1
|
Mercante A, Nardocci N, Fernández-Alvarez E, Lumsden DE, Hauer J, Bernadá M, Drake R, Kreicbergs U, Palomo-Carrión R, Gemma M, Coubes P, Fasano A, Lin JP, Benini F, Pediatric Dystonia and Palliative Care Group and the European Paediatric Neurology Society (EPNS). Towards new perspectives: International consensus guidance on dystonia in pediatric palliative care. Eur J Paediatr Neurol 2025; 56:24-37. [PMID: 40267817 DOI: 10.1016/j.ejpn.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/23/2025] [Accepted: 04/03/2025] [Indexed: 04/25/2025]
Abstract
BACKGROUND Pediatric dystonias are associated with a broad spectrum of etiologies, resulting in a heterogeneous patient population in whom clinical presentation, evolution, and therapeutic needs may differ. These neurological symptoms are particularly common in children and adolescents with life-limiting and life-threatening conditions requiring pediatric palliative care (PPC). The impact on the child's quality of life is significant, as is distress for caregivers. Addressing and alleviating dystonia is key to providing good palliative care; however, there is limited evidence. A greater recognition and management of dystonia in this setting is urgently needed to provide appropriate interventions and care. OBJECTIVES To develop a standardized approach to dystonia in PPC. MATERIALS AND METHODS A two-round Delphi process explored the views of experts on the definition, assessment, monitoring, and treatment of dystonia in PPC. Professionals from different backgrounds and disciplines were invited worldwide. The final panel comprised 71 participants who completed a multi-statement online questionnaire. RESULTS Fifty-three items were endorsed, providing expert, consensus-based recommendations. CONCLUSIONS The limited clinical knowledge of childhood dystonia represents a challenge, especially in children with palliative care needs. This study is a first international consensus on dystonia in PPC and offers novel approaches to improving the dystonia-related burden and advancing clinical practice in this vulnerable population.
Collapse
Affiliation(s)
- Anna Mercante
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy.
| | - Nardo Nardocci
- Dipartimento di Neuroscienze Pediatriche Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milano, Italy
| | | | - Daniel E Lumsden
- Complex Motor Disorder Service, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK; Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Julie Hauer
- Division of General Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Mercedes Bernadá
- Pereira Rossell Hospital Center and Asociación Española Pediatric Palliative Care Units, Montevideo, Uruguay
| | - Ross Drake
- Queensland Paediatric Palliative Care Service and Queensland Interdisciplinary Paediatric Persistent Pain Service, Queensland Children's Hospital, South Brisbane, Australia
| | - Ulrika Kreicbergs
- The Department of Women's and Children's Health, Paediatric Oncology and Haematology, Karolinska Institutet, Karolinska University Hospital, Astrid Lindgren Children's Hospital, Childhood Cancer Research Unit, Stockholm, Sweden; Department of Population, Policy and Practice, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Rocío Palomo-Carrión
- Nursing, Physiotherapy and Occupational Therapy Department. Faculty of Physiotherapy and Nursing, University of Castilla-La Mancha, Toledo, Spain
| | - Marco Gemma
- Neuroanesthesia and Intensive Care Unit Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Philippe Coubes
- Unité Pathologies Cérébrales Résistantes et Unité de Recherche sur ses Comportements et Mouvements Anormaux (URCMA), Département de Neurochirurgie, CHU Montpellier, France
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN. Division of Neurology, University of Toronto, Toronto, Ontario, Canada; Krembil Brain Institute, Toronto, Ontario, Canada
| | - Jean-Pierre Lin
- Complex Motor Disorder Service, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK; Children's Neurosciences, Department of Women and Children, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Franca Benini
- Pediatric Palliative Care, Pain Service, Department of Women's and Children's Health, University Hospital of Padua, Padua, Italy
| | | |
Collapse
|
2
|
Pascual M, Bisarad P, Kelbert J, Chinander S, Gelineau-Morel R, Gorodetsky C, Hewitt AL, Larsh T, Lucente N, O'Malley J, Sanger TD, van der Werf L, Hauptman JS, Ponce FA, Kruer MC, Thompson JA. Stimulation-related increases in power spectral density covary with clinical evidence of overstimulation during deep brain stimulation for pediatric dystonia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.05.25322884. [PMID: 40093213 PMCID: PMC11908308 DOI: 10.1101/2025.03.05.25322884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
BACKGROUND Dystonia patients undergoing deep brain stimulation (DBS) often require individualized stimulation settings. While effective settings reduce dystonia, excessive stimulation can worsen symptoms. Assessing DBS effects during office visits is challenging, as clinical changes can be delayed hours to days. OBJECTIVES We evaluated whether local field potentials (LFPs) could serve as an acute biomarker of excessive stimulation in dystonia patients. METHODS Real-time LFP band power and dystonia severity were quantified and compared during sequential changes in stimulation amplitude. RESULTS Dystonia worsening was temporally associated with clinically evident and statistically significant increases in LFP band power during in-office DBS programming sessions. CONCLUSIONS Although increased LFP band power correlated with clear clinical worsening in these patients, we anticipate that not all patients with dystonia will have such immediate signs of worsening. Increased LFP band power during incremented stimulation amplitude may represent a biomarker for patients at-risk of manifesting delayed clinical worsening.
Collapse
Affiliation(s)
- Madelyn Pascual
- Pediatric Movement Disorders Program, Department of Neurology, Barrow Neurological Institute, Phoenix Children's, Phoenix, Arizona, USA
| | - Pritha Bisarad
- Departments of Cellular & Molecular Medicine, Child Health, Neurology and Translational Neuroscience and Program in Genetics, University of Arizona College of Medicine - Phoenix, Phoenix, Arizona, USA
| | - James Kelbert
- Departments of Cellular & Molecular Medicine, Child Health, Neurology and Translational Neuroscience and Program in Genetics, University of Arizona College of Medicine - Phoenix, Phoenix, Arizona, USA
| | - Sarah Chinander
- Department of Rehabilitation Therapy, Phoenix Children's, Phoenix, Arizona, USA
| | - Rose Gelineau-Morel
- Department of Neurology, Children's Mercy Medical Center, Kansas City, MO, USA
| | | | - Angela L Hewitt
- Department of Neurology, University of Rochester, Rochester, NY, USA
| | - Travis Larsh
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Nicole Lucente
- Department of Rehabilitation Therapy, Phoenix Children's, Phoenix, Arizona, USA
| | | | - Terrence D Sanger
- Department of Neurology, Children's Hospital of Orange County, Los Angeles, CA, USA
| | - Lauren van der Werf
- Department of Rehabilitation Therapy, Phoenix Children's, Phoenix, Arizona, USA
| | - Jason S Hauptman
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix Children's, Phoenix, Arizona, USA
| | - Francisco A Ponce
- Department of Neurosurgery, Barrow Neurological Institute, Dignity Health, Phoenix, Arizona, USA
| | - Michael C Kruer
- Pediatric Movement Disorders Program, Department of Neurology, Barrow Neurological Institute, Phoenix Children's, Phoenix, Arizona, USA
- Departments of Cellular & Molecular Medicine, Child Health, Neurology and Translational Neuroscience and Program in Genetics, University of Arizona College of Medicine - Phoenix, Phoenix, Arizona, USA
- Program in Biomedical Informatics, College of Health Solutions and Programs in Neuroscience and Molecular & Cellular Biology, School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - John A Thompson
- Departments of Neurology & Neurosurgery, Anschutz Medical Campus, University of Colorado - Aurora, Aurora, Colorado, USA
| |
Collapse
|
3
|
Lumsden DE, Tsagkaris S, Cleary J, Champion M, Mundy H, Mostofi A, Hasegawa H, McClelland VM, Bhattacharjee S, Silverdale M, Gimeno H, Ashkan K, Selway R, Kaminska M, Hammers A, Lin JP. Outcomes of deep brain stimulation surgery in the management of dystonia in glutaric aciduria type 1. J Neurol 2025; 272:234. [PMID: 40025312 PMCID: PMC11872982 DOI: 10.1007/s00415-025-12942-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 03/04/2025]
Abstract
OBJECTIVES Glutaric aciduria type 1 (GA1) is a rare autosomal recessive organic acidaemia caused by deficiency of the glutaryl-CoA dehydrogenase enzyme. We describe the outcomes following deep brain stimulation (DBS) for the management of dystonia of children and adults with glutaric aciduria type 1 (GA1). METHODS Cases with GA1 were identified from the institutional databases of two tertiary movement disorder services. Data were extracted from clinical records using a standardised proforma, including baseline clinical characteristics, imaging and neurophysiological findings, complications post-surgery, and outcomes as measured by the Burke-Fahn-Marsden Dystonia Rating Scale (BMFDRS) motor scores and the Canadian Occupation Performance Measure (COPM). RESULTS A total of 15 children were identified aged 3-17.5 with a median age of 11.5 years at neurosurgery, and one adult undergoing DBS aged 31 years. Baseline BMFDRS motor score ranged from 58.5-114, median 105. GMFCS-equivalence level was 5 (i.e. non-ambulant) for 10/16 cases. Surgery was tolerated in all cases without evidence of metabolic decompensation. BFMDRS motor score 1-year post-surgery ranged from 57.5-108.5 (median 97.25) and at last follow-up 57.5-112 (median 104) (no statistically significant change compared to baseline at either time point, P > 0.05). COPM data were available for 11/13 children and young people (CAYP). Clinically significant improvement was reported in 7/11 at 1 year and 8/11 at last follow-up. Four CAYP transitioned to adult services. Death occurred in three cases during follow-up, in no case related to DBS. CONCLUSION DBS may be considered as a management option for children with GA1 who have appropriately selected goals for intervention.
