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States of America
| | - Soyoun Min
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States of America
| | - Todd Atherly
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA, United States of America
| | - Dana C. Borcherding
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States of America
| | - Jinah Jang
- Department of Creative IT Engineering, Pohang University of Science and Technology, Pohang, Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Korea
| | - Karin Allenspach
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA, United States of America
| | - Jonathan P. Mochel
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States of America
- * E-mail: (HJK); (JPM)
| | - Hyun Jung Kim
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States of America
- Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, United States of America
- * E-mail: (HJK); (JPM)
| |
Collapse
|
6
|
Huang CZ, Xu JH, Zhong W, Xia ZS, Wang SY, Cheng D, Li JY, Wu TF, Chen QK, Yu T. Sox9 transcriptionally regulates Wnt signaling in intestinal epithelial stem cells in hypomethylated crypts in the diabetic state. Stem Cell Res Ther 2017; 8:60. [PMID: 28279198 PMCID: PMC5345140 DOI: 10.1186/s13287-017-0507-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 01/19/2017] [Accepted: 02/11/2017] [Indexed: 12/16/2022] Open
Abstract
Background Distinctive structures called crypts harbor intestinal epithelial stem cells (IESCs) which generate progenitor and terminally differentiated cells in the intestinal epithelium. Mammalian IESCs and their daughter cells require the participation of DNA methylation and the transcription factor Sox9 for proliferation and differentiation. However, the association between Sox9 and DNA methylation in this process remains elusive. Methods The DNA methylation of small intestinal epithelial crypts in db/db mice was detected via combining methylated DNA immunoprecipitation with microarray hybridization. DNA methylation of Sox9 promoter in crypts and IESCs was validated using bisulfite sequence analysis. The target sequence of the transcription factor Sox9 in IESCs was investigated via chromatin immunoprecipitation (ChIP) combined with deep sequencing (ChIP-seq). Results Increased Sox9 expression is accompanied by the loss of methylation in its promoter in IESCs. Sox9 targets the enhancers of the Wnt signaling pathway-related genes. Sox9 predominantly acts as a transcriptional activator at proximal enhancers of Wnt4, Tab2, Sox4, and Fzd8, but also functions as a potential transcriptional inhibitor at a distant enhancer of Cdk1. Lack of Sox9 transcriptional activation in specific repressors of the Wnt signaling pathway leads to the loss of intrinsic inhibitory action and ultimately produces overactivation of this pathway in db/db mice. Conclusions Our study sheds light on the connections among DNA methylation, transcription factor modulation, and Wnt signaling in IESCs in the diabetic state. Hypomethylation in the Sox9 promoter is correlated to increased Sox9 expression in db/db IESCs. Although there is increased expression of Sox9 in db/db IESCs, the loss of Sox9 transcriptional activation in specific repressors of the Wnt signaling pathway might result in abnormalities in this pathway. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0507-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Can-Ze Huang
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Road, Guangzhou, Guangdong, 510120, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Ji-Hao Xu
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Wa Zhong
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Zhong-Sheng Xia
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Si-Yi Wang
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Di Cheng
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Jie-Yao Li
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Ting-Feng Wu
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Qi-Kui Chen
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Road, Guangzhou, Guangdong, 510120, China.
| | - Tao Yu
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Road, Guangzhou, Guangdong, 510120, China. .,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Road, Guangzhou, Guangdong, 510120, China.
| |
Collapse
|
7
|
Cui S, Chang PY. Current understanding concerning intestinal stem cells. World J Gastroenterol 2016; 22:7099-7110. [PMID: 27610020 PMCID: PMC4988314 DOI: 10.3748/wjg.v22.i31.7099] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 05/21/2016] [Accepted: 06/15/2016] [Indexed: 02/06/2023] Open
Abstract
In mammals, the intestinal epithelium is a tissue that contains two distinct pools of stem cells: active intestinal stem cells and reserve intestinal stem cells. The former are located in the crypt basement membrane and are responsible for maintaining epithelial homeostasis under intact conditions, whereas the latter exhibit the capacity to facilitate epithelial regeneration after injury. These two pools of cells can convert into each other, maintaining their quantitative balance. In terms of the active intestinal stem cells, their development into functional epithelium is precisely controlled by the following signaling pathways: Wnt/β-catenin, Ras/Raf/Mek/Erk/MAPK, Notch and BMP/Smad. However, mutations in some of the key regulator genes associated with these signaling pathways, such as APC, Kras and Smad4, are also highly associated with gut malformations. At this point, clarifying the biological characteristics of intestinal stem cells will increase the feasibility of preventing or treating some intestinal diseases, such as colorectal cancer. Moreover, as preclinical data demonstrate the therapeutic effects of colon stem cells on murine models of experimental colitis, the prospects of stem cell-based regenerative treatments for ulcerous lesions in the gastrointestinal tract will be improved all the same.
Collapse
|
8
|
Yu T, Lu XJ, Li JY, Shan TD, Huang CZ, Ouyang H, Yang HS, Xu JH, Zhong W, Xia ZS, Chen QK. Overexpression of miR-429 impairs intestinal barrier function in diabetic mice by down-regulating occludin expression. Cell Tissue Res 2016; 366:341-352. [PMID: 27299781 DOI: 10.1007/s00441-016-2435-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 05/11/2016] [Indexed: 02/08/2023]
Abstract
Diabetes mellitus (DM) is a group of metabolic diseases characterised by insulin deficiency/resistance and hyperglycaemia. We previously reported the presence of an impaired tight junction and decreased expression of occludin (Ocln) and zonula occludens-1 (ZO-1) in the intestinal epithelial cells (IECs) of type 1 DM mice, but the exact mechanism remains unclear. In this study, we investigated the role of microRNAs (miRNAs) in impairing the tight junction in IECs of DM mice. Using an integrated comparative miRNA microarray, miR-429 was found to be up-regulated in IECs of type 1 DM mice. Then, miR-429 was confirmed to directly target the 3'-UTR of Ocln, although it did not target ZO-1. Moreover, miR-429 down-regulated the Ocln expression in IEC-6 cells in vitro. Finally, exogenous agomiRNA-429 was shown to down-regulate Ocln and induce intestinal barrier dysfunction in normal mice, while exogenous antagomiRNA-429 up-regulated Ocln in vivo and improved intestinal barrier function in DM mice. In conclusion, increased miR-429 could down-regulate the expression of Ocln by targeting the Ocln 3'-UTR, which impaired intestinal barrier function in DM mice.
Collapse
Affiliation(s)
- Tao Yu
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Xi-Ji Lu
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Jie-Yao Li
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Ti-Dong Shan
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Can-Ze Huang
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Hui Ouyang
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Hong-Sheng Yang
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Ji-Hao Xu
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Wa Zhong
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Zhong-Sheng Xia
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Road, Guangzhou, Guangdong, 510120, China.
| | - Qi-Kui Chen
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Road, Guangzhou, Guangdong, 510120, China.
| |
Collapse
|