1
|
Biswal P, Mallick B. miR-185-5p rewires cisplatin resistance by restoring miR-203a-3p expression via downregulation of SOX9. DNA Repair (Amst) 2024; 142:103750. [PMID: 39173500 DOI: 10.1016/j.dnarep.2024.103750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/26/2024] [Accepted: 08/11/2024] [Indexed: 08/24/2024]
Abstract
Chemotherapeutic drug resistance is a challenge for the effective treatment of OSCC. There are a couple of studies on the involvement of microRNAs (miRNAs) in chemoresistance of oral squamous cell carcinoma (OSCC), but the exact molecular events in many cases are not clearly understood. In this work, we intend to track down key miRNA(s) and unveil their regulatory molecular mechanisms in imparting chemoresistance in this lethal cancer. We analyzed gene and miRNA array profiles of drug-resistant OSCC cells, predicted miRNA targets, performed enrichment analysis, and validated our findings in cisplatin-sensitive and cisplatin-resistant SCC9 and H357 OSCC cells. We evaluated the anticancer and chemosensitivity roles of selected miRNA by adopting several molecular assays like qRT-PCR, MTT assay, wound healing assay, fluorescence imaging by DCFHDA, AO/EB staining, DAPI, and γ-H2AX accumulation assay. We also validated the miRNA-target binding by qRT-PCR and luciferase reporter assay. Among the enriched miRNAs, we found miR-185-5p downregulated in cisplatin-resistant OSCC cells as a signature miRNA modulating chemoresistance. The upregulation of miR-185-5p by mimic transfection restores cisplatin sensitivity by decreasing cell viability in a dose-dependent manner and increasing ROS-induced DNA damage and apoptosis. miR-185-5p overexpression increases miR-203a-3p expression through negative regulation of SOX9. siRNA-mediated silencing of the SOX9 also shows similar results. Mechanistically, miR-185-5p dependent miR-203a-3p expression decreases cisplatin efflux and cisplatin-induced DNA damage repair by regulating ABCC1, ABCB1, RRM2, and RAN. This study will pave the way for employing this miR-185-5p as a combination therapeutic strategy to combat cisplatin resistance in oral cancer.
Collapse
Affiliation(s)
- Priyajit Biswal
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha 769008, India
| | - Bibekanand Mallick
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha 769008, India.
| |
Collapse
|
2
|
Taheri M, Shirvani-Farsani Z, Harsij A, Fathi M, Khalilian S, Ghafouri-Fard S, Baniahmad A. A review on the role of KCNQ1OT1 lncRNA in human disorders. Pathol Res Pract 2024; 255:155188. [PMID: 38330620 DOI: 10.1016/j.prp.2024.155188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
KCNQ1OT1 is an lncRNA located within KCNQ1 gene on chromosome 11p15.5. This lncRNAs participates in the pathogenesis of a diversity of cancers as well as non-cancerous conditions. In most types of cancers, KCNQ1OT1 is regarded as an oncogene. In a wide array of cancers, high level of KCNQ1OT1 is associated with lower overall survival time. This lncRNA has been found to adsorb a variety of miRNAs, namely miR-15a, miR-211-5p, hsa-miR-107, miR-145, miR-34a, miR-204-5p, miR-129-5p, miR-372-3p, miR-491-5p, miR-153, miR-185-5p, miR-124-3p, miR-211-5p, miR-149, miR-148a-3p, miR-140-5p, miR-125b-5p, miR-9, miR-329-3p, miR-760, miR-296-5p, miR-3666 and miR-129-5p, thus regulating the downstream targets of these miRNAs. In this manuscript, our attention is on this lncRNA and its biomolecular roles in human cancers and other disorders. KCNQ1OT1 plays significant roles in the tumorigenesis and may function as a prospective target for cancer therapy.
Collapse
Affiliation(s)
- Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Zeinab Shirvani-Farsani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Atefeh Harsij
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohadeseh Fathi
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sheyda Khalilian
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| |
Collapse
|
3
|
Zhan K, Pan H, Zhou Z, Tang W, Ye Z, Huang S, Luo L. Biological role of long non-coding RNA KCNQ1OT1 in cancer progression. Biomed Pharmacother 2023; 169:115876. [PMID: 37976888 DOI: 10.1016/j.biopha.2023.115876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are a type of RNAs that are more than 200 nucleotides without protein-coding potential. In recent years, more and more attention has been paid to the role of lncRNAs in cancer pathogenesis. LncRNA KCNQ1 overlapping transcript 1 (KCNQ1OT1) is located on chromosome 11p15.5 with a total length of 91 kb and is highly expressed in various malignancies, which is closely related to tumor growth, lymph node metastasis, survival cycle and recurrence rate. In addition, KCNQ1OT1 is involved in the regulation of PI3K/AKT and Wnt/β-catenin signaling pathways. In this review, the mechanism and related progress of KCNQ1OT1 in different cancers were reviewed. It was found that KCNQ1OT1 can stabilize mRNA expression through sponging miRNA, which not only induced tumor cell proliferation, migration, invasion, drug resistance, epithelial-mesenchymal transition (EMT) and inhibited cell apoptosis in vitro, but also promoted tumor growth and metastasis in vivo. Therefore, as a new biomarker and therapeutic target, KCNQ1OT1 has broad prospects for the diagnosis and treatment of different cancers.