Collapse
Affiliation(s)
- Daniel E Lumsden
- Complex Motor Disorder Service, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, Floor 2, Beckett House, Westminster Bridge Road, London, SE1 7DB, UK.
- Research Department of Early Life Imaging, Biomedical Engineering and Imaging Sciences, King's College London, London, UK.
| | - Stavros Tsagkaris
- King's College London and Guy's and St Thomas' PET Centre, Research Department of Biomedical Computing, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Jon Cleary
- Neuroradiology, Department of Radiology, Guy's and St Thomas' NHS Foundation Trust, London, UK
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Michael Champion
- Inherited Metabolic Disease, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Helen Mundy
- Inherited Metabolic Disease, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Abteen Mostofi
- Functional Neurosurgery, King's College Hospital, London, UK
| | | | - Verity M McClelland
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
- Department of Clinical Neurophysiology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Shakya Bhattacharjee
- Neurology, Queen Elizabeth Hospital, University Hospital Birmingham NHS Foundation Trust and Russells Hall Hospital, Dudley Group Foundation Trust, Birmingham, UK
| | - Monty Silverdale
- Department of Neurology and Neurosurgery, Salford Royal Hospital NHS Foundation Trust, Salford, UK
| | - Hortensia Gimeno
- Barts NHS Health and Queen Mary University of London, Wolfson Institute of Population Health, Centre for Preventive Neurology, London, UK
| | | | - Richard Selway
- Functional Neurosurgery, King's College Hospital, London, UK
| | - Margaret Kaminska
- Complex Motor Disorder Service, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, Floor 2, Beckett House, Westminster Bridge Road, London, SE1 7DB, UK
| | - Alexander Hammers
- King's College London and Guy's and St Thomas' PET Centre, Research Department of Biomedical Computing, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Jean-Pierre Lin
- Complex Motor Disorder Service, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, Floor 2, Beckett House, Westminster Bridge Road, London, SE1 7DB, UK
- Department for Women and Children, Faculty of Life Sciences and Medicine, Kings College London, London, UK
| |
Collapse
|
4
|
Mofatteh M, Mohamed A, Mashayekhi MS, Skandalakis GP, Neudorfer C, Arfaie S, MohanaSundaram A, Sabahi M, Anand A, Aboulhosn R, Liao X, Horn A, Ashkan K. Deep brain stimulation of the hypothalamic region: a systematic review. Acta Neurochir (Wien) 2025; 167:33. [PMID: 39904782 PMCID: PMC11794333 DOI: 10.1007/s00701-025-06430-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 01/08/2025] [Indexed: 02/06/2025]
Abstract
BACKGROUND Deep brain stimulation (DBS) has been successfully used for the treatment of circuitopathies including movement, anxiety, and behavioral disorders. The hypothalamus is a crucial integration center for many peripheral and central pathways relating to cardiovascular, metabolic, and behavioral functions and constitutes a potential target for neuromodulation in treatment-refractory conditions. To conduct a systematic review, investigating hypothalamic targets in DBS, their indications, and the primary clinical findings. METHODS PubMed, Scopus, and Web of Science databases were searched in accordance with the PRISMA guideline to identify papers published in English studying DBS of the hypothalamus in humans. RESULTS After screening 3,148 papers, 34 studies consisting of 412 patients published over two decades were included in the final review. Hypothalamic DBS was indicated in refractory headaches (n = 238, 57.8%), aggressive behavior (n = 100, 24.3%), mild Alzheimer's disease (n = 58, 14.1%), trigeminal neuralgia in multiple sclerosis (n = 5, 1.2%), Prader-Willi syndrome (n = 4, 0.97%), and atypical facial pain (n = 3, 0.73%). The posterior hypothalamus was the most common DBS target site across 30 studies (88.2%). 262 (63.6%) participants were males, and 110 (26.7%) were females. 303 (73.5%) patients were adults whereas 33 (8.0%) were pediatrics. The lowest mean age of participants was 15.25 ± 4.6 years for chronic refractory aggressiveness, and the highest was 68.5 ± 7.9 years in Alzheimer's disease patients. The mean duration of the disease ranged from 2.2 ± 1.7 (mild Alzheimer's disease) to 19.8 ± 10.1 years (refractory headaches). 213 (51.7%) patients across 29 studies (85.3%) reported symptom improvements which ranged from 23.1% to 100%. 25 (73.5%) studies reported complications, most of which were associated with higher voltage stimulations. CONCLUSIONS DBS of the hypothalamus is feasible in selected patients with various refractory conditions ranging from headaches to aggression in both pediatric and adult populations. Future large-scale studies with long-term follow-up are required to validate the safety and efficacy data and extend these findings.
Collapse
Affiliation(s)
- Mohammad Mofatteh
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
- Neuro International Collaboration (NIC), London, UK.
| | - Abdulkadir Mohamed
- Medical Sciences Division, University of Oxford, Oxford, UK
- Neuro International Collaboration (NIC), Oxford, UK
| | - Mohammad Sadegh Mashayekhi
- Faculty of Medicine, Division of Neurosurgery, University of Ottawa, Ottawa, ON, Canada
- Neuro International Collaboration (NIC), Vancouver, Ottawa, ON, Canada
| | - Georgios P Skandalakis
- Department of Neurosurgery, Evangelismos General Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Section of Neurosurgery, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
| | - Clemens Neudorfer
- Brain Modulation Lab, Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Center for Brain Circuit Therapeutics Department of Neurology Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité -Universitätsmedizin Berlin, corporate member of, Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Saman Arfaie
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Division of Neurosurgery, Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- Neuro International Collaboration (NIC), Montreal, QC, Canada
| | | | - Mohammadmahdi Sabahi
- Department of Neurological Surgery, Pauline Braathen Neurological Center, Cleveland Clinic Florida, Weston, FL, USA
| | - Ayush Anand
- Koirala Institute of Health Sciences, B. P, Dharan, Nepal
| | | | - Xuxing Liao
- Department of Neurosurgery, First People's Hospital of Foshan, Foshan, Guangdong Province, China
| | - Andreas Horn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Departments of Neurology and Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Keyoumars Ashkan
- Neuro International Collaboration (NIC), London, UK
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
- King's Health Partners Academic Health Sciences Centre, London, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
5
|
Aravamuthan BR, Lott E, Pehlivan E, Chintalapati K, Grenard D, Roge D, Gelineau-Morel R, Kyle D, Becu C, Kruer M, Katus L, Gross P, Bailes A. Multi-center improvement in screening for dystonia in young people with cerebral palsy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.13.24313431. [PMID: 39314964 PMCID: PMC11419284 DOI: 10.1101/2024.09.13.24313431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Background and Objectives Dystonia is a common, debilitating, and often treatment refractory motor symptom of cerebral palsy (CP), affecting 70-80% of this population based on research assessments. However, routine clinical evaluation for dystonia in CP has failed to match these expected numbers. Addressing this diagnostic gap is a medical imperative because the presence of dystonia rules in or out certain treatments for motor symptoms in CP. Therefore, our objective was to optimize rates of clinical dystonia screening to improve rates of clinical dystonia diagnosis. Methods Using the quality improvement (QI) infrastructure of the Cerebral Palsy Research Network (CPRN), we developed and implemented interventions to increase the documentation percentage of five features of dystonia in young people with CP, aged 3-21 years old. This QI initiative was implemented by seven physiatry and pediatric movement disorders physicians at four tertiary-care pediatric hospitals between 10/10/21 and 7/1/23. We collected visit data cross-sectionally across all participating sites every 2 weeks and tracked our progress using control charts. Results We assessed 847 unique visits, mostly for established patients (719/847, 85%) who were 9.2 years old on average (95% CI 8.8-9.5). By 4/10/22, the mean percentage of dystonia screening elements documented across all sites rose from 39% to 90% and the mean percentage of visits explicitly documenting the presence or absence of dystonia rose from 65% to 94%. By 10/23/22, the percentage of visits diagnosing dystonia rose from 57% to 74%. These increases were all sustained through the end of the study period in 7/1/23. Discussion Using a rigorous QI-driven process across four member sites of a North American learning health network (CPRN), we demonstrated that we could increase screening for dystonia and that this was associated with increased clinical dystonia diagnosis, matching expected research-based rates. We propose that similar screening should take place across all sites caring for people with CP.
Collapse
|
6
|
Lasa-Aranzasti A, Larasati YA, da Silva Cardoso J, Solis GP, Koval A, Cazurro-Gutiérrez A, Ortigoza-Escobar JD, Miranda MC, De la Casa-Fages B, Moreno-Galdó A, Tizzano EF, Gómez-Andrés D, Verdura E, Katanaev VL, Pérez-Dueñas B. Clinical and Molecular Profiling in GNAO1 Permits Phenotype-Genotype Correlation. Mov Disord 2024; 39:1578-1591. [PMID: 38881224 DOI: 10.1002/mds.29881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/07/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND Defects in GNAO1, the gene encoding the major neuronal G-protein Gαo, are related to neurodevelopmental disorders, epilepsy, and movement disorders. Nevertheless, there is a poor understanding of how molecular mechanisms explain the different phenotypes. OBJECTIVES We aimed to analyze the clinical phenotype and the molecular characterization of GNAO1-related disorders. METHODS Patients were recruited in collaboration with the Spanish GNAO1 Association. For patient phenotyping, direct clinical evaluation, analysis of homemade-videos, and an online questionnaire completed by families were analyzed. We studied Gαo cellular expression, the interactions of the partner proteins, and binding to guanosine triphosphate (GTP) and G-protein-coupled receptors (GPCRs). RESULTS Eighteen patients with GNAO1 genetic defects had a complex neurodevelopmental disorder, epilepsy, central hypotonia, and movement disorders. Eleven patients showed neurological deterioration, recurrent hyperkinetic crisis with partial recovery, and secondary complications leading to death in three cases. Deep brain stimulation improved hyperkinetic crisis, but had inconsistent benefits in dystonia. The molecular defects caused by pathogenic Gαo were aberrant GTP binding and hydrolysis activities, an inability to interact with cellular binding partners, and reduced coupling to GPCRs. Decreased localization of Gαo in the plasma membrane was correlated with the phenotype of "developmental and epileptic encephalopathy 17." We observed a genotype-phenotype correlation, pathogenic variants in position 203 were related to developmental and epileptic encephalopathy, whereas those in position 209 were related to neurodevelopmental disorder with involuntary movements. Milder phenotypes were associated with other molecular defects such as del.16q12.2q21 and I344del. CONCLUSION We highlight the complexity of the motor phenotype, which is characterized by fluctuations throughout the day, and hyperkinetic crisis with a distinct post-hyperkinetic crisis state. We confirm a molecular-based genotype-phenotype correlation for specific variants. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Amaia Lasa-Aranzasti
- Department of Clinical and Molecular Genetics, Vall d'Hebron University Hospital, Barcelona, Spain
- Pediatric Neurology Research Group, Vall d'Hebron Research Institute (VHIR), Autonomous University of Barcelona, Barcelona, Spain
- Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Autonomous University of Barcelona, Barcelona, Spain
- Department of Pediatrics, Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability ERN-ITHACA, Paris, France
| | - Yonika A Larasati
- Translational Research Centre in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Juliana da Silva Cardoso
- Pediatric Neurology Research Group, Vall d'Hebron Research Institute (VHIR), Autonomous University of Barcelona, Barcelona, Spain
- Serviço de Pediatria do Centro Materno infantil do Norte, Centro Hospitalar Universitário de Santo António, Porto, Portugal
| | - Gonzalo P Solis
- Translational Research Centre in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Alexey Koval
- Translational Research Centre in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ana Cazurro-Gutiérrez
- Pediatric Neurology Research Group, Vall d'Hebron Research Institute (VHIR), Autonomous University of Barcelona, Barcelona, Spain
- Department of Pediatrics, Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Juan Dario Ortigoza-Escobar
- Movement Disorders Unit, Department of Child Neurology, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- U-703 Center for Biomedical Research on Rare Diseases (CIBER-ER), Instituto de Salud Carlos III, Barcelona, Spain
- European Reference Network-Rare Neurological Diseases (ERN-RND), Barcelona, Spain
| | - Maria Concepción Miranda
- European Reference Network-Rare Neurological Diseases (ERN-RND), Barcelona, Spain
- Department of Pediatrics Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Beatriz De la Casa-Fages
- European Reference Network-Rare Neurological Diseases (ERN-RND), Barcelona, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Movement Disorders Unit, Neurology Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Antonio Moreno-Galdó
- Department of Pediatrics, Universitat Autónoma de Barcelona, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- CIBER of Rare diseases (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Eduardo F Tizzano
- Department of Clinical and Molecular Genetics, Vall d'Hebron University Hospital, Barcelona, Spain
- Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Autonomous University of Barcelona, Barcelona, Spain
- European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability ERN-ITHACA, Paris, France
| | - David Gómez-Andrés
- Pediatric Neurology Research Group, Vall d'Hebron Research Institute (VHIR), Autonomous University of Barcelona, Barcelona, Spain
- European Reference Network-Rare Neurological Diseases (ERN-RND), Barcelona, Spain
- Department of Neurology, Vall Hebron University Hospital Barcelona, Barcelona, Spain
| | - Edgard Verdura
- Pediatric Neurology Research Group, Vall d'Hebron Research Institute (VHIR), Autonomous University of Barcelona, Barcelona, Spain
| | - Vladimir L Katanaev
- Translational Research Centre in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok, Russia
| | - Belén Pérez-Dueñas
- Pediatric Neurology Research Group, Vall d'Hebron Research Institute (VHIR), Autonomous University of Barcelona, Barcelona, Spain
- Department of Pediatrics, Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- European Reference Network-Rare Neurological Diseases (ERN-RND), Barcelona, Spain
- Department of Pediatrics, Universitat Autónoma de Barcelona, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- CIBER of Rare diseases (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
7
|
Loução R, Burkhardt J, Wirths J, Kabbasch C, Dembek TA, Heiden P, Cirak S, Al-Fatly B, Treuer H, Visser-Vandewalle V, Hoevels M, Koy A. Diffusion tensor imaging in pediatric patients with dystonia. Neuroimage 2024; 287:120507. [PMID: 38244876 DOI: 10.1016/j.neuroimage.2024.120507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/15/2023] [Accepted: 01/03/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Childhood-onset dystonia is often progressive and severely impairs a child´s life. The pathophysiology is very heterogeneous and treatment responses vary in patients with dystonia. Factors influencing treatment effects remain to be elucidated. We hypothesize that differences in brain connectivity and fiber coherence contribute to the heterogeneity in treatment response among pediatric patients with inherited and acquired dystonia. METHODS Twenty patients with childhood-onset dystonia were retrospectively recruited including twelve patients with inherited or idiopathic, and eight patients with acquired dystonia (mean age 10 years; 8 female/12 male). Fiber density between the internal part of the globus pallidus and selective target regions, as well as the diffusion measures of fractional anisotropy (FA) and mean diffusivity (MD) were analyzed and compared between different etiologies. RESULTS Patients with acquired dystonia presented higher fiber density to the premotor cortex and putamen and lower FA values in the thalamus compared to patients with inherited/idiopathic dystonia. MD in the premotor cortex was higher in patients with acquired dystonia, while it was lower in the thalamus. CONCLUSION Diffusion MRI reveals microstructural and network alterations in patients with dystonia of different etiologies.
Collapse
Affiliation(s)
- Ricardo Loução
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, Kerpener Straße 62, Cologne 50937, Germany; Department of Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| | - Julia Burkhardt
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, Kerpener Straße 62, Cologne 50937, Germany
| | - Jochen Wirths
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, Kerpener Straße 62, Cologne 50937, Germany
| | - Christoph Kabbasch
- Department of Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Till A Dembek
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Petra Heiden
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, Kerpener Straße 62, Cologne 50937, Germany; Department of Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Sebahattin Cirak
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Bassam Al-Fatly
- Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Harald Treuer
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, Kerpener Straße 62, Cologne 50937, Germany
| | - Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, Kerpener Straße 62, Cologne 50937, Germany
| | - Mauritius Hoevels
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, Kerpener Straße 62, Cologne 50937, Germany
| | - Anne Koy
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
8
|
Jaleel F, Rust A, Cheung S, Pearson TS, Ueda K, Robichaux‐Viehoever A, Leger K, Chintalapati K, Guez‐Barber D, Shusterman M, Aravamuthan B. Caregiver descriptions of dystonia in cerebral palsy. Ann Clin Transl Neurol 2024; 11:242-250. [PMID: 38174361 PMCID: PMC10863918 DOI: 10.1002/acn3.51941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/18/2023] [Accepted: 10/18/2023] [Indexed: 01/05/2024] Open
Abstract
OBJECTIVE To determine how caregivers describe dystonia in people with cerebral palsy (CP). METHODS In this prospective cohort study, paper surveys were administered to caregivers between September 7, 2021 and October 28, 2021 during CP Center visits at a large tertiary care center. Caregivers were asked to describe involuntary movements triggered by voluntary movement or triggered by tactile stimulation in the people with CP they cared for. Their CP Center medical provider separately assessed people with CP for dystonia. Movement features described exclusively by caregivers of people with CP and dystonia were determined using conventional content analysis. RESULTS 113 caregivers responded on behalf of 56 people with and 57 people without dystonia. If caregivers noted that both voluntary movement and tactile stimulation triggered involuntary movements, that had a 92% positive predictive value for a dystonia diagnosis. Movement features exclusively described in people with CP and dystonia included: (1) stiffening, tensing, or tightening (15% of respondents); (2) involvement of the head (10%), torso (5%), or feet (5%); and (3) triggers of stretching (12.5%), excitement (5%), or transfers (5%). INTERPRETATION In addition to a thorough exam, asking caregivers of people with CP to describe involuntary movements triggered by voluntary movement or tactile stimulation may inform clinical dystonia diagnosis.
Collapse
Affiliation(s)
- Fayza Jaleel
- Division of Pediatric Neurology, Department of NeurologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Alyssa Rust
- Division of Pediatric Neurology, Department of NeurologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Shirley Cheung
- Division of Pediatric Neurology, Department of NeurologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Toni S. Pearson
- Division of Pediatric Neurology, Department of NeurologyWashington University School of MedicineSt. LouisMissouriUSA
- Division of Neurology, Nationwide Children's HospitalOhio State UniversityColumbusOhioUSA
| | - Keisuke Ueda
- Division of Pediatric Neurology, Department of NeurologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Amy Robichaux‐Viehoever
- Division of Pediatric Neurology, Department of NeurologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Katie Leger
- Division of Pediatric Neurology, Department of NeurologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Keerthana Chintalapati
- Division of Pediatric Neurology, Department of NeurologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Danielle Guez‐Barber
- Division of Child Neurology, Department of PediatricsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Department of Neurology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | - Bhooma Aravamuthan
- Division of Pediatric Neurology, Department of NeurologyWashington University School of MedicineSt. LouisMissouriUSA
| |
Collapse
|
9
|
Torgerson LN, Munoz K, Kostick K, Zuk P, Blumenthal-Barby J, Storch EA, Lázaro-Muñoz G. Clinical and Psychosocial Factors Considered When Deciding Whether to Offer Deep Brain Stimulation for Childhood Dystonia. Neuromodulation 2023; 26:1646-1652. [PMID: 35088744 DOI: 10.1016/j.neurom.2021.10.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/20/2021] [Accepted: 10/11/2021] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Childhood dystonia is often nonresponsive to medications, and refractory cases are increasingly being treated with deep brain stimulation (DBS). However, many have noted that there is little consensus about when DBS should be offered, and there has been little examination of clinicians' decision-making process when determining whether to offer DBS for childhood dystonia. OBJECTIVES This study aimed to identify and examine the factors considered by pediatric movement disorder specialists before offering DBS. MATERIALS AND METHODS Semistructured interviews (N = 29) with pediatric dystonia clinicians were conducted, transcribed, and coded. Using thematic content analysis, nine central themes were identified when clinicians were asked about key factors, clinical factors, and psychosocial factors considered before offering pediatric DBS. RESULTS Clinicians identified nine main factors. Five of these were classified primarily as clinical factors: early intervention and younger age (raised by 86% of respondents), disease progression and symptom severity (83%), etiology and genetic status (79%), clinicians' perceived risks and benefits of DBS for the patient (79%), and exhaustion of other treatment options (55%). The remaining four were classified primarily as psychosocial factors: social and family support (raised by 97% of respondents), patient and caregiver expectations about outcomes and understanding of DBS treatment (90%), impact of dystonia on quality of life (69%), and financial resources and access to care (31%). CONCLUSIONS Candidacy determinations, in this context, are complicated by an interrelation of clinical and psychosocial factors that contribute to the decision. There is potential for bias when considering family support and quality of life. Uncertainty of outcomes related to the etiology of dystonia makes candidacy judgments challenging. More systematic examination of the characteristics and criteria used to identify pediatric patients with dystonia who can significantly benefit from DBS is necessary to develop clear guidelines and promote the well-being of these children.
Collapse
Affiliation(s)
- Laura N Torgerson
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, USA
| | - Katrina Munoz
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, USA
| | - Kristin Kostick
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, USA
| | - Peter Zuk
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, USA
| | | | - Eric A Storch
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | | |
Collapse
|
10
|
Basoya S, Kumar S, Wanjari A. Cerebral Palsy: A Narrative Review on Childhood Disorder. Cureus 2023; 15:e49050. [PMID: 38116360 PMCID: PMC10728574 DOI: 10.7759/cureus.49050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 11/19/2023] [Indexed: 12/21/2023] Open
Abstract
Cerebral palsy, one of the most common reasons for infirmity in children and young people in developed countries, refers to several neurological diseases that impact movement and coordination. Central nervous system damage received during the first stages of brain development can cause cerebral palsy, a non-progressive condition that manifests as impairments of movement and posture. Two cases per 1000 are reported, and the causes include those mentioned for high-risk infants. Mental retardation, sensory deficiencies, failure to thrive, seizures, and behavioral or emotional issues are some of the associated difficulties. To enable interdisciplinary intervention, early identification is crucial. The result varies depending on the topography, severity, and presence of concomitant abnormalities in cerebral palsy. Cerebral palsy is caused by a static injury to the cerebral motor cortex that happens before, during, or within five years after birth. Various circumstances can influence the disease, including cerebral anoxia, cerebral hemorrhage, infection, and hereditary disorders. Interventions for children are typically provided as part of multidisciplinary rehabilitation programs. Musculoskeletal complaints are common, and pain is a significant underreported symptom.
Collapse
Affiliation(s)
- Sakshi Basoya
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sunil Kumar
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Anil Wanjari
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
11
|
Koy A, Kühn AA, Schiller P, Huebl J, Schneider GH, Eckenweiler M, Rensing-Zimmermann C, Coenen VA, Krauss JK, Saryyeva A, Hartmann H, Lorenz D, Volkmann J, Matthies C, Schnitzler A, Vesper J, Gharabaghi A, Weiss D, Bevot A, Marks W, Howser A, Monbaliu E, Mueller J, Prinz-Langenohl R, Visser-Vandewalle V, Timmermann L. Long-Term Follow-Up of Pediatric Patients with Dyskinetic Cerebral Palsy and Deep Brain Stimulation. Mov Disord 2023; 38:1736-1742. [PMID: 37358761 DOI: 10.1002/mds.29516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/16/2023] [Accepted: 06/05/2023] [Indexed: 06/27/2023] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) has been increasingly used in the management of dyskinetic cerebral palsy (DCP). Data on long-term effects and the safety profile are rare. OBJECTIVES We assessed the efficacy and safety of pallidal DBS in pediatric patients with DCP. METHODS The STIM-CP trial was a prospective, single-arm, multicenter study in which patients from the parental trial agreed to be followed-up for up to 36 months. Assessments included motor and non-motor domains. RESULTS Of the 16 patients included initially, 14 (mean inclusion age 14 years) were assessed. There was a significant change in the (blinded) ratings of the total Dyskinesia Impairment Scale at 36 months. Twelve serious adverse events (possibly) related to treatment were documented. CONCLUSION DBS significantly improved dyskinesia, but other outcome parameters did not change significantly. Investigations of larger homogeneous cohorts are needed to further ascertain the impact of DBS and guide treatment decisions in DCP. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Anne Koy
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Andrea A Kühn
- Department of Neurology, Charité University Medicine Berlin, Berlin, Germany
| | - Petra Schiller
- Institute of Medical Statistics and Computational Biology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Julius Huebl
- Department of Neurology, Charité University Medicine Berlin, Berlin, Germany
- Department of Neurology, Munich Municipal Hospital Bogenhausen, Munich, Germany
| | | | - Matthias Eckenweiler
- Department of Neuropediatrics and Muscle Disorders, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Cornelia Rensing-Zimmermann
- Department of Neuropediatrics and Muscle Disorders, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Volker Arnd Coenen
- Department of Stereotactic and Functional Neurosurgery, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Deep Brain Stimulation, University Medical Center, Freiburg, Germany
| | - Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Assel Saryyeva
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Hans Hartmann
- Clinic for Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Delia Lorenz
- Department of Pediatrics, University Children's Hospital, Wuerzburg, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Cordula Matthies
- Department of Stereotactic and Functional Neurosurgery, University Hospital Würzburg, Würzburg, Germany
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jan Vesper
- Department of Functional Neurosurgery and Stereotaxy, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Alireza Gharabaghi
- Institute for Neuromodulation and Neurotechnology, Department of Neurosurgery and Neurotechnology, University Hospital and University of Tübingen, Tübingen, Germany
| | - Daniel Weiss
- Department of Neurology, Medical Faculty, University of Tübingen, Tübingen, Germany
| | - Andrea Bevot
- Department of Pediatric Neurology and Developmental Medicine, University Children's Hospital Tübingen, Tübingen, Germany
| | - Warren Marks
- Department of Neurology, Cook Children's Medical Center, Fort Worth, Texas, USA
- Department of Pediatrics, University of North Texas Health Sciences Center, Fort Worth, Texas, USA
| | - Angela Howser
- Department of Pediatrics, University of North Texas Health Sciences Center, Fort Worth, Texas, USA
| | - Elegast Monbaliu
- Department of Rehabilitation Sciences, KU Leuven Campus Bruges, Brugge, Belgium
| | - Joerg Mueller
- Department of Neurology, Vivantes Klinikum Spandau, Berlin, Germany
| | | | - Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Lars Timmermann
- Department of Neurology, University Hospital of Marburg, Marburg, Germany
| |
Collapse
|
12
|
Kostick-Quenet K, Kalwani L, Torgerson L, Muñoz K, Sanchez C, Storch EA, Blumenthal-Barby J, Lázaro-Muñoz G. Deep Brain Stimulation for Pediatric Dystonia: Clinicians' Perspectives on the Most Pressing Ethical Challenges. Stereotact Funct Neurosurg 2023; 101:301-313. [PMID: 37844562 PMCID: PMC10586720 DOI: 10.1159/000530694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/30/2023] [Indexed: 10/18/2023]
Abstract
INTRODUCTION Pediatric deep brain stimulation (pDBS) is commonly used to manage treatment-resistant primary dystonias with favorable results and more frequently used for secondary dystonia to improve quality of life. There has been little systematic empirical neuroethics research to identify ethical challenges and potential solutions to ensure responsible use of DBS in pediatric populations. METHODS Clinicians (n = 29) who care for minors with treatment-resistant dystonia were interviewed for their perspectives on the most pressing ethical issues in pDBS. RESULTS Using thematic content analysis to explore salient themes, clinicians identified four pressing concerns: (1) uncertainty about risks and benefits of pDBS (22/29; 72%) that poses a challenge to informed decision-making; (2) ethically navigating decision-making roles (15/29; 52%), including how best to integrate perspectives from diverse stakeholders (patient, caregiver, clinician) and how to manage surrogate decisions on behalf of pediatric patients with limited capacity to make autonomous decisions; (3) information scarcity effects on informed consent and decision quality (15/29; 52%) in the context of patient and caregivers' expectations for treatment; and (4) narrow regulatory status and access (7/29; 24%) such as the lack of FDA-approved indications that contribute to decision-making uncertainty and liability and potentially limit access to DBS among patients who may benefit from it. CONCLUSION These results suggest that clinicians are primarily concerned about ethical limitations of making difficult decisions in the absence of informational, regulatory, and financial supports. We discuss two solutions already underway, including supported decision-making to address uncertainty and further data sharing to enhance clinical knowledge and discovery.
Collapse
Affiliation(s)
- Kristin Kostick-Quenet
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, USA
| | - Lavina Kalwani
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, USA
| | - Laura Torgerson
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, USA
| | - Katrina Muñoz
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, USA
| | - Clarissa Sanchez
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, USA
| | - Eric A. Storch
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | | | - Gabriel Lázaro-Muñoz
- Center for Bioethics, Harvard Medical School, Cambridge, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
13
|
Gemperli K, Lu X, Chintalapati K, Rust A, Bajpai R, Suh N, Blackburn J, Gelineau-Morel R, Kruer MC, Mingbundersuk D, O'Malley J, Tochen L, Waugh J, Wu S, Feyma T, Perlmutter J, Mennerick S, McCall J, Aravamuthan BR. Chronic striatal cholinergic interneuron excitation induces clinically-relevant dystonic behavior in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.19.549778. [PMID: 37503287 PMCID: PMC10370117 DOI: 10.1101/2023.07.19.549778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Dystonia is common, debilitating, often medically refractory, and difficult to diagnose. The gold standard for both clinical and mouse model dystonia evaluation is subjective assessment, ideally by expert consensus. However, this subjectivity makes translational quantification of clinically-relevant dystonia metrics across species nearly impossible. Many mouse models of genetic dystonias display abnormal striatal cholinergic interneuron excitation, but few display subjectively dystonic features. Therefore, whether striatal cholinergic interneuron pathology causes dystonia remains unknown. To address these critical limitations, we first demonstrate that objectively quantifiable leg adduction variability correlates with leg dystonia severity in people. We then show that chemogenetic excitation of striatal cholinergic interneurons in mice causes comparable leg adduction variability in mice. This clinically-relevant dystonic behavior in mice does not occur with acute excitation, but rather develops after 14 days of ongoing striatal cholinergic interneuron excitation. This requirement for prolonged excitation recapitulates the clinically observed phenomena of a delay between an inciting brain injury and subsequent dystonia manifestation and demonstrates a causative link between chronic striatal cholinergic interneuron excitation and clinically-relevant dystonic behavior in mice. Therefore, these results support targeting striatal ChIs for dystonia drug development and suggests early treatment in the window following injury but prior to dystonia onset. One Sentence Summary Chronic excitation of dorsal striatal cholinergic interneuron causes clinically-relevant dystonic phenotypes in mice.
Collapse
|
14
|
Hernandez-Martin E, Kasiri M, Abe S, MacLean J, Olaya J, Liker M, Chu J, Sanger TD. Globus pallidus internus activity increases during voluntary movement in children with dystonia. iScience 2023; 26:107066. [PMID: 37389183 PMCID: PMC10300218 DOI: 10.1016/j.isci.2023.107066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/27/2023] [Accepted: 06/02/2023] [Indexed: 07/01/2023] Open
Abstract
The rate model of basal ganglia function predicts that muscle activity in dystonia is due to disinhibition of thalamus resulting from decreased inhibitory input from pallidum. We seek to test this hypothesis in children with dyskinetic cerebral palsy undergoing evaluation for deep brain stimulation (DBS) to analyze movement-related activity in different brain regions. The results revealed prominent beta-band frequency peaks in the globus pallidus interna (GPi), ventral oralis anterior/posterior (VoaVop) subnuclei of the thalamus, and subthalamic nucleus (STN) during movement but not at rest. Connectivity analysis indicated stronger coupling between STN-VoaVop and STN-GPi compared to GPi-STN. These findings contradict the hypothesis of decreased thalamic inhibition in dystonia, suggesting that abnormal patterns of inhibition and disinhibition, rather than reduced GPi activity, contribute to the disorder. Additionally, the study implies that correcting abnormalities in GPi function may explain the effectiveness of DBS targeting the STN and GPi in treating dystonia.
Collapse
Affiliation(s)
- Estefania Hernandez-Martin
- Department of Electrical Engineering and Computer Science, University of California, Irvine, Irvine, CA, USA
| | - Maral Kasiri
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | - Sumiko Abe
- Department of Electrical Engineering and Computer Science, University of California, Irvine, Irvine, CA, USA
| | - Jennifer MacLean
- Department of Neurosurgery and Neurology, Children’s Hospital of Orange County (CHOC), Orange, CA, USA
| | - Joffre Olaya
- Department of Neurosurgery and Neurology, Children’s Hospital of Orange County (CHOC), Orange, CA, USA
| | - Mark Liker
- Department of Neurosurgery, University of Southern California, Los Angeles, CA, USA
| | - Jason Chu
- Department of Neurosurgery, University of Southern California, Los Angeles, CA, USA
| | - Terence D. Sanger
- Department of Electrical Engineering and Computer Science, University of California, Irvine, Irvine, CA, USA
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
- Department of Neurosurgery and Neurology, Children’s Hospital of Orange County (CHOC), Orange, CA, USA
| |
Collapse
|
15
|
Shlobin NA, Hofmann K, Keating RF, Oluigbo CO. Deep brain stimulation and intrathecal/intraventricular baclofen for glutaric aciduria type 1: A scoping review, individual patient data analysis, and clinical trials review. J Inherit Metab Dis 2023; 46:543-553. [PMID: 37254447 DOI: 10.1002/jimd.12638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/01/2023]
Abstract
Glutaric aciduria type 1 (GA1) is an autosomal recessive disease frequently leading to dystonia. Deep brain stimulation (DBS), intrathecal baclofen (ITB), and intraventricular baclofen (IVB) are the current interventional treatment options for refractory dystonia. We performed a scoping review, individual patient data (IPD) analysis, and clinical trials review to summarize the existing literature on these interventions in this population, characterize outcomes, and suggest directions for future investigation. PubMed, Embase, and Scopus were searched following PRISMA guidelines. IPD were extracted from studies providing IPD for GA1 patients. ClinicalTrials.gov was reviewed. Of 139 articles, 7 studies with 10 patients were included. In study-level data, 2/4 (50.0%) DBS studies found no improvement in dystonia and 3/3 (100%) on baclofen found decreased dystonia and enteral medication regimen. In the IPD analysis, four studies with 5 patients (2 IVB, 2 DBS, 1 ITB) were included. The average percent reduction in dystonia was 29.9% ± 32.5% (median:18%, IQR:18%-29.2%). Function improved in 4 (80.0%) patients. All patients with reported changes in enteral dystonia-related medication regimen (3/3, 100%) reported reduction in medication usage. No patients (0%) had perioperative complications. Mean follow-up length was 14.8 ± 12.2 months. No interventional clinical trials were found. ITB, IVB, and DBS represent present neuromodulatory approaches for the treatment of GA1. ITB and IVB reduce dystonia, while DBS has a heterogeneous effect. ITB and IVB improved function and reduced enteral medication regimens. These findings must be viewed with caution considering limited data and a serious risk of bias. Further large-scale studies are necessary to determine indications for ITB, IVB, and DBS and elucidate treatment algorithms.
Collapse
Affiliation(s)
- Nathan A Shlobin
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Katherine Hofmann
- Deparment of Neurosurgery, Children's National Hospital, Washington, DC, USA
| | - Robert F Keating
- Deparment of Neurosurgery, Children's National Hospital, Washington, DC, USA
| | - Chima O Oluigbo
- Deparment of Neurosurgery, Children's National Hospital, Washington, DC, USA
| |
Collapse
|
16
|
Zea Vera A, Gropman AL. Surgical treatment of movement disorders in neurometabolic conditions. Front Neurol 2023; 14:1205339. [PMID: 37333007 PMCID: PMC10272416 DOI: 10.3389/fneur.2023.1205339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/16/2023] [Indexed: 06/20/2023] Open
Abstract
Refractory movement disorders are a common feature of inborn errors of metabolism (IEMs), significantly impacting quality of life and potentially leading to life-threatening complications such as status dystonicus. Surgical techniques, including deep brain stimulation (DBS) and lesioning techniques, represent an additional treatment option. However, the application and benefits of these procedures in neurometabolic conditions is not well understood. This results in challenges selecting surgical candidates and counseling patients preoperatively. In this review, we explore the literature of surgical techniques for the treatment of movement disorders in IEMs. Globus pallidus internus DBS has emerged as a beneficial treatment option for dystonia in Panthotate-Kinase-associated Neurodegeneration. Additionally, several patients with Lesch-Nyhan Disease have shown improvement following pallidal stimulation, with more robust effects on self-injurious behavior than dystonia. Although there are numerous reports describing benefits of DBS for movement disorders in other IEMs, the sample sizes have generally been small, limiting meaningful conclusions. Currently, DBS is preferred to lesioning techniques. However, successful use of pallidotomy and thalamotomy in neurometabolic conditions has been reported and may have a role in selected patients. Surgical techniques have also been used successfully in patients with IEMs to treat status dystonicus. Advancing our knowledge of these treatment options could significantly improve the care for patients with neurometabolic conditions.
Collapse
Affiliation(s)
- Alonso Zea Vera
- Division of Neurology, Children’s National Hospital, Washington, DC, United States
- Department of Neurology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Andrea L. Gropman
- Department of Neurology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
- Division of Neurogenetics and Neurodevelopmental Pediatrics, Children’s National Hospital, Washington DC, United States
| |
Collapse
|
17
|
Aravamuthan B, Pearson TS, Chintalapati K, Ueda K. Under-recognition of leg dystonia in people with cerebral palsy. ANNALS OF THE CHILD NEUROLOGY SOCIETY 2023; 1:162-167. [PMID: 38464792 PMCID: PMC10923506 DOI: 10.1002/cns3.20018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/11/2023] [Indexed: 03/12/2024]
Abstract
Objective To determine the rates of clinical under-documentation of leg dystonia in people with cerebral palsy (CP). Methods In this prospective cohort study, we identified independently ambulatory people age 10-20yo with CP-associated spasticity seen in a tertiary care CP center between 1/1/20 to 11/4/21. Three pediatric movement disorders specialists assessed gait videos from these visits for leg dystonia using the Global Dystonia Rating Scale. We compared the gold standard expert consensus assessment for each patient with the clinical documentation of dystonia during a contemporaneous CP Center clinic visit and also with dystonia documentation longitudinally in their medical record. Results Of 116 people with CP-associated spasticity assessed in this study, 70 were found to have leg dystonia in their gait videos. Only 13% of these 70 individuals (n=9/70) had leg dystonia documented in their contemporaneous CP Center clinic visit, even though they were assessed during this visit by clinicians well-trained in CP and dystonia assessment. Even with repeated assessment, only 54% (n=38/70) of these individuals had leg dystonia documented in their medical record. Conclusions Leg dystonia is clinically under-documented in people with CP-associated spasticity, even when these people are evaluated by well-trained clinicians. Longitudinal evaluation and vigilance for leg dystonia is critical to address this diagnostic gap.
Collapse
Affiliation(s)
- Bhooma Aravamuthan
- Division of Pediatric Neurology, Department of Neurology, Washington University School of Medicine, St. Louis, MO
| | - Toni S. Pearson
- Division of Pediatric Neurology, Department of Neurology, Washington University School of Medicine, St. Louis, MO
- Division of Neurology, Nationwide Children’s Hospital, Ohio State University, Columbus, Ohio, USA
| | - Keerthana Chintalapati
- Division of Pediatric Neurology, Department of Neurology, Washington University School of Medicine, St. Louis, MO
| | - Keisuke Ueda
- Division of Pediatric Neurology, Department of Neurology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
18
|
Spindler P, Braun F, Truckenmüller P, Wasilewski D, Faust K, Schneider GH, Trampuz A, Conen A, Kühn AA, Vajkoczy P, Prinz V. Surgical Site Infections Associated With Implanted Pulse Generators for Deep Brain Stimulation: Meta-Analysis and Systematic Review. Neuromodulation 2023; 26:280-291. [PMID: 35970765 DOI: 10.1016/j.neurom.2022.03.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/18/2022] [Accepted: 03/14/2022] [Indexed: 02/07/2023]
Abstract
OBJECTIVES The aim of this study was to identify and systematically analyze relevant literature on surgical site infections (SSIs) associated with implantable pulse generator (IPG) procedures for deep brain stimulation (DBS). MATERIALS AND METHODS In compliance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, we conducted a systematic review and meta-analyses of 58 studies that reported SSI rates of 11,289 patients and 15,956 IPG procedures. A meta-analysis of proportions was performed to estimate the pooled proportion of SSIs across DBS procedures in general and to estimate the proportion of SSIs that occur at the IPG pocket. Moreover, a meta-analysis of odds ratio (OR) was conducted on those studies that reported their results of applying topical vancomycin powder during closure of the IPG wound. Results are presented as rates and OR with 95% CIs. RESULTS The pooled proportion of SSIs was 4.9% (95% CI, 4.1%-6.1%) among all DBS procedures. The dominant SSI localization was the IPG pocket in 61.2% (95% CI, 53.4%-68.5%). A trend toward a beneficial effect of vancomycin powder over standard wound closure was found with an OR of 0.46 (95% CI, 0.21-1.02). Most studies (79.1%) that reported their treatment strategy in case of SSI had a strict protocol of removal of the IPG, followed by antimicrobial treatment and reimplantation of the IPG once the SSI had been eradicated. CONCLUSIONS The IPG pocket was identified as the main site of SSI after DBS procedures. Most studies recommend complete IPG removal, antimicrobial treatment, and reimplantation of an IPG once the SSI has been eradicated. Future studies are needed to clarify the role of alternative approaches (eg, topical vancomycin powder) in the prevention of SSI associated with IPG.
Collapse
Affiliation(s)
- Philipp Spindler
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Franziska Braun
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Peter Truckenmüller
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - David Wasilewski
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Katharina Faust
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Gerd-Helge Schneider
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Andrej Trampuz
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Anna Conen
- Clinic for Infectious Diseases and Infection Prevention, Department of Infectious Diseases and Hospital Hygiene, Kantonsspital Aarau, Aarau, Switzerland
| | - Andrea A Kühn
- Department of Neurology, Movement Disorder Section, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Vincent Prinz
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of Neurosurgery, University Hospital, Goethe University, Frankfurt am Main, Germany.
| |
Collapse
|
19
|
Killian O, Hutchinson M, Reilly R. Neuromodulation in Dystonia - Harnessing the Network. ADVANCES IN NEUROBIOLOGY 2023; 31:177-194. [PMID: 37338702 DOI: 10.1007/978-3-031-26220-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Adult-onset isolated focal dystonia (AOIFD) is a network disorder characterised by abnormalities of sensory processing and motor control. These network abnormalities give rise to both the phenomenology of dystonia and the epiphenomena of altered plasticity and loss of intracortical inhibition. Existing modalities of deep brain stimulation effectively modulate parts of this network but are limited both in terms of targets and invasiveness. Novel approaches using a variety of non-invasive neuromodulation techniques including transcranial stimulation and peripheral stimulation present an interesting alternative approach and may, in conjunction with rehabilitative strategies, have a role in tailored therapies targeting the underlying network abnormality behind AOIFD.
Collapse
Affiliation(s)
- Owen Killian
- The Dublin Neurological Institute, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Michael Hutchinson
- Department of Neurology, St Vincent's University Hospital, Dublin, Ireland
| | - Richard Reilly
- School of Medicine, Trinity College, The University of Dublin, Dublin, Ireland.
| |
Collapse
|
20
|
Probabilistic mapping of deep brain stimulation in childhood dystonia. Parkinsonism Relat Disord 2022; 105:103-110. [PMID: 36403506 DOI: 10.1016/j.parkreldis.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
OBJECTIVES In adults with dystonia Probabilistic Stimulation Mapping (PSM) has identified putative "sweet spots" for stimulation. We aimed to apply PSM to a cohort of Children and Young People (CYP) following DBS surgery. METHODS Pre-operative MRI and post-operative CT images were co-registered for 52 CYP undergoing bilateral pallidal DBS (n = 31 genetic/idiopathic dystonia, and n = 21 Cerebral Palsy (CP)). DBS electrodes (n = 104) were automatically detected, and Volumes of Tissue Activation (VTA) derived from individual patient stimulation settings. VTAs were normalised to the MNI105 space, weighted by percentage improvement in Burke-Fahn-Marsden Dystonia Rating scale (BFMDRS) at one-year post surgery and mean improvement was calculated for each voxel. RESULTS For the genetic/idiopathic dystonia group, BFMDRS improvement was associated with stimulation across a broad volume of the GPi. A spatial clustering of the upper 25th percentile of voxels corresponded with a more delineated volume within the posterior ventrolateral GPi. The MNI coordinates of the centroid of this volume (X = -23.0, Y = -10.5 and Z = -3.5) were posterior and superior to the typical target for electrode placement. Volume of VTA overlap with a previously published "sweet spots" correlated with improvement following surgery. In contrast, there was minimal BFMDRS improvement for the CP group, no spatial clustering of efficacious clusters and a correlation between established "sweet spots" could not be established. CONCLUSIONS PSM in CYP with genetic/idiopathic dystonia suggests the presence of a "sweet spot" for electrode placement within the GPi, consistent with previous studies. Further work is required to identify and validate putative "sweet spots" across different cohorts of patients.
Collapse
|
21
|
Pentony M, Featherstone M, Sheikh Y, Stroiescu A, Bruell H, Gill I, Gorman KM. Dystonia in children with acquired brain injury. Eur J Paediatr Neurol 2022; 41:41-47. [PMID: 36209658 DOI: 10.1016/j.ejpn.2022.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/25/2022] [Accepted: 09/22/2022] [Indexed: 01/11/2023]
Abstract
AIM To quantify the proportion of children who develop dystonia after acquired brain injury (ABI) admitted to a tertiary paediatric intensive care unit (PICU) and analyse the trajectory of dystonia over a 6 month period. METHODS Children's Health Ireland at Temple Street PICU electronic database was searched for key terms related to ABI from January 1, 2016 to March 14, 2021. Individuals meeting inclusion criteria were analysed, and clinical data pertinent to ABI, dystonia, treatment and outcomes were reviewed. RESULTS Six-hundred and forty-three PICU episodes (580 patients) met search criteria for ABI, with 379 included in the final analysis. Twelve patients developed dystonia following ABI, giving an incidence of 3.2%. The incidence was higher in the hypoxia/anoxia and TBI cohort at 8.3% and 6.2%, respectively. All patients developed dystonia within the first month following ABI (50% by a week). Patients who developed dystonia compared to non-dystonia cohort had a median lower GCS on admission (4.5 versus 7.0, p value 0.032), longer median length of PICU stay (14.0 versus 3.0 days, p value < 0.001) and were older (median age 9.08 versus 4.68 years, p value 0.06). Dystonia persisted in the majority at 6 months (10/11), requiring on-going medical therapies. CONCLUSION In our retrospective study, the estimated incidence of dystonia following ABI admitted to the PICU was 3.2%, highest in the hypoxia/anoxia (8.3%) and TBI (6.2%) cohorts. Dystonia emerged early and persisted at 6 months in the majority. This is the first review of dystonia, clinical trajectory and outcomes conducted post-PICU admission for ABI. Future prospective studies are required to determine the true prevalence and burden of disease in the PICU setting.
Collapse
Affiliation(s)
- M Pentony
- Department of Neurology and Clinical Neurophysiology, Children's Health Ireland at Temple Street, Ireland
| | - M Featherstone
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Y Sheikh
- Department of Paediatric Radiology, Children's Health Ireland at Temple Street, Ireland
| | - A Stroiescu
- Department of Paediatric Radiology, Children's Health Ireland at Temple Street, Ireland
| | - H Bruell
- Department of Paediatric Intensive Care, Children's Health Ireland at Temple Street, Ireland
| | - I Gill
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland; Department of Neurodisability, Children's Health Ireland at Temple Street, Ireland; Department of Paediatric Rehabilitation, National Rehabilitation Hospital, Dublin, Ireland
| | - K M Gorman
- Department of Neurology and Clinical Neurophysiology, Children's Health Ireland at Temple Street, Ireland; School of Medicine and Medical Science, University College Dublin, Dublin, Ireland.
| |
Collapse
|
22
|
Gelineau-Morel R, Kruer MC, Garris JF, Libdeh AA, Barbosa DAN, Coffman KA, Moon D, Barton C, Vera AZ, Bruce AB, Larsh T, Wu SW, Gilbert DL, O’Malley JA. Deep Brain Stimulation for Pediatric Dystonia: A Review of the Literature and Suggested Programming Algorithm. J Child Neurol 2022; 37:813-824. [PMID: 36053123 PMCID: PMC9912476 DOI: 10.1177/08830738221115248] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Deep brain stimulation (DBS) is an established intervention for use in pediatric movement disorders, especially dystonia. Although multiple publications have provided guidelines for deep brain stimulation patient selection and programming in adults, there are no evidence-based or consensus statements published for pediatrics. The result is lack of standardized care and underutilization of this effective treatment. To this end, we assembled a focus group of 13 pediatric movement disorder specialists and 1 neurosurgeon experienced in pediatric deep brain stimulation to review recent literature and current practices and propose a standardized approach to candidate selection, implantation target site selection, and programming algorithms. For pediatric dystonia, we provide algorithms for (1) programming for initial session and follow-up sessions, and (2) troubleshooting side effects encountered during programming. We discuss common side effects, how they present, and recommendations for management. This topical review serves as a resource for movement disorders specialists interested in using deep brain stimulation for pediatric dystonia.
Collapse
Affiliation(s)
- Rose Gelineau-Morel
- Division of Neurology, Department of Pediatrics, Children’s Mercy Hospital, University of Missouri-Kansas City School of Medicine, 2401 Gillham Road, Kansas City, Missouri, 64108
| | - Michael C Kruer
- Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children’s Hospital & University of Arizona College of Medicine - Phoenix, Phoenix, AZ, 85016
| | - Jordan F Garris
- Division of Pediatric Neurology, Department of Neurology, University of Virginia, PO Box 800394, Charlottesville, VA, 22908−0394
| | - Amal Abu Libdeh
- Division of Pediatric Neurology, Department of Neurology, University of Virginia, PO Box 800394, Charlottesville, VA, 22908−0394
| | - Daniel A N Barbosa
- Department of Neurosurgery, Stanford University School of Medicine, 300 Pasteur Drive, Edwards Bldg, Stanford, CA, 94305
| | - Keith A Coffman
- Division of Neurology, Department of Pediatrics, Children’s Mercy Hospital, University of Missouri-Kansas City School of Medicine, 2401 Gillham Road, Kansas City, Missouri, 64108
| | - David Moon
- Department of Child Neurology, Division of Neurosciences, Helen DeVos Children’s Hospital, 100 Michigan St NE, Grand Rapids, MI 49503
| | - Christopher Barton
- Department of Neurology, University of Louisville School of Medicine, Louisville, Kentucky; Division of Child Neurology, Norton Children’s Medical Group, 231 E Chestnut St, Louisville, KY 40202
| | - Alonso Zea Vera
- Department of Neurology, Children’s National Hospital, 111 Michigan Ave NW, Washington, DC, 20010
| | - Adrienne B Bruce
- Division of Pediatric Neurology, Department of Pediatrics, Prisma Health, 200 Patewood Drive A350, Greenville, SC, USA 29615; University of South Carolina School of Medicine Greenville, 607 Grove Road, Greenville, SC, 29605
| | - Travis Larsh
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH; Department of Pediatrics, University of Cincinnati, 3333 Burnet Ave, Location E4, Suite 110, Cincinnati, OH 45229
| | - Steve W Wu
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH; Department of Pediatrics, University of Cincinnati, 3333 Burnet Ave, Location E4, Suite 110, Cincinnati, OH 45229
| | - Donald L Gilbert
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH; Department of Pediatrics, University of Cincinnati, 3333 Burnet Ave, Location E4, Suite 110, Cincinnati, OH 45229
| | - Jennifer A O’Malley
- Department of Neurology, Division of Child Neurology, Stanford University School of Medicine, 750 Welch Road, Suite 317, Palo Alto, California, 94304
| |
Collapse
|
23
|
Gilbert LA, Fehlings DL, Gross P, Kruer MC, Kwan W, Mink JW, Shusterman M, Aravamuthan BR. Top 10 Research Themes for Dystonia in Cerebral Palsy: A Community-Driven Research Agenda. Neurology 2022; 99:237-245. [PMID: 35715199 PMCID: PMC9442618 DOI: 10.1212/wnl.0000000000200911] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 05/16/2022] [Indexed: 11/15/2022] Open
Abstract
Dystonia in cerebral palsy (DCP) is a common, debilitating, but understudied condition. The CP community (people with CP and caregivers) is uniquely equipped to help determine the research questions that best address their needs. We developed a community-driven DCP research agenda using the well-established James Lind Alliance methodology. CP community members, researchers, and clinicians were recruited through multiple advocacy, research, and professional organizations. To ensure shared baseline knowledge, participants watched webinars outlining our current knowledge on DCP prepared by a Steering Group of field experts (cprn.org/research-cp-dystonia-edition). Participants next submitted their remaining uncertainties about DCP. These were vetted by the Steering Group and consolidated to eliminate redundancy to generate a list of unique uncertainties, which were then prioritized by the participants. The top-prioritized uncertainties were aggregated into themes through iterative consensus-building discussions within the Steering Group. 166 webinar viewers generated 67 unique uncertainties. 29 uncertainties (17 generated by community members) were prioritized higher than their randomly matched pairs. These were coalesced into the following top 10 DCP research themes: (1) develop new treatments; (2) assess rehabilitation, psychological, and environmental management approaches; (3) compare effectiveness of current treatments; (4) improve diagnosis and severity assessments; (5) assess the effect of mixed tone (spasticity and dystonia) in outcomes and approaches; (6) assess predictors of treatment responsiveness; (7) identify pathophysiologic mechanisms; (8) characterize the natural history; (9) determine the best treatments for pain; and (10) increase family awareness. This community-driven research agenda reflects the concerns most important to the community, both in perception and in practice. We therefore encourage future DCP research to center around these themes. Furthermore, noting that community members (not clinicians or researchers) generated the majority of top-prioritized uncertainties, our results highlight the important contributions community members can make to research agendas, even beyond DCP.
Collapse
Affiliation(s)
- Laura A Gilbert
- From the Department of Neurology (L.A.G., B.R.A.), Washington University School of Medicine and St. Louis Children's Hospital, MO; Department of Pediatrics (D.L.F.), University of Toronto and Holland Bloorview Kids Rehabilitation Hospital, Ontario, Canada; Department of Population Health Sciences (P.G., W.K.), University of Utah, Salt Lake City; Departments of Child Health, Neurology, Genetics, and Cellular and Molecular Medicine (M.C.K.), College of Medicine-Phoenix, University of Arizona and Cerebral Palsy and Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children's Hospital; Department of Neurology (J.W.M.), University of Rochester School of Medicine and Dentistry, NY; and The Cerebral Palsy Research Network (P.G., M.S.), Salt Lake City, UT
| | - Darcy L Fehlings
- From the Department of Neurology (L.A.G., B.R.A.), Washington University School of Medicine and St. Louis Children's Hospital, MO; Department of Pediatrics (D.L.F.), University of Toronto and Holland Bloorview Kids Rehabilitation Hospital, Ontario, Canada; Department of Population Health Sciences (P.G., W.K.), University of Utah, Salt Lake City; Departments of Child Health, Neurology, Genetics, and Cellular and Molecular Medicine (M.C.K.), College of Medicine-Phoenix, University of Arizona and Cerebral Palsy and Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children's Hospital; Department of Neurology (J.W.M.), University of Rochester School of Medicine and Dentistry, NY; and The Cerebral Palsy Research Network (P.G., M.S.), Salt Lake City, UT
| | - Paul Gross
- From the Department of Neurology (L.A.G., B.R.A.), Washington University School of Medicine and St. Louis Children's Hospital, MO; Department of Pediatrics (D.L.F.), University of Toronto and Holland Bloorview Kids Rehabilitation Hospital, Ontario, Canada; Department of Population Health Sciences (P.G., W.K.), University of Utah, Salt Lake City; Departments of Child Health, Neurology, Genetics, and Cellular and Molecular Medicine (M.C.K.), College of Medicine-Phoenix, University of Arizona and Cerebral Palsy and Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children's Hospital; Department of Neurology (J.W.M.), University of Rochester School of Medicine and Dentistry, NY; and The Cerebral Palsy Research Network (P.G., M.S.), Salt Lake City, UT
| | - Michael C Kruer
- From the Department of Neurology (L.A.G., B.R.A.), Washington University School of Medicine and St. Louis Children's Hospital, MO; Department of Pediatrics (D.L.F.), University of Toronto and Holland Bloorview Kids Rehabilitation Hospital, Ontario, Canada; Department of Population Health Sciences (P.G., W.K.), University of Utah, Salt Lake City; Departments of Child Health, Neurology, Genetics, and Cellular and Molecular Medicine (M.C.K.), College of Medicine-Phoenix, University of Arizona and Cerebral Palsy and Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children's Hospital; Department of Neurology (J.W.M.), University of Rochester School of Medicine and Dentistry, NY; and The Cerebral Palsy Research Network (P.G., M.S.), Salt Lake City, UT
| | - Wendy Kwan
- From the Department of Neurology (L.A.G., B.R.A.), Washington University School of Medicine and St. Louis Children's Hospital, MO; Department of Pediatrics (D.L.F.), University of Toronto and Holland Bloorview Kids Rehabilitation Hospital, Ontario, Canada; Department of Population Health Sciences (P.G., W.K.), University of Utah, Salt Lake City; Departments of Child Health, Neurology, Genetics, and Cellular and Molecular Medicine (M.C.K.), College of Medicine-Phoenix, University of Arizona and Cerebral Palsy and Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children's Hospital; Department of Neurology (J.W.M.), University of Rochester School of Medicine and Dentistry, NY; and The Cerebral Palsy Research Network (P.G., M.S.), Salt Lake City, UT
| | - Jonathan W Mink
- From the Department of Neurology (L.A.G., B.R.A.), Washington University School of Medicine and St. Louis Children's Hospital, MO; Department of Pediatrics (D.L.F.), University of Toronto and Holland Bloorview Kids Rehabilitation Hospital, Ontario, Canada; Department of Population Health Sciences (P.G., W.K.), University of Utah, Salt Lake City; Departments of Child Health, Neurology, Genetics, and Cellular and Molecular Medicine (M.C.K.), College of Medicine-Phoenix, University of Arizona and Cerebral Palsy and Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children's Hospital; Department of Neurology (J.W.M.), University of Rochester School of Medicine and Dentistry, NY; and The Cerebral Palsy Research Network (P.G., M.S.), Salt Lake City, UT
| | - Michele Shusterman
- From the Department of Neurology (L.A.G., B.R.A.), Washington University School of Medicine and St. Louis Children's Hospital, MO; Department of Pediatrics (D.L.F.), University of Toronto and Holland Bloorview Kids Rehabilitation Hospital, Ontario, Canada; Department of Population Health Sciences (P.G., W.K.), University of Utah, Salt Lake City; Departments of Child Health, Neurology, Genetics, and Cellular and Molecular Medicine (M.C.K.), College of Medicine-Phoenix, University of Arizona and Cerebral Palsy and Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children's Hospital; Department of Neurology (J.W.M.), University of Rochester School of Medicine and Dentistry, NY; and The Cerebral Palsy Research Network (P.G., M.S.), Salt Lake City, UT
| | - Bhooma R Aravamuthan
- From the Department of Neurology (L.A.G., B.R.A.), Washington University School of Medicine and St. Louis Children's Hospital, MO; Department of Pediatrics (D.L.F.), University of Toronto and Holland Bloorview Kids Rehabilitation Hospital, Ontario, Canada; Department of Population Health Sciences (P.G., W.K.), University of Utah, Salt Lake City; Departments of Child Health, Neurology, Genetics, and Cellular and Molecular Medicine (M.C.K.), College of Medicine-Phoenix, University of Arizona and Cerebral Palsy and Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children's Hospital; Department of Neurology (J.W.M.), University of Rochester School of Medicine and Dentistry, NY; and The Cerebral Palsy Research Network (P.G., M.S.), Salt Lake City, UT.
| |
Collapse
|
24
|
Ashkan K, Velicu MA, Furlanetti L. Deep brain stimulation-induced neuroprotection: A critical appraisal. Eur J Paediatr Neurol 2022; 37:114-122. [PMID: 35189499 DOI: 10.1016/j.ejpn.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 10/19/2022]
Abstract
Over the last two decades deep brain stimulation (DBS) has become a widely used therapeutic alternative for a variety of neurological and psychiatric diseases. The extensive experience in the field of movement disorders has provided valuable knowledge and has led the path to its application to other hard-to-treat conditions. Despite the recognised symptomatic beneficial effects, its capacity to modify the course of a disease has been in constant debate. The ability to demonstrate neuroprotection relies on a thorough understanding of the functioning of both normal and pathological neural structures, as well as their stimulation induced alterations, all of which to this date remain incomplete. Consequently, there is no consensus over the definition of neuroprotection nor its means of quantification or evaluation. Additionally, neuroprotection has been indirectly addressed in most of the literature, challenging the efforts to narrow its interpretation. As such, a broad spectrum of evidence has been considered to demonstrate disease modifying interventions. This paper aims to provide a critical appraisal of the current evidence on potential neuroprotective effects of DBS in neurodegenerative brain disorders.
Collapse
Affiliation(s)
- Keyoumars Ashkan
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK; Department of Basic and Clinical Neuroscience, IoPPN, King's College London, UK; King's Health Partners Academic Health Sciences Centre, London, UK
| | - Maria Alexandra Velicu
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK; King's Health Partners Academic Health Sciences Centre, London, UK
| | - Luciano Furlanetti
- Department of Basic and Clinical Neuroscience, IoPPN, King's College London, UK; King's Health Partners Academic Health Sciences Centre, London, UK.
| |
Collapse
|
25
|
Miao H, Mathur AM, Aravamuthan BR. Spasticity and Dystonia are Underidentified in Young Children at High Risk for Cerebral Palsy. J Child Neurol 2022; 37:105-111. [PMID: 34866453 PMCID: PMC9650959 DOI: 10.1177/08830738211059683] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Early spasticity and dystonia identification in cerebral palsy is critical for guiding diagnostic workup and prompting targeted treatment early when it is most efficacious. However, differentiating spasticity from dystonia is difficult in young children with cerebral palsy. METHODS We sought to determine spasticity and dystonia underidentification rates in children at high risk for cerebral palsy (following neonatal hypoxic-ischemic encephalopathy) by assessing how often child neurologists identified hypertonia alone versus specifying the hypertonia type as spasticity and/or dystonia by age 5 years. RESULTS Of 168 children, 63 developed cerebral palsy and hypertonia but only 19 (30%) had their hypertonia type specified as spasticity and/or dystonia by age 5 years. CONCLUSIONS Child neurologists did not specify the type of hypertonia in a majority of children at high risk of cerebral palsy. Because early tone identification critically guides diagnostic workup and treatment of cerebral palsy, these results highlight an important gap in current cerebral palsy care.
Collapse
Affiliation(s)
- Hanyang Miao
- Department of Neurology, Division of Pediatric Neurology, Washington University School of Medicine and St. Louis Children’s Hospital, St. Louis, Missouri, USA
| | - Amit M. Mathur
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, St. Louis University and Cardinal Glennon Children’s Hospital, St. Louis, Missouri, USA
| | - Bhooma R. Aravamuthan
- Department of Neurology, Division of Pediatric Neurology, Washington University School of Medicine and St. Louis Children’s Hospital, St. Louis, Missouri, USA
| |
Collapse
|
26
|
Starting a DBS service for children: It's not the latitude but the attitude - Establishment of the paediatric DBS centre in Northern Finland. Eur J Paediatr Neurol 2022; 36:107-114. [PMID: 34953338 DOI: 10.1016/j.ejpn.2021.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/28/2021] [Accepted: 12/01/2021] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Paediatric movement disorder patients can benefit from deep brain stimulation (DBS) treatment and it should be offered in a timely manner. In this paper we describe our experience establishing a DBS service for paediatric patients. METHODS We set out to establish a paediatric DBS (pDBS) procedure in Oulu University Hospital in northern Finland, where up to this point DBS treatment for movement disorders had been available for adult patients. Collaboration with experienced centres aided in the process. RESULTS A multidisciplinary team was assembled and a systematic protocol for patient evaluation and treatment was created, with attention to special features of the regional health care system. All of our first paediatric patients had very severe movement disorders, which is typical for a new DBS centre. The patients benefitted from pDBS treatment despite variable aetiologies of movement disorders, which included cerebral palsy and rare genetic disorders with variants in PDE10A, TPK1 and ARX. We also present our high-quality paediatric MR-imaging protocol with tractography. CONCLUSIONS Establishment of a pDBS centre requires expertise in classification of paediatric movement disorders, longstanding experience in adult DBS and a committed multidisciplinary team. Besides high-quality imaging and a skilled neurosurgery team, careful patient selection, realistic treatment goals and experience in rehabilitation are imperative in pDBS treatment.
Collapse
|
27
|
Koy A, Kühn AA, Huebl J, Schneider GH, van Riesen AK, Eckenweiler M, Rensing-Zimmermann C, Coenen VA, Krauss JK, Saryyeva A, Hartmann H, Haeussler M, Volkmann J, Matthies C, Horn A, Schnitzler A, Vesper J, Gharabaghi A, Weiss D, Bevot A, Marks W, Pomykal A, Monbaliu E, Borck G, Mueller J, Prinz-Langenohl R, Dembek T, Visser-Vandewalle V, Wirths J, Schiller P, Hellmich M, Timmermann L. Quality of Life after Deep Brain Stimulation of Pediatric Patients With Dyskinetic Cerebral Palsy: A Prospective, Single-Arm, Multicenter Study With a Subsequent Randomized Double-Blind Crossover (STIM-CP). Mov Disord 2021; 37:799-811. [PMID: 34967053 DOI: 10.1002/mds.28898] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/05/2021] [Accepted: 12/08/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Patients with dyskinetic cerebral palsy are often severely impaired with limited treatment options. The effects of deep brain stimulation (DBS) are less pronounced than those in inherited dystonia but can be associated with favorable quality of life outcomes even in patients without changes in dystonia severity. OBJECTIVE The aim is to assess DBS effects in pediatric patients with pharmacorefractory dyskinetic cerebral palsy with focus on quality of life. METHODS The method used is a prospective, single-arm, multicenter study. The primary endpoint is improvement in quality of life (CPCHILD [Caregiver Priorities & Child Health Index of Life with Disabilities]) from baseline to 12 months under therapeutic stimulation. The main key secondary outcomes are changes in Burke-Fahn-Marsden Dystonia Rating Scale, Dyskinesia Impairment Scale, Gross Motor Function Measure-66, Canadian Occupational Performance Measure (COPM), and Short-Form (SF)-36. After 12 months, patients were randomly assigned to a blinded crossover to receive active or sham stimulation for 24 hours each. Severity of dystonia and chorea were blindly rated. Safety was assessed throughout. The trial was registered at ClinicalTrials