1
|
Balón-Rosas LY, Luna-Bulbarela A, Serrano-Carreón L, Galindo E. pH-driven metabolic reprogramming in Bacillus velezensis 83 regulates metabolite synthesis and sporulation: A transcriptional approach for bioprocess development. J Biotechnol 2025; 405:191-204. [PMID: 40436149 DOI: 10.1016/j.jbiotec.2025.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/24/2025] [Accepted: 05/19/2025] [Indexed: 06/01/2025]
Abstract
Bacillus velezensis 83 (Bv83) spores are the active ingredient in Fungifree AB, an agricultural biocontrol agent whose industrial production is negatively affected by poly-γ-glutamic acid (γ-PGA) biopolymer synthesis at pH 6.8. At pH 5, γ-PGA production and sporulation are suppressed, but the latter is restored through pH-shift to 6.8 after glucose depletion. This work presents a comprehensive Bv83 spore bioprocess development through physiological and transcriptional analyses. At pH 5, Bv83 present a strategic response to pH stress by reducing its growth rate and redirecting energy towards survival rather than differentiation (downregulating lipopeptide and γ-PGA production genes) and maintaining SigB-mediated stress response rather than sporulation. Transcriptome analysis revealed downregulation of comX and phrC genes at pH 5, indicating sporulation limitation from insufficient signaling molecule production. Indeed, our results confirmed the essential role of the competence and sporulation factor (CSF) in differentiation of elongated cells into forespores. Furthermore, spent medium addition from high-cell-density cultures induced complete sporulation at pH 5, suggesting critical metabolite concentrations (besides CSF) are required. A pH-shift strategy during fed-batch cultivation suppressed γ-PGA synthesis, leading to enhanced mixing and oxygen transfer. Moreover, this strategy led to a 2.6-fold increase in spore productivity (7.86 ×1010 spores L-1 h-1) compared to a batch at pH 6.8, reducing operational costs. This research has identified pH-regulated metabolic networks, establishing a foundation for designing efficient, cost-effective industrial-scale B. velezensis fermentation strategies that comply with regulatory requirements for biocontrol applications.
Collapse
Affiliation(s)
- Lorena Yamileth Balón-Rosas
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad #2001, Col. Chamilpa, Cuernavaca, Morelos CP 62210, Mexico
| | - Agustín Luna-Bulbarela
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad #2001, Col. Chamilpa, Cuernavaca, Morelos CP 62210, Mexico
| | - Leobardo Serrano-Carreón
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad #2001, Col. Chamilpa, Cuernavaca, Morelos CP 62210, Mexico.
| | - Enrique Galindo
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad #2001, Col. Chamilpa, Cuernavaca, Morelos CP 62210, Mexico.
| |
Collapse
|
2
|
Damacet P, Mirica KA. Periodic Patterning of Matter in Non-Equilibrium Liesegang-Type Structures. Angew Chem Int Ed Engl 2025:e202425292. [PMID: 40247399 DOI: 10.1002/anie.202425292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 04/19/2025]
Abstract
Bottom-up self-organization of unordered molecules into ordered, spatiotemporal patterns of complex structures through non-equilibrium reaction-diffusion (RD) processes is ubiquitous in nature across all scales. Unlike many RD processes that typically lead to transient patterns, periodic precipitation reactions governed by the Liesegang phenomenon are distinguished by the formation of stable, permanent structures. This unique characteristic makes them valuable tools in the development of hierarchical multifunctional materials, an area that has seen significant progress in recent decades. This review summarizes the fundamental aspects of the Liesegang phenomenon, focusing on the key characteristics, compositional features, inherent properties, and formation mechanisms of Liesegang patterns in chemical systems, while also highlighting their occurrence in biological and geological settings. We discuss recent advancements in applying periodic precipitation to address global challenges in microelectronics and environmental monitoring, concluding with a forward-looking perspective on the promising future applications of the Liesegang periodic precipitation in materials science, nanotechnology, medicine, and environmental engineering.