Collapse
Affiliation(s)
- Kai Zhan
- Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan 523000, China
| | - Huafeng Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Zhang Zhou
- Department of Anesthesiology, Wuhan Fourth Hospital, Wuhan 430000, China
| | - Wenqian Tang
- Department of Health Management Center, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430070, China
| | - Zhining Ye
- Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan 523000, China
| | - Shaogang Huang
- Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan 523000, China; The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Lei Luo
- Department of Health Management Center, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430070, China.
| |
Collapse
|
4
|
Hosseini V, Montazersaheb S, Hejazi N, Aslanabadi S, Mohammadinasr M, Hejazi MS. A snapshot of miRNAs in oral squamous cell carcinoma: Difference between cancer cells and corresponding normal cells. Pathol Res Pract 2023; 249:154731. [PMID: 37573620 DOI: 10.1016/j.prp.2023.154731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/29/2023] [Indexed: 08/15/2023]
Abstract
Oral squamous cell carcinoma (OSCC) constitutes the most aggressive tumors of the oral cavity and is one of the leading causes of cancer mortality worldwide. Although recent clinical treatment strategies have improved the survival rate, the outcome of OSCC patients still remains dismal because of the lack of efficient diagnostic and treatment tools. As one of the main actors of OSCC scenario, microRNAs (miRNAs) are involved in triggering, progression and metastasis through the regulation of various cancer-related signaling pathways. Identification followed by precise study of the biology and mechanism of action of miRNAs will greatly help to provide valuable insights regarding OSCC development and can be considered as an anti-OSCC target. In the current review, we have provided a focused summary of the latest published papers on the role of miRNAs in apoptosis, cell cycle, proliferation, EMT and metastasis of OSCC as well as the role of long noncoding RNAs in the modulation of miRNAs in OSCC.
Collapse
Affiliation(s)
- Vahid Hosseini
- Molecular Medicine Research Center, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Narges Hejazi
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Sina Aslanabadi
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mina Mohammadinasr
- Molecular Medicine Research Center, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Molecular Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Saeid Hejazi
- Molecular Medicine Research Center, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Pordel S, Khorrami M, Saadatpour F, Rezaee D, Cho WC, Jahani S, Aghaei-Zarch SM, Hashemi E, Najafi S. The role of microRNA-185 in the pathogenesis of human diseases: A focus on cancer. Pathol Res Pract 2023; 249:154729. [PMID: 37639952 DOI: 10.1016/j.prp.2023.154729] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/29/2023] [Indexed: 08/31/2023]
Abstract
MicroRNAs (miRNAs) are a widely-studied class of non-coding RNAs characterized by their short length (18-25 nucleotides). The precise functions of miRNAs are not well-elucidated; however, an increasing number of studies suggest their involvement in various physiologic processes and deregulation in pathologic conditions. miRNA-185 (miR-185) is among the mostly-studied miRNAs in human diseases, which is found to play putative roles in conditions like metabolic disorders, asthma, frailty, schizophrenia, and hepatitis. Notably, many cancer studies report the downregulation of miR-185 in cell lines, tumor tissues, and plasma specimens of patients, while it demonstrates a suppressing role on the malignant properties of cancer cells in vitro and in vivo. Accordingly, miR-185 can be considered a tumor suppressor miRNA in human malignancies, while a few studies also report inconsistent findings. Being suggested as a prognostic/diagnostic biomarker, mi-185 is also found to offer clinical potentials, particularly for early diagnosis and prediction of the prognosis of cancer patients. In this review, we have outlined the studies that have evaluated the functions and clinical significance of miR-185 in different human diseases with a particular focus on cancer.
Collapse
Affiliation(s)
- Safoora Pordel
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Immunology and Allergy, The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Motahare Khorrami
- Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Saadatpour
- Pharmaceutical Biotechnology Lab, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Delsuz Rezaee
- School of Allied Medical Sciences, Ilam University of Medical Sciences, Ilam, Iran
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, 30 Gascoigne Road, Hong Kong, China
| | | | - Seyed Mohsen Aghaei-Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Elham Hashemi
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Balakittnen J, Weeramange CE, Wallace DF, Duijf PHG, Cristino AS, Kenny L, Vasani S, Punyadeera C. Noncoding RNAs in oral cancer. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1754. [PMID: 35959932 PMCID: PMC10909450 DOI: 10.1002/wrna.1754] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/09/2022] [Accepted: 07/05/2022] [Indexed: 05/13/2023]
Abstract
Oral cancer (OC) is the most prevalent subtype of cancer arising in the head and neck region. OC risk is mainly attributed to behavioral risk factors such as exposure to tobacco and excessive alcohol consumption, and a lesser extent to viral infections such as human papillomaviruses and Epstein-Barr viruses. In addition to these acquired risk factors, heritable genetic factors have shown to be associated with OC risk. Despite the high incidence, biomarkers for OC diagnosis are lacking and consequently, patients are often diagnosed in advanced stages. This delay in diagnosis is reflected by poor overall outcomes of OC patients, where 5-year overall survival is around 50%. Among the biomarkers proposed for cancer detection, noncoding RNA (ncRNA) can be considered as one of the most promising categories of biomarkers due to their role in virtually all cellular processes. Similar to other cancer types, changes in expressions of ncRNAs have been reported in OC and a number of ncRNAs have diagnostic, prognostic, and therapeutic potential. Moreover, some ncRNAs are capable of regulating gene expression by various mechanisms. Therefore, elucidating the current literature on the four main types of ncRNAs namely, microRNA, lncRNA, snoRNA, piwi-RNA, and circular RNA in the context of OC pathogenesis is timely and would enable further improvements and innovations in diagnosis, prognosis, and treatment of OC. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Jaikrishna Balakittnen
- The Centre for Biomedical Technologies, The School of Biomedical Sciences, Faculty of HealthQueensland University of TechnologyKelvin GroveQueenslandAustralia
- Saliva & Liquid Biopsy Translational Laboratory, Griffith Institute for Drug DiscoveryGriffith UniversityNathanQueenslandAustralia
- Department of Medical Laboratory Sciences, Faculty of Allied Health SciencesUniversity of JaffnaJaffnaSri Lanka
| | - Chameera Ekanayake Weeramange
- Saliva & Liquid Biopsy Translational Laboratory, Griffith Institute for Drug DiscoveryGriffith UniversityNathanQueenslandAustralia
| | - Daniel F. Wallace
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of HealthQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - Pascal H. G. Duijf
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of HealthQueensland University of TechnologyBrisbaneQueenslandAustralia
- Queensland University of Technology, School of Biomedical SciencesFaculty of Health at the Translational Research InstituteWoolloongabbaQueenslandAustralia
- Centre for Data Science, Queensland University of Queensland, TechnologyBrisbaneQueenslandAustralia
- Institute of Clinical Medicine, Faculty of Medicine, HerstonUniversity of OsloOsloNorway
- Department of Medical GeneticsOslo University HospitalOsloNorway
- University of Queensland Diamantina InstituteThe University of QueenslandBrisbaneQueenslandAustralia
| | | | - Liz Kenny
- Royal Brisbane and Women's Hospital, Cancer Care ServicesHerstonQueenslandAustralia
- Faculty of MedicineThe University of QueenslandBrisbaneQueenslandAustralia
| | - Sarju Vasani
- Royal Brisbane and Women's Hospital, Cancer Care ServicesHerstonQueenslandAustralia
- Department of OtolaryngologyRoyal Brisbane and Women's HospitalHerstonQueenslandAustralia
| | - Chamindie Punyadeera
- Saliva & Liquid Biopsy Translational Laboratory, Griffith Institute for Drug DiscoveryGriffith UniversityNathanQueenslandAustralia
- Queensland University of Technology, School of Biomedical SciencesFaculty of Health at the Translational Research InstituteWoolloongabbaQueenslandAustralia
- Menzies Health InstituteGriffith UniversityGold CoastQueenslandAustralia
| |
Collapse
|
7
|
Zhang S, Han X, Wang M, Shen X. Comment on letters to the editor in oral oncology referring to microRNAs as therapeutic molecules for oral squamous cell carcinoma. Oral Oncol 2023; 137:106298. [PMID: 36584496 DOI: 10.1016/j.oraloncology.2022.106298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Affiliation(s)
- Shijian Zhang
- Department of Oral and Maxillofacial Surgery, Zhang Zhiyuan Academician Workstation, Hainan Western Central Hospital, Shanghai Ninth People's Hospital, Danzhou, Hainan, China; Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Xinyi Han
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China; Department of Oral Mucosal Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingyi Wang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China.
| | - Xuemin Shen
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China; Department of Oral Mucosal Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
8
|
Ding Y, Duan H, Lin J, Zhang X. YY1 accelerates oral squamous cell carcinoma progression through long non-coding RNA Kcnq1ot1/microRNA-506-3p/SYPL1 axis. J Ovarian Res 2022; 15:77. [PMID: 35778739 PMCID: PMC9250217 DOI: 10.1186/s13048-022-01000-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 05/16/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Ying Yang1 (YY1) has already been discussed in oral squamous cell carcinoma (OSCC), but the knowledge about its mediation on long non-coding RNA KCNQ1 overlapping transcript 1/microRNA-506-3p/synaptophysin like 1 (Kcnq1ot/miR-506-3p/SYPL1) axis in OSCC is still in its infancy. Hence, this article aims to explain the mechanism of YY1/Kcnq1ot1/miR-506-3p/SYPL1 axis in OSCC development. METHODS YY1, Kcnq1ot1, miR-506-3p and SYPL1 expression levels were determined in OSCC tissues. The potential relation among YY1, Kcnq1ot1, miR-506-3p and SYPL1 was explored. Cell progression was observed to figure out the actions of depleted YY1, Kcnq1ot1 and SYPL1 and restored miR-506-3p in OSCC. OSCC tumorigenic ability in mice was examined. RESULTS Elevated YY1, Kcnq1ot1 and SYPL1 and reduced miR-506-3p were manifested in OSCC. YY1 promoted Kcnq1ot1 transcription and up-regulated Kcnq1ot1 expression, thereby promoting OSCC cell procession. Silencing Kcnq1ot1 or elevating miR-506-3p delayed OSCC cell progression and silencing Kcnq1ot1 impeded tumorigenic ability of OSCC cells in mice. YY1-mediated Kcnq1ot1 sponged miR-506-3p to target SYPL1. CONCLUSION YY1 promotes OSCC cell progression via up-regulating Kcnq1ot1 to sponge miR-506-3p to elevate SYPL1, guiding a novel way to treat OSCC.
Collapse
Affiliation(s)
- Yi Ding
- Center for Drug Research and Development, Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Key Laboratory of New Drug Discovery and Evaluation of Ordinary Universities of Guangdong Province, Guangdong Pharmaceutical University, No. 280, Waihuan East Road, Guangzhou, 510006, Guangdong, China.,School of Life Sciences and Biophamaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Heng Duan
- Department of Pharmacy, Stomatological Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Jian Lin
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Xuanxuan Zhang
- Center for Drug Research and Development, Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Key Laboratory of New Drug Discovery and Evaluation of Ordinary Universities of Guangdong Province, Guangdong Pharmaceutical University, No. 280, Waihuan East Road, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
9
|
Sekar D, Panagal M, Manimaran D, Ahmad N, Rao TN, Alomar SY. miR-185 and its anti-miR as a biomarker and therapeutic target for oral cancer. Oral Oncol 2022; 129:105873. [PMID: 35468474 DOI: 10.1016/j.oraloncology.2022.105873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 11/16/2022]
Affiliation(s)
- Durairaj Sekar
- Centre for Cellular and Molecular Research, Saveetha Dental College and Hospitals, Saveetha Institute of Medical & Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India.
| | - Mani Panagal
- Department of Biotechnology, Annai College of Arts and Science, Kumbakonam, Tamil Nadu 612503, India.
| | - Dharmar Manimaran
- Department of Animal Nutrition, Veterinary College and Research Institute, (Tamilnadu Veterinary and Animal Sciences University), Namakkal 637 002, Tamil Nadu, India
| | - Naushad Ahmad
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Tentu Nageswara Rao
- School of Material Science and Engineering, Changwon Ntional University, Changwon, Republic of Korea, Department of Chemistry, Krishna University, Machilipatnam, AP, India
| | - Suliman Yousef Alomar
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
10
|
Jiang M, Liu F, Yang AG, Wang W, Zhang R. The role of long non-coding RNAs in the pathogenesis of head and neck squamous cell carcinoma. Mol Ther Oncolytics 2022; 24:127-138. [PMID: 35024439 PMCID: PMC8717422 DOI: 10.1016/j.omto.2021.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Head and neck cancers are a heterogeneous collection of malignancies of the upper aerodigestive tract, salivary glands, and thyroid. However, the molecular mechanisms underlying the carcinogenesis of head and neck squamous cell carcinomas (HNSCCs) remain poorly understood. Over the past decades, overwhelming evidence has demonstrated the regulatory roles of long non-coding RNAs (lncRNAs) in tumorigenesis, including HNSCC. Notably, these lncRNAs have vital roles in gene regulation and affect various aspects of cellular homeostasis, including proliferation, survival, and metastasis. They exert regulating functions by interacting with nucleic acids or proteins and affecting cancer cell signaling. LncRNAs represent a burgeoning field of cancer research, and we are only beginning to understand the importance and complicity of lncRNAs in HNSCC. In this review, we summarize the deregulation and function of lncRNAs in human HNSCC. We also review the working mechanism of lncRNAs in HNSCC pathogenesis and discuss the potential application of lncRNAs as diagnostic/prognostic tools and therapeutic targets in human HNSCC.
Collapse
Affiliation(s)
- Man Jiang
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710032, China.,State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Fang Liu
- Department of Dermatology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - An-Gang Yang
- State Key Laboratory of Cancer Biology, Department of Immunology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Wei Wang
- State Key Laboratory of Cancer Biology, Department of Immunology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Rui Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.,State Key Laboratory of Cancer Biology, Department of Immunology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| |
Collapse
|
11
|
Zhao LY, Xin GJ, Tang YY, Li XF, Li YZ, Tang N, Ma YH. miR-664b-3p inhibits colon cell carcinoma via negatively regulating Budding uninhibited by benzimidazole 3. Bioengineered 2022; 13:4857-4868. [PMID: 35156516 PMCID: PMC8973713 DOI: 10.1080/21655979.2022.2036400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
MiR-664b-3p has been reported to play a crucial role in cancer progression. This research explores the biological effect and molecular mechanisms of miR-664b-3p in cell proliferation, apoptosis, migration, and invasion of colon cancer. The expression level of miR-664b-3p and Budding uninhibited by benzimidazole 3 (Bub3) in colon cancer cell lines and tissues were detected and analyzed using quantitative real-time PCR and bioinformatics method. The Western blot measured the expression level of proliferation-related, migration-related, and apoptosis-related proteins. CCK-8 assessed cell viability, and the cell proliferation, migration, and invasion were detected by the Edu assay, wound-healing assay, and transwell assay, respectively. Annexin/propidium iodide (PI) assays detected apoptosis of cells. The target of miR-664b-3p was predicted by bioinformatics methods and then validated by gene engineering technology. MiR-664b-3p was downregulated in colon cancer tissues and cells. The cell proliferation, migration, and invasion of cells were inhibited after transfecting by miR-664b-3p mimics, whereas apoptosis was promoted. Over-expression of miR-664b-3p could reduce the expression of proliferation-promoted proliferating cell nuclear antigen (PCNA), proliferation marker protein Ki-67 (Ki-67), migration-promoted Cyclooxygenase-2 (COX-2), Matrix Metallopeptidase 2 (MMP-2), and Matrix Metallopeptidase 9 (MMP-9), and apoptosis-inhibited protein (Bcl-2) while increasing the expression of apoptosis-promoted BCL2-Associated X Protein (Bax), caspase-3, and caspase-9 proteins. The study indicated that miR-664b-3p plays a significant role in colon cancer and could regulate the progression of colon cancer tumor growth by suppressing the expression of BUB3 protein. These findings provide a novel strategy to screen and treat colon cancer.
Collapse
Affiliation(s)
- Liang-Yu Zhao
- Department of Gastrointestinal Surgery, People's Hospital of Ningxia Hui Autonomous Region, the First Affiliated Hospital of Northwest Minzu University, Yinchuan, China
| | - Guo-Jun Xin
- Department of Hepatobiliary Surgery, People's Hospital of Ningxia Hui Autonomous Region, the First Affiliated Hospital of Northwest Minzu University, Yinchuan, China
| | - Yuan-Yuan Tang
- Department of Gastroenterology, People's Hospital of Ningxia Hui Autonomous Region, the First Affiliated Hospital of Northwest Minzu University, Yinchuan, China
| | - Xiao-Fei Li
- Department of Gastroenterology, People's Hospital of Ningxia Hui Autonomous Region, the First Affiliated Hospital of Northwest Minzu University, Yinchuan, China
| | - Yu-Zhen Li
- Department of Gastroenterology, People's Hospital of Ningxia Hui Autonomous Region, the First Affiliated Hospital of Northwest Minzu University, Yinchuan, China
| | - Ning Tang
- Department of Digestive Endoscopy Center, People's Hospital of Ningxia Hui Autonomous Region, the First Affiliated Hospital of Northwest Minzu University, Yinchuan, China
| | - Yu-Hong Ma
- Department of Gastroenterology, People's Hospital of Ningxia Hui Autonomous Region, the First Affiliated Hospital of Northwest Minzu University, Yinchuan, China
| |
Collapse
|
12
|
Impact of Non-Coding RNAs on Chemotherapeutic Resistance in Oral Cancer. Biomolecules 2022; 12:biom12020284. [PMID: 35204785 PMCID: PMC8961659 DOI: 10.3390/biom12020284] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
Drug resistance in oral cancer is one of the major problems in oral cancer therapy because therapeutic failure directly results in tumor recurrence and eventually in metastasis. Accumulating evidence has demonstrated the involvement of non-coding RNAs (ncRNAs), such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), in processes related to the development of drug resistance. A number of studies have shown that ncRNAs modulate gene expression at the transcriptional or translational level and regulate biological processes, such as epithelial-to-mesenchymal transition, apoptosis, DNA repair and drug efflux, which are tightly associated with drug resistance acquisition in many types of cancer. Interestingly, these ncRNAs are commonly detected in extracellular vesicles (EVs) and are known to be delivered into surrounding cells. This intercellular communication via EVs is currently considered to be important for acquired drug resistance. Here, we review the recent advances in the study of drug resistance in oral cancer by mainly focusing on the function of ncRNAs, since an increasing number of studies have suggested that ncRNAs could be therapeutic targets as well as biomarkers for cancer diagnosis.
Collapse
|
13
|
Identification of Novel Biomarkers for Predicting Prognosis and Immunotherapy Response in Head and Neck Squamous Cell Carcinoma Based on ceRNA Network and Immune Infiltration Analysis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4532438. [PMID: 34917682 PMCID: PMC8670464 DOI: 10.1155/2021/4532438] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/23/2021] [Accepted: 11/19/2021] [Indexed: 12/14/2022]
Abstract
Objectives Patients with head and neck squamous cell carcinoma (HNSCC) have poor prognosis and show poor responses to immune checkpoint (IC) inhibitor (ICI) therapy. Competing endogenous RNA (ceRNA) networks, tumor-infiltrating immune cells (TIICs), and ICIs may influence tumor prognosis and response rates to ICI therapy. This study is aimed at identifying prognostic and IC-related biomarkers and key TIIC signatures to improve prognosis and ICI therapy response in HNSCC patients. Methods and Results Ninety-five long noncoding RNAs (lncRNAs), microRNAs (miRNAs), and 1746 mRNAs were identified using three independent methods. We constructed a ceRNA network and estimated the proportions of 22 immune cell subtypes. Ten ceRNAs were related to prognosis according to Kaplan–Meier analysis. Two risk signatures based, respectively, on nine ceRNAs (ANLN, CFL2, ITGA5, KDELC1, KIF23, NFIA, PTX3, RELT, and TMC7) and three immune cell types (naïve B cells, neutrophils, and regulatory T cells) via univariate Cox regression, least absolute shrinkage and selection operator, and multivariate Cox regression analyses could accurately and independently predict the prognosis of HNSCC patients. Key mRNAs in the ceRNA network were significantly correlated with naïve B cells and regulatory T cells and with stage, grade, and immune and molecular subtype. Eight IC genes exhibited higher expression in tumor tissues and were correlated with eight key mRNAs in the ceRNA network in HNSCC patients with different HPV statuses according to coexpression and TIMER 2.0 analyses. Most drugs were effective in association with expression of these key signatures (ANLN, CFL2, ITGA5, KIF23, NFIA, PTX3, RELT, and TMC7) based on GSCALite analysis. The prognostic value of key biomarkers and associations between key ceRNAs and IC genes were validated using online databases. Eight key ceRNAs were confirmed to predict response to ICI in other cancers based on TIDE analysis. Conclusions We constructed two risk signatures to accurately predict prognosis in HNSCC. Key IC-related signatures may be associated with response to ICI therapy. Combinations of ICIs with inhibitors of eight key mRNAs may improve survival outcomes of HNSCC patients.
Collapse
|
14
|
Cagle P, Qi Q, Niture S, Kumar D. KCNQ1OT1: An Oncogenic Long Noncoding RNA. Biomolecules 2021; 11:1602. [PMID: 34827600 PMCID: PMC8615887 DOI: 10.3390/biom11111602] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 12/24/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are transcripts greater than 200 nucleotides that do not code for proteins but regulate gene expression. Recent studies indicate that lncRNAs are involved in the modulation of biological functions in human disease. KCNQ1 Opposite Strand/Antisense Transcript 1 (KCNQ1OT1) encodes a lncRNA from the opposite strand of KCNQ1 in the CDKN1C/KCNQ1OT1 cluster that is reported to play a vital role in the development and progression of cancer. KCNQ1OT1 regulates cancer cell proliferation, cell cycle, migration and invasion, metastasis, glucose metabolism, and immune evasion. The aberrant expression of KCNQ1OT1 in cancer patients is associated with poor prognosis and decreased survival. This review summarizes recent literature related to the biological functions and molecular mechanisms of KCNQ1OT1 in various human cancers, including colorectal, bladder, breast, oral, melanoma, osteosarcoma, lung, glioma, ovarian, liver, acute myeloid leukemia, prostate, and gastric. We also discuss the role of KCNQ1OT1 as a promising diagnostic biomarker and a novel therapeutic target in human cancers.
Collapse
Affiliation(s)
| | | | | | - Deepak Kumar
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA; (P.C.); (Q.Q.); (S.N.)
| |
Collapse
|
15
|
Zhang M, Cheng K. Long non-coding RNA KCNQ1OT1 promotes hydrogen peroxide-induced lens epithelial cell apoptosis and oxidative stress by regulating miR-223-3p/BCL2L2 axis. Exp Eye Res 2021; 206:108543. [PMID: 33744257 DOI: 10.1016/j.exer.2021.108543] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/02/2021] [Accepted: 03/10/2021] [Indexed: 12/24/2022]
Abstract
Many long non-coding RNAs (lncRNAs) can exert crucial roles in the pathogenesis of cataract, including lncRNA KCNQ1 opposite strand/antisense transcript 1 (KCNQ1OT1). We aimed to further elucidate the biological role and regulatory molecular mechanism of KCNQ1OT1 in cataract. The expression of KCNQ1OT1 and miR-223-3p and BCL2 like 2 (BCL2L2) was examined by qRT-PCR. Cataract cell model was constructed by treatment with hydrogen peroxide (H2O2) in lens epithelial cells (SRA01/04). SRA01/04 cell viability and cell apoptosis were tested using CCK-8 assay and flow cytometry, respectively. Western blot (WB) was performed to measure the levels of apoptosis-related proteins and BCL2L2 protein. The oxidative stress factors were analyzed by corresponding kits. The interaction between miR-223-3p and KCNQ1OT1 or BCL2L2 was validated by dual-luciferase reporter and RNA Immunoprecipitation (RIP) assays. We found that KCNQ1OT1 was upregulated in cataract anterior lens capsule samples and H2O2-induced SRA01/04 cells. Knockdown of KCNQ1OT1 suppressed H2O2-induced SRA01/04 cell apoptosis and oxidative stress. KCNQ1OT1 acted as a sponge of miR-223-3p. Inhibition of miR-223-3p could abate the function of KCNQ1OT1 silence in H2O2-treated SRA01/04 cells. Additionally, BCL2L2 was a direct target of miR-223-3p, and miR-223-3p weakened H2O2-induced SRA01/04 cell apoptosis and oxidative stress by targeting BCL2L2. Collectively, the data suggest a role for the KCNQ1OT1/miR-223-3p/BCL2L2 axis in cataract formation but the data was generated using an epithelial cell line.
Collapse
Affiliation(s)
- Min Zhang
- Department of Ophthalmology, Jinan Maternal and Child Health Hospital, Jinan, 250001, Shandong, China
| | - Kai Cheng
- Department of Ophthalmology, Jinan Maternal and Child Health Hospital, Jinan, 250001, Shandong, China.
| |
Collapse
|
16
|
Zhou H, He Y, Li L, Wu C, Hu G. Identification novel prognostic signatures for Head and Neck Squamous Cell Carcinoma based on ceRNA network construction and immune infiltration analysis. Int J Med Sci 2021; 18:1297-1311. [PMID: 33526991 PMCID: PMC7847625 DOI: 10.7150/ijms.53531] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/04/2021] [Indexed: 12/20/2022] Open
Abstract
Background: Head and neck squamous cell carcinoma (HNSCC) is a common malignancy with high mortality and morbidity worldwide, but the underlying biological mechanisms of molecules and tumor infiltrating-immune cells (TIICs) are still unknown. Methods and Results: We obtained mRNAs, lncRNAs, and miRNAs expression profiles of 546 HNSCC from The Cancer Genome Atlas (TCGA) database to develop a ceRNA network. CIBERSORT was employed to estimate the fraction of 22 types of TIICs in HNSCC. Univariate and multivariate Cox regression and lasso regression analyses were used to develop prognostic signatures. Then, two novel risk signatures were constructed respectively based on six ceRNAs (ANLN, KIT, PRKAA2, NFIA, PTX3 and has-miR-148a-3p) and three immune cells (naïve B cells, regulatory T cells and Neutrophils). Kaplan-Meier (K-M) analysis and Cox regression analysis further proved that these two signatures were significant prognostic factors independent of multiple clinicopathological characteristics. Two nomograms were built based on ceRNAs-riskScore and TIICs-riskScore that could be used to predict the prognosis of HNSCC. Co-expression analysis showed significant correlations between miR-148a-3p and naive B cells, naive B cells and plasmas cells. Conclusion: Through construction of the ceRNA network and estimation of TIICs, we established two risk signatures and their nomograms with excellent utility, which indicated the potential molecular and cellular mechanisms, and predicted the prognosis of HNSCC.
Collapse
Affiliation(s)
- Haiting Zhou
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P.R. China
| | - Yi He
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P.R. China
| | - Lingling Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P.R. China
| | - Cheng Wu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P.R. China
| | - Guoqing Hu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P.R. China
| |
Collapse
|
17
|
Li X, Zhu F, Liu Z, Tang X, Han Y, Jiang J, Ma C, He Y. High expression of Rab31 confers a poor prognosis and enhances cell proliferation and invasion in oral squamous cell carcinoma. Oncol Rep 2021; 45:1182-1192. [PMID: 33469675 PMCID: PMC7859975 DOI: 10.3892/or.2021.7940] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/14/2020] [Indexed: 01/09/2023] Open
Abstract
Dysregulation of Rab proteins has been observed in various types of cancer. Ectopic expression of Rab31, a member of the Rab protein family, is involved in cancer development and progression. However, the specific role and potential molecular mechanism underlying the functions of Rab31 remain largely unknown. Therefore, the current study aimed to investigate the functions of Rab31 in the development of cancer. Human oral squamous cell carcinoma (OSCC) samples were examined to determine the expression profile of Rab31 and its association with the clinicopathological characteristics of patients with OSCC. Knockdown of Rab31 expression with short hairpin RNA was performed to analyze the functions of Rab31 in vitro and in vivo. The expression of Rab31 was significantly elevated in human OSCC samples compared with that in normal oral mucosal epithelial tissues, and high expression levels were associated with high pathological grades. Furthermore, positive expression of Rab31 was associated with a poor prognosis in patients with OSCC. In addition, knockdown of Rab31 expression suppressed OSCC cell proliferation and induced apoptosis compared with those in the control‑transfected cells, which may have been caused by downregulated cyclin D1 and survivin expression and upregulated B‑cell lymphoma 2 expression. The invasive ability of OSCC cells was also abrogated by Rab31 silencing compared with that in the control‑transfected cells, which was associated with downregulated N‑cadherin and matrix metalloproteinase‑9 expression levels and upregulated levels of E‑cadherin expression. Furthermore, silencing Rab31 in OSCC cell lines, when compared with the control‑transfected cells, significantly reduced tumor growth and inhibited the expression of survivin, Ki‑67 and N‑cadherin in vivo. By contrast, the expression levels of E‑cadherin were increased. Taken together, the results of the present study supported important roles for Rab31 in regulating OSCC cell proliferation, apoptosis and invasion and may facilitate the identification of a new therapeutic target for the treatment of OSCC.
Collapse
Affiliation(s)
- Xiaoguang Li
- Department of Oral Maxillofacial‑Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, P.R. China
| | - Fengshuo Zhu
- Department of Oral Maxillofacial‑Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, P.R. China
| | - Zhonglong Liu
- Department of Oral Maxillofacial‑Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, P.R. China
| | - Xiao Tang
- Department of Oral Maxillofacial‑Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, P.R. China
| | - Yu Han
- Department of Oral Maxillofacial‑Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, P.R. China
| | - Junjian Jiang
- Department of Oral Maxillofacial‑Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, P.R. China
| | - Chunyue Ma
- Department of Oral Maxillofacial‑Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, P.R. China
| | - Yue He
- Department of Oral Maxillofacial‑Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, P.R. China
| |
Collapse
|
18
|
Preclinical Experimental Applications of miRNA Loaded BMSC Extracellular Vesicles. Stem Cell Rev Rep 2021; 17:471-501. [PMID: 33398717 DOI: 10.1007/s12015-020-10082-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2020] [Indexed: 02/07/2023]
Abstract
Bone marrow mesenchymal stem cells have been investigated for many years, especially for tissue regeneration, and have inherent limitations. One of the rapidly developing fields in the scientific world in recent years is extracellular vesicles. Especially, bone marrow mesenchymal stem cell originated extracellular vesicles are known to have positive contributions in tissue regeneration, and these extracellular vesicles have also been used as gene transfer systems for cellular therapy. Through gene expression analysis and bioinformatics tools, it is possible to determine which genes have changed in the targeted tissue or cell and which miRNAs that can correct this gene expression disorder. This approach connecting the stem cell, extracellular vesicles, epigenetics regulation and bioinformatics fields is one of the promising areas for the treatment of diseases in the future. With this review, it is aimed to present the studies carried out for the use of bone marrow stem cell-derived extracellular vesicles loaded with targeted miRNAs in different in vivo and in vitro human disease models and to discuss recent developments in this field.
Collapse
|
19
|
Fang F, Cheng L, Wu X, Ye M, Zhang H. miR-141 Promotes Colon Cancer Cell Proliferation by Targeted PHLPP2 Expression Inhibitionn. Cancer Manag Res 2020; 12:11341-11350. [PMID: 33204152 PMCID: PMC7661787 DOI: 10.2147/cmar.s256670] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/28/2020] [Indexed: 12/19/2022] Open
Abstract
Objective Colon cancer (CC) is the third most common cancer with a high rate of incidence and mortality. Therefore, it is highly necessary to explore novel targets of CC. Methods The miRNA-seq and RNA-seq data of CC were accessed from the TCGA database. Differential analysis was performed using the "edgeR" package to identify differentially expressed miRNAs (DE_miRNAs). The downstream target genes of the target miRNA were then predicted by miRNA target prediction databases to identify the target mRNA. Normal colon cell line CCD-18Co and CC cell lines HCT-116, HT-29, SW620 and SW480 were chosen, and qRT-PCR was conducted to detect miR-141 expression in these cell lines. qRT-PCR and Western blot were carried out to determine PHLPP2 mRNA and protein expression, respectively. Dual-luciferase reporter gene assay was performed to verify the targeting relationship between miR-141 and PHLPP2 3'UTR. CCK-8 assay and colony formation assay were carried out to detect cell proliferation. Meanwhile, tumor xenograft model in nude mice was constructed to assess CC cell tumorigenic ability in vivo. Results miR-141 was markedly up-regulated in CC tissue. CC cell proliferation and in vivo tumorigenic ability were suppressed by miR-141 silencing but promoted by miR-141 over-expression. PHLPP2 was significantly down-regulated in cancer tissue. Dual-luciferase reporter gene assay indicated that miR-141 could bind to PHLPP2 3'UTR. PHLPP2 expression was noticeably elevated upon miR-141 deficiency but significantly inhibited upon miR-141 over-expression. CCK-8 and colony formation assay suggested that miR-141 facilitated CC cell proliferation by silencing PHLPP2. Conclusion miR-141 promotes CC cell proliferation by targeted silencing PHLPP2.
Collapse
Affiliation(s)
- Fazhuang Fang
- Department of Hepatobiliary, Pancreatic and Gastric Surgery, Jinhua Guangfu Hospital, Jinhua 321000, People's Republic of China
| | - Ling Cheng
- Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai, People's Republic of China
| | - Xiaotang Wu
- Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai, People's Republic of China
| | - Minfeng Ye
- Department of Gastroenterology, Shaoxing People's Hospital, Shaoxing, People's Republic of China
| | - Huizhong Zhang
- Department of Hepatobiliary, Pancreatic and Gastric Surgery, Jinhua Guangfu Hospital, Jinhua 321000, People's Republic of China
| |
Collapse
|
20
|
Turjya RR, Khan MAAK, Mir Md. Khademul Islam AB. Perversely expressed long noncoding RNAs can alter host response and viral proliferation in SARS-CoV-2 infection. Future Virol 2020; 15:577-593. [PMID: 33224264 PMCID: PMC7664154 DOI: 10.2217/fvl-2020-0188] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Regulatory roles of long noncoding RNAs (lncRNAs) during viral infection has become more evident in last decade, but are yet to be explored for SARS-CoV-2. MATERIALS & METHODS We analyzed RNA-seq dataset of SARS-CoV-2 infected lung epithelial cells to identify differentially expressed genes. RESULTS Our analyses uncover 21 differentially expressed lncRNAs broadly involved in cell survival and regulation of gene expression. These lncRNAs can directly interact with six differentially expressed protein-coding genes, and ten host genes that interact with SARS-CoV-2 proteins. Also, they can block the suppressive effect of nine microRNAs induced in viral infections. CONCLUSION Our investigation determines that deregulated lncRNAs in SARS-CoV-2 infection are involved in viral proliferation, cellular survival, and immune response, ultimately determining disease outcome.
Collapse
Affiliation(s)
- Rafeed Rahman Turjya
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | | | | |
Collapse
|
21
|
Wang HJ, Tang XL, Huang G, Li YB, Pan RH, Zhan J, Wu YK, Liang JF, Bai XX, Cai J. Long Non-Coding KCNQ1OT1 Promotes Oxygen-Glucose-Deprivation/Reoxygenation-Induced Neurons Injury Through Regulating MIR-153-3p/FOXO3 Axis. J Stroke Cerebrovasc Dis 2020; 29:105126. [PMID: 32912499 DOI: 10.1016/j.jstrokecerebrovasdis.2020.105126] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/15/2020] [Accepted: 07/01/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Long non-coding RNAs (LncRNAs) have been reported to play important roles in the pathogenesis and development of many diseases, including cerebral ischemia and reperfusion (I/R) injury. In this study, we aimed to investigate the role of LncRNA-Potassium Voltage-Gated Channel Subfamily Q Member 1 opposite strand/antisense transcript 1 (KCNQ1OT1) in cerebral I/R induced neuronal injury, and its underlying mechanisms. METHODS Primary mouse cerebral cortical neurons treated with oxygen-glucose deprivation and reoxygenation (OGD/R) in vitro and mice subjected to middle cerebral artery occlusion (MCAO) and reperfusion were used to mimic cerebral I/R injury. Small inference RNA (siRNA) was used to knockdown KCNQ1OT1 or microRNA-153-3p (miR-153-3p). Dual-luciferase assay was performed to detect the interaction between KCNQ1OT1 and miR-153-3p and interaction between miR-153-3p and Fork head box O3a (Foxo3). Flow cytometry analysis was performed to detect neuronal apoptosis. qRT-PCR and Western blotting were performed to detect RNA and protein expressions. RESULTS KCNQ1OT1 and Foxo3 expressions were significantly increased in neurons subjected to I/R injury in vitro and in vivo, and miR-153-3p expression were significantly decreased. Knockdown of KCNQ1OT1 or overexpression of miR-153-3p weakened OGD/R-induced neuronal injury and regulated Foxo3 expressions. Dual-luciferase analysis showed that KCNQ1OT1 directly interacted with miR-153-3p and Foxo3 is a direct target of miR-153-3p. CONCLUSIONS Our results indicate that LncRNA-KCNQ1OT1 promotes OGD/R-induced neuronal injury at least partially through acting as a competing endogenous RNA (ceRNA) for miR-153-3p to regulate Foxo3a expression, suggesting LncRNA-KCNQ1OT1 as a potential therapeutic target for cerebral I/R injury.
Collapse
Affiliation(s)
- Hua-Jun Wang
- Diagnosis and Treatment Center of Encephalopathy, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China; Department of Neurosurgery, Hospital of Guangzhou University Mega Center, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510006, China
| | - Xia-Lin Tang
- Diagnosis and Treatment Center of Encephalopathy, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Gan Huang
- Postdoctoral Center, Yangjiang Hospital of Chinese Medicine, Yangjiang 529500, China
| | - Ying-Bin Li
- Department of Neurosurgery, Hospital of Guangzhou University Mega Center, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510006, China
| | - Rui-Huan Pan
- Diagnosis and Treatment Center of Encephalopathy, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Jie Zhan
- Diagnosis and Treatment Center of Encephalopathy, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Ye-Kun Wu
- Postdoctoral Center, Yangjiang Hospital of Chinese Medicine, Yangjiang 529500, China
| | - Jian-Feng Liang
- Postdoctoral Center, Yangjiang Hospital of Chinese Medicine, Yangjiang 529500, China
| | - Xiao-Xin Bai
- Diagnosis and Treatment Center of Encephalopathy, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China; Department of Neurosurgery, Hospital of Guangzhou University Mega Center, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510006, China.
| | - Jun Cai
- Diagnosis and Treatment Center of Encephalopathy, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China; Department of Neurosurgery, Hospital of Guangzhou University Mega Center, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510006, China.
| |
Collapse
|