Collapse
Affiliation(s)
- Patrick Damacet
- Department of Chemistry, Dartmouth College, Burke Laboratory, Hanover, New Hampshire, 03755, USA
| | - Katherine A Mirica
- Department of Chemistry, Dartmouth College, Burke Laboratory, Hanover, New Hampshire, 03755, USA
| |
Collapse
|
3
|
Lv X, Liu S, Cao Y, Wu H, Zhang C, Huang B, Wang J. Multiwalled Carbon Nanotubes Promoted Biofilm Formation and Rhizosphere Colonization of Bacillus subtilis Tpb55. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7087-7098. [PMID: 39992185 DOI: 10.1021/acs.jafc.4c10818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Plant growth-promoting bacteria (PGPB) achieve effective colonization by forming a biofilm on the root surface. However, the promoting effects and mechanisms of nanomaterials on PGPB biofilm formation and rhizosphere colonization are rarely studied. This study investigated the effects and the potential mechanism of multiwalled carbon nanotubes (MWCNTs) on biofilm formation and rhizosphere colonization of PGPB Bacillus subtilis. 10 and 100 mg/L MWCNTs increased biofilm biomass, extracellular polymeric substance components, live/dead cell ratio, and spores in biofilms. MWCNTs induced B. subtilis Tpb55 upregulated gene expressions of malL, sacX, tasA-tapA, and epsA-O correlated with carbohydrate metabolism and biofilm formation. MWCNTs first stimulated Tpb55 flagellar motility and then increased biofilm formation, thus promoting colonization in the tobacco rhizosphere. Greenhouse experiments showed that the combination of MWCNTs and Tpb55 reduced the occurrence of tobacco black shank. Therefore, MWCNTs have broad application potential in enhancing the effectiveness of PGPB in agricultural disease control and yield enhancement.
Collapse
Affiliation(s)
- Xiaolin Lv
- Pest Integrated Management Key Laboratory of China Tobacco, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Shanshan Liu
- Pest Integrated Management Key Laboratory of China Tobacco, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Yi Cao
- Guizhou Academy of Tobacco Science, Guiyang 550081, China
| | - Huagen Wu
- Jiangxi Provincial Tobacco Company Fuzhou Company, Fuzhou 344699, China
| | - Chengsheng Zhang
- Pest Integrated Management Key Laboratory of China Tobacco, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Bin Huang
- Pest Integrated Management Key Laboratory of China Tobacco, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Jie Wang
- Pest Integrated Management Key Laboratory of China Tobacco, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| |
Collapse
|
4
|
Sang Y, Zhang Z, Ren Q, Zhu J, He Y. Rapid Evaluation of Antimicrobial Potency Through Bacterial Collective Motion Analysis. ACS APPLIED BIO MATERIALS 2025; 8:519-526. [PMID: 39670919 DOI: 10.1021/acsabm.4c01442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
The growing threat of bacterial resistance is a critical global health concern, necessitating the development of more efficient methods for evaluating antimicrobial efficacy. Here, we introduce a technique based on the sensitivity of bacterial collective motion to environmental changes, using motion trajectory analysis for swift antibiotic susceptibility appraisal within a simple spread-out of bacterial droplet. By single cell tracking in bacterial fluids near the droplet edge or boundary-detection of the colony expansion, we achieved rapid evaluation of antibiotic efficacy in under 60 min. This method is not only faster than traditional assays but also provides insights into drug-bacterial interactions, offering a powerful tool for advancing both diagnostic testing and the development of antimicrobial agents.
Collapse
Affiliation(s)
- Yuqian Sang
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Ziyang Zhang
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Qian Ren
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Junlun Zhu
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Yan He
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Chiou JG, Chou TKT, Garcia-Ojalvo J, Süel GM. Intrinsically robust and scalable biofilm segmentation under diverse physical growth conditions. iScience 2024; 27:111386. [PMID: 39669429 PMCID: PMC11635021 DOI: 10.1016/j.isci.2024.111386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/09/2024] [Accepted: 11/11/2024] [Indexed: 12/14/2024] Open
Abstract
Developmental patterning is a shared feature across biological systems ranging from vertebrates to bacterial biofilms. While vertebrate patterning benefits from well-controlled homeostatic environments, bacterial biofilms can grow in diverse physical contexts. What mechanisms provide developmental robustness under diverse environments remains an open question. We show that a native clock-and-wavefront mechanism robustly segments biofilms in both solid-air and solid-liquid interfaces. Biofilms grown under these distinct physical conditions differ 4-fold in size yet exhibit robust segmentation. The segmentation pattern scaled with biofilm growth rate in a mathematically predictable manner independent of habitat conditions. We show that scaling arises from the coupling between wavefront speed and biofilm growth rate. In contrast to the complexity of scaling mechanisms in vertebrates, our data suggests that the minimal bacterial clock-and-wavefront mechanism is intrinsically robust and scales in real time. Consequently, bacterial biofilms robustly segment under diverse conditions without requiring cell-to-cell signaling to track system size.
Collapse
Affiliation(s)
- Jian-geng Chiou
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093 USA
| | - Todd Kwang-Tao Chou
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093 USA
| | - Jordi Garcia-Ojalvo
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Gürol M. Süel
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093 USA
| |
Collapse
|
6
|
Lander SM, Fisher G, Everett BA, Tran P, Prindle A. Secreted nucleases reclaim extracellular DNA during biofilm development. NPJ Biofilms Microbiomes 2024; 10:103. [PMID: 39375363 PMCID: PMC11458576 DOI: 10.1038/s41522-024-00575-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/25/2024] [Indexed: 10/09/2024] Open
Abstract
DNA is the genetic code found inside all living cells and its molecular stability can also be utilized outside the cell. While extracellular DNA (eDNA) has been identified as a structural polymer in bacterial biofilms, whether it persists stably throughout development remains unclear. Here, we report that eDNA is temporarily invested in the biofilm matrix before being reclaimed later in development. Specifically, by imaging eDNA dynamics within undomesticated Bacillus subtilis biofilms, we found eDNA is produced during biofilm establishment before being globally degraded in a spatiotemporally coordinated pulse. We identified YhcR, a secreted Ca2+-dependent nuclease, as responsible for eDNA degradation in pellicle biofilms. YhcR cooperates with two other nucleases, NucA and NucB, to reclaim eDNA for its phosphate content in colony biofilms. Our results identify extracellular nucleases that are crucial for eDNA reclamation during biofilm development and we therefore propose a new role for eDNA as a dynamic metabolic reservoir.
Collapse
Affiliation(s)
- Stephen M Lander
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Chicago, 60611, IL, USA
- Medical Scientist Training Program, Feinberg School of Medicine, Northwestern University, Chicago, 60611, IL, USA
| | - Garth Fisher
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Chicago, 60611, IL, USA
| | - Blake A Everett
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Chicago, 60611, IL, USA
| | - Peter Tran
- Center for Synthetic Biology, Northwestern University, Evanston, 60208, IL, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, 60208, IL, USA
| | - Arthur Prindle
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Chicago, 60611, IL, USA.
- Center for Synthetic Biology, Northwestern University, Evanston, 60208, IL, USA.
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, 60208, IL, USA.
- Department of Microbiology-Immunology, Feinberg School of Medicine, Chicago, 60611, IL, USA.
- Chan Zuckerberg Biohub Chicago, Chicago, IL, 60642, USA.
| |
Collapse
|
7
|
Xiao L, Yang C, Zhang X, Wang Y, Li Z, Chen Y, Liu Z, Zhu M, Xiao Y. Effects of solid-state fermentation with Bacillus subtilis LK-1 on the volatile profile, catechins composition and antioxidant activity of dark teas. Food Chem X 2023; 19:100811. [PMID: 37780291 PMCID: PMC10534189 DOI: 10.1016/j.fochx.2023.100811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/16/2023] [Accepted: 07/24/2023] [Indexed: 10/03/2023] Open
Abstract
In this study, the solid-state fermentation (SSF) of dark tea was carried out using Bacillus subtilis LK-1, which was isolated from Fu brick tea (FBT). The effects of SSF with B. subtilis on volatile organic compounds (VOCs), non-volatile metabolites, and antioxidant activities of dark tea was investigated. A total of 45 VOCs were identified, primarily consisting of ketones (18), hydrocarbons (8), aldehydes (7), and alcohols (6). Following fermentation, the content of key odor active substances such as linalool, β-ionone, and 3,5-octadiene-2-one significantly increased, resulting in an enhanced floral and fruity aroma of dark tea. Furthermore, new flavor substances like geranyl isovalerate and decanal were produced during SSF, enriching the aroma profile of dark tea. Non-ester catechins demonstrated a drastic increase, while ester catechins remarkably decreased after SSF. Furthermore, SSF led to a slight decrease in the total polyphenols content and antioxidant activity of dark tea. There is a close relationship between VOCs and the main non-volatile metabolites during SSF. Overall, this study highlighted the great impact of SSF with B. subtilis on the metabolites of dark tea and provided valuable insights into the role of bacteria in shaping the metabolite profile of FBT.
Collapse
Affiliation(s)
- Leike Xiao
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Chenghongwang Yang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xilu Zhang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yuanliang Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Zongjun Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yulian Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Zhonghua Liu
- Key Laboratory of Ministry of Education for Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Mingzhi Zhu
- Key Laboratory of Ministry of Education for Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Yu Xiao
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory of Ministry of Education for Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
8
|
Liu GH, Liu DQ, Wang P, Chen QQ, Che JM, Wang JP, Li WJ, Zhou SG. Temperature drives the assembly of Bacillus community in mangrove ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157496. [PMID: 35870580 DOI: 10.1016/j.scitotenv.2022.157496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/05/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Mangroves are located at the interface of terrestrial and marine environments, and experience fluctuating conditions, creating a need to better explore the relative role of the bacterial community. Bacillus has been reported to be the dominant group in the mangrove ecosystem and plays a key role in maintaining the biodiversity and function of the mangrove ecosystem. However, studies on bacterial and Bacillus community across four seasons in the mangrove ecosystem are scarce. Here, we employed seasonal large-scale sediment samples collected from the mangrove ecosystem in southeastern China and utilized 16S rRNA gene amplicon sequencing to reveal bacterial and Bacillus community structure changes across seasons. Compared with the whole bacterial community, we found that Bacillus community was greatly affected by season (temperature) rather than site. The key factors, NO3-N and NH4-N showed opposite interaction with superabundant taxa Bacillus taxa (SAT) and three rare Bacillus taxa including high rare taxa (HRT), moderate rare taxa (MRT) and low rare taxa (LRT). Network analysis suggested the co-occurrence of Bacillus community and Bacillus-bacteria, and revealed SAT had closer relationship compared with rare Bacillus taxa. HRT might act crucial response during the temperature decreasing process across seasons. This study fills a gap in addressing the assembly of Bacillus community and their role in maintaining microbial diversity and function in mangrove ecosystem.
Collapse
Affiliation(s)
- Guo-Hong Liu
- Agricultural Bio-resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, PR China
| | - Ding-Qi Liu
- Agricultural Bio-resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, PR China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Pandeng Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Qian-Qian Chen
- Agricultural Bio-resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, PR China
| | - Jian-Mei Che
- Agricultural Bio-resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, PR China
| | - Jie-Ping Wang
- Agricultural Bio-resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, PR China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China.
| | - Shun-Gui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou City, Fujian Province 350002, PR China.
| |
Collapse
|
9
|
Fessia A, Barra P, Barros G, Nesci A. Could Bacillus biofilms enhance the effectivity of biocontrol strategies in the phyllosphere? J Appl Microbiol 2022; 133:2148-2166. [PMID: 35476896 DOI: 10.1111/jam.15596] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/13/2022] [Accepted: 04/21/2022] [Indexed: 11/30/2022]
Abstract
Maize (Zea mays L.), a major crop in Argentina and a staple food around the world, is affected by the emergence and re-emergence of foliar diseases. Agrochemicals are the main control strategy nowadays, but they can cause resistance in insects and microbial pathogens and have negative effects on the environment and human health. An emerging alternative is the use of living organisms, i.e. microbial biocontrol agents, to suppress plant pathogen populations. This is a risk-free approach when the organisms acting as biocontrol agents come from the same ecosystem as the foliar pathogens they are meant to antagonize. Some epiphytic microorganisms may form biofilm by becoming aggregated and attached to a surface, as is the case of spore-forming bacteria from the genus Bacillus. Their ability to sporulate and their tolerance to long storage periods make them a frequently used biocontrol agent. Moreover, the biofilm that they create protects them against different abiotic and biotic factors and helps them to acquire nutrients, which ensures their survival on the plants they protect. This review analyzes the interactions that the phyllosphere-inhabiting Bacillus genus establishes with its environment through biofilm, and how this lifestyle could serve to design effective biological control strategies.
Collapse
Affiliation(s)
- Aluminé Fessia
- Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ruta Nacional 36, Km 601, X5804ZAB Río Cuarto, Córdoba, Argentina
| | - Paula Barra
- Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ruta Nacional 36, Km 601, X5804ZAB Río Cuarto, Córdoba, Argentina
| | - Germán Barros
- Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ruta Nacional 36, Km 601, X5804ZAB Río Cuarto, Córdoba, Argentina
| | - Andrea Nesci
- Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ruta Nacional 36, Km 601, X5804ZAB Río Cuarto, Córdoba, Argentina
| |
Collapse
|
10
|
Liu P, Liu H, Semenec L, Yuan D, Yan S, Cain AK, Li M. Length-based separation of Bacillus subtilis bacterial populations by viscoelastic microfluidics. MICROSYSTEMS & NANOENGINEERING 2022; 8:7. [PMID: 35127130 PMCID: PMC8766588 DOI: 10.1038/s41378-021-00333-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 06/14/2023]
Abstract
In this study, we demonstrated the label-free continuous separation and enrichment of Bacillus subtilis populations based on length using viscoelastic microfluidics. B. subtilis, a gram-positive, rod-shaped bacterium, has been widely used as a model organism and an industrial workhorse. B. subtilis can be arranged in different morphological forms, such as single rods, chains, and clumps, which reflect differences in cell types, phases of growth, genetic variation, and changing environmental factors. The ability to prepare B. subtilis populations with a uniform length is important for basic biological studies and efficient industrial applications. Here, we systematically investigated how flow rate ratio, poly(ethylene oxide) (PEO) concentration, and channel length affected the length-based separation of B. subtilis cells. The lateral positions of B. subtilis cells with varying morphologies in a straight rectangular microchannel were found to be dependent on cell length under the co-flow of viscoelastic and Newtonian fluids. Finally, we evaluated the ability of the viscoelastic microfluidic device to separate the two groups of B. subtilis cells by length (i.e., 1-5 μm and >5 μm) in terms of extraction purity (EP), extraction yield (EY), and enrichment factor (EF) and confirmed that the device could separate heterogeneous populations of bacteria using elasto-inertial effects.
Collapse
Affiliation(s)
- Ping Liu
- Suqian University, Suqian, 223800 China
- School of Engineering, Macquarie University, Sydney, NSW 2109 Australia
| | - Hangrui Liu
- Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109 Australia
| | - Lucie Semenec
- ARC Centre of Excellence in Synthetic Biology, Department of Molecular Science, Macquarie University, Sydney, NSW 2109 Australia
| | - Dan Yuan
- Centre for Regional and Rural Futures, Deakin University, Geelong, VIC 3216 Australia
| | - Sheng Yan
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060 China
| | - Amy K. Cain
- ARC Centre of Excellence in Synthetic Biology, Department of Molecular Science, Macquarie University, Sydney, NSW 2109 Australia
| | - Ming Li
- School of Engineering, Macquarie University, Sydney, NSW 2109 Australia
- Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW 2109 Australia
| |
Collapse
|
11
|
Mohsin MZ, Omer R, Huang J, Mohsin A, Guo M, Qian J, Zhuang Y. Advances in engineered Bacillus subtilis biofilms and spores, and their applications in bioremediation, biocatalysis, and biomaterials. Synth Syst Biotechnol 2021; 6:180-191. [PMID: 34401544 PMCID: PMC8332661 DOI: 10.1016/j.synbio.2021.07.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/24/2021] [Accepted: 07/23/2021] [Indexed: 01/23/2023] Open
Abstract
Bacillus subtilis is a commonly used commercial specie with broad applications in the fields of bioengineering and biotechnology. B. subtilis is capable of producing both biofilms and spores. Biofilms are matrix-encased multicellular communities that comprise various components including exopolysaccharides, proteins, extracellular DNA, and poly-γ-glutamic acid. These biofilms resist environmental conditions such as oxidative stress and hence have applications in bioremediation technologies. Furthermore, biofilms and spores can be engineered through biotechnological techniques for environmentally-friendly and safe production of bio-products such as enzymes. The ability to withstand with harsh conditions and producing spores makes Bacillus a suitable candidate for surface display technology. In recent years, the spores of such specie are widely used as it is generally regarded as safe to use. Advances in synthetic biology have enabled the reprogramming of biofilms to improve their functions and enhance the production of value-added products. Globally, there is increased interest in the production of engineered biosensors, biocatalysts, and biomaterials. The elastic modulus and gel properties of B. subtilis biofilms have been utilized to develop living materials. This review outlines the formation of B. subtilis biofilms and spores. Biotechnological engineering processes and their increasing application in bioremediation and biocatalysis, as well as the future directions of B. subtilis biofilm engineering, are discussed. Furthermore, the ability of B. subtilis biofilms and spores to fabricate functional living materials with self-regenerating, self-regulating and environmentally responsive characteristics has been summarized. This review aims to resume advances in biological engineering of B. subtilis biofilms and spores and their applications.
Collapse
Key Words
- Bacillus subtilis
- Biocatalysis
- Biofilms
- Biomaterials
- Bioremediation
- Extracellular DNA, (eDNA)
- Extracellular Polymeric Substance/ Exopolysaccharide, (EPS)
- Gold nanoparticles, (AuNPs)
- Green fluorescent protein, (GFP)
- Isopropylthio-β-d-galactoside, (IPTG)
- Menaquinoe-7, (MK-7)
- Microbial fuel cell, (MFC)
- Mono (2-hydroxyethyl) terephthalic acid, (MHET)
- N-Acetyl-d-neuraminic Acid, (Neu5Ac)
- N-acetylglucosamine, (GlcNAc)
- Nanoparticles, (NPs)
- Nickel nitriloacetic acid, (Ni-NTA)
- Organophosphorus hydrolase, (OPH)
- Paranitrophenol, (PNP)
- Paraoxon, (PAR)
- Quantum dots, (QDs)
- Spores
- Synthetic biology
- d-psicose 3-epimerase, (DPEase)
- l-Arabinose Isomerase, (L-AI)
- p-aminophenol, (PAP)
- β-Galactosidase, (β-Gal)
Collapse
Affiliation(s)
- Muhammad Zubair Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Rabia Omer
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Jiaofang Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Ali Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Jiangchao Qian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| |
Collapse
|
12
|
Genetic Network Architecture and Environmental Cues Drive Spatial Organization of Phenotypic Division of Labor in Streptomyces coelicolor. mBio 2021; 12:mBio.00794-21. [PMID: 34006658 PMCID: PMC8262882 DOI: 10.1128/mbio.00794-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A number of bacteria are known to differentiate into cells with distinct phenotypic traits during processes such as biofilm formation or the development of reproductive structures. These cell types, by virtue of their specialized functions, embody a division of labor. However, how bacteria build spatial patterns of differentiated cells is not well understood. Here, we examine the factors that drive spatial patterns in divisions of labor in colonies of Streptomyces coelicolor, a multicellular bacterium capable of synthesizing an array of antibiotics and forming complex reproductive structures (e.g., aerial hyphae and spores). Using fluorescent reporters, we demonstrate that the pathways for antibiotic biosynthesis and aerial hypha formation are activated in distinct waves of gene expression that radiate outwards in S. coelicolor colonies. We also show that the spatiotemporal separation of these cell types depends on a key activator in the developmental pathway, AdpA. Importantly, when we manipulated local gradients by growing competing microbes nearby, or through physical disruption, expression in these pathways could be decoupled and/or disordered, respectively. Finally, the normal spatial organization of these cell types was partially restored with the addition of a siderophore, a public good made by these organisms, to the growth medium. Together, these results indicate that spatial divisions of labor in S. coelicolor colonies are determined by a combination of physiological gradients and regulatory network architecture, key factors that also drive patterns of cellular differentiation in multicellular eukaryotic organisms.
Collapse
|
13
|
|
14
|
Progress in research and application development of surface display technology using Bacillus subtilis spores. Appl Microbiol Biotechnol 2020; 104:2319-2331. [PMID: 31989224 PMCID: PMC7223921 DOI: 10.1007/s00253-020-10348-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/16/2019] [Accepted: 01/03/2020] [Indexed: 02/02/2023]
Abstract
Bacillus subtilis is a widely distributed aerobic Gram-positive species of bacteria. As a tool in the lab, it has the advantages of nonpathogenicity and limited likelihood of becoming drug resistant. It is a probiotic strain that can be directly used in humans and animals. It can be induced to produce spores under nutrient deficiency or other adverse conditions. B. subtilis spores have unique physical, chemical, and biochemical characteristics. Expression of heterologous antigens or proteins on the surface of B. subtilis spores has been successfully performed for over a decade. As an update and supplement to previously published research, this paper reviews the latest research on spore surface display technology using B. subtilis. We have mainly focused on the regulation of spore coat protein expression, display and application of exogenous proteins, and identification of developing research areas of spore surface display technology.
Collapse
|
15
|
Ma L, Lu Y, Yan H, Wang X, Yi Y, Shan Y, Liu B, Zhou Y, Lü X. Screening of cellulolytic bacteria from rotten wood of Qinling (China) for biomass degradation and cloning of cellulases from Bacillus methylotrophicus. BMC Biotechnol 2020; 20:2. [PMID: 31910834 PMCID: PMC6947901 DOI: 10.1186/s12896-019-0593-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/08/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cellulosic biomass degradation still needs to be paid more attentions as bioenergy is the most likely to replace fossil energy in the future, and more evaluable cellulolytic bacteria isolation will lay a foundation for this filed. Qinling Mountains have unique biodiversity, acting as promising source of cellulose-degrading bacteria exhibiting noteworthy properties. Therefore, the aim of this work was to find potential cellulolytic bacteria and verify the possibility of the cloning of cellulases from the selected powerful bacteria. RESULTS In present study, 55 potential cellulolytic bacteria were screened and identified from the rotten wood of Qinling Mountains. Based on the investigation of cellulase activities and degradation effect on different cellulose substrates, Bacillus methylotrophicus 1EJ7, Bacillus subtilis 1AJ3 and Bacillus subtilis 3BJ4 were further applied to hydrolyze wheat straw, corn stover and switchgrass, and the results suggested that B. methylotrophicus 1EJ7 was the most preponderant bacterium, and which also indicated that Bacillus was the main cellulolytic bacteria in rotten wood. Furthermore, scanning electron microscopy (SEM) and X-ray diffraction analysis of micromorphology and crystallinity of wheat straw also verified the significant hydrolyzation. With ascertaining the target sequence of cellulase β-glucosidase (243 aa) and endoglucanase (499 aa) were successfully heterogeneously cloned and expressed from B. methylotrophicus 1EJ7, and which performed a good effect on cellulose degradation with enzyme activity of 1670.15 ± 18.94 U/mL and 0.130 ± 0.002 U/mL, respectively. In addition, based on analysis of amino acid sequence, it found that β-glucosidase were belonged to GH16 family, and endoglucanase was composed of GH5 family catalytic domain and a carbohydrate-binding module of CBM3 family. CONCLUSIONS Based on the screening, identification and cellulose degradation effect evaluation of cellulolytic bacteria from rotten wood of Qinling Mountains, it found that Bacillus were the predominant species among the isolated strains, and B. methylotrophicus 1EJ7 performed best on cellulose degradation. Meanwhile, the β-glucosidase and endoglucanase were successfully cloned and expressed from B. methylotrophicus for the first time, which provided new materials of both strain and the recombinant enzymes for the study of cellulose degradation and its application in industry.
Collapse
Affiliation(s)
- Lingling Ma
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Yingying Lu
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Hong Yan
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Xin Wang
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Yanglei Yi
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Yuanyuan Shan
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Bianfang Liu
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Yuan Zhou
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Xin Lü
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi Province, China.
| |
Collapse
|
16
|
Li Q, Liao S, Zhi H, Xing D, Xiao Y, Yang Q. Characterization and sequence analysis of potential biofertilizer and biocontrol agent Bacillus subtilis strain SEM-9 from silkworm excrement. Can J Microbiol 2019; 65:45-58. [DOI: 10.1139/cjm-2018-0350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fusarium wilt is a devastating soil-borne disease caused mainly by highly host-specific formae speciales of Fusarium oxysporum. Antagonistic microorganisms play a very important role in Fusarium wilt control, and the isolation of potential biocontrol strains is becoming more and more important. We isolated a bacterial strain (SEM-9) from the high-temperature stage of silkworm excrement composting, which had a marked ability to solubilize phosphorus, promote the growth and increase the yield of the small Chinese cabbage, and which also exhibited considerable antagonistic effect towards Fusarium sambucinum and other fungi. The result of physiological and biochemical analyses, as well as genome sequencing, showed that SEM-9 was a strain of Bacillus subtilis. Through genome annotation and analysis, it was found that SEM-9 contained genes related to the regulation of biofilm formation, which may play an important role in colonization, and gene clusters encoding the biosynthesis of antimicrobials, such as surfactin, bacilysin, fengycin, and subtilosin-A. The production of such antifungal compounds may constitute the basis of the mode-of-action of SEM-9 against Fusarium spp. These data suggested that the SEM-9 strain has potential as both a biofertilizer and a biocontrol agent, with the potential to manage Fusarium wilt disease in crops.
Collapse
Affiliation(s)
- Qingrong Li
- The Sericulture and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, P.R. China
- Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture, Guangzhou 510610, P.R. China
| | - Sentai Liao
- The Sericulture and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, P.R. China
| | - Huyu Zhi
- Guangdong Geolong Biotechnology Co. Ltd., ZhuHai 519000, P.R. China
| | - Dongxu Xing
- The Sericulture and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, P.R. China
- Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture, Guangzhou 510610, P.R. China
| | - Yang Xiao
- The Sericulture and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, P.R. China
- Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture, Guangzhou 510610, P.R. China
| | - Qiong Yang
- The Sericulture and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, P.R. China
- Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture, Guangzhou 510610, P.R. China
| |
Collapse
|
17
|
Rivera-Yoshida N, Arias Del Angel JA, Benítez M. Microbial multicellular development: mechanical forces in action. Curr Opin Genet Dev 2018; 51:37-45. [PMID: 29885639 DOI: 10.1016/j.gde.2018.05.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/11/2018] [Accepted: 05/20/2018] [Indexed: 12/11/2022]
Abstract
Multicellular development occurs in diverse microbial lineages and involves the complex interaction among biochemical, physical and ecological factors. We focus on the mechanical forces that appear to be relevant for the scale and material qualities of individual cells and small cellular conglomerates. We review the effects of such forces on the development of some paradigmatic microorganisms, as well as their overall consequences in multicellular structures. Microbes exhibiting multicellular development have been considered models for the evolutionary transition to multicellularity. Therefore, we discuss how comparative, integrative and dynamic approaches to the mechanical effects involved in microbial development can provide valuable insights into some of the principles behind the evolutionary transition to multicellularity.
Collapse
Affiliation(s)
- Natsuko Rivera-Yoshida
- Laboratorio Nacional de Ciencias de la Sostenibilidad (LANCIS), Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico; Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico; Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Juan A Arias Del Angel
- Laboratorio Nacional de Ciencias de la Sostenibilidad (LANCIS), Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico; Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico; Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mariana Benítez
- Laboratorio Nacional de Ciencias de la Sostenibilidad (LANCIS), Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico; Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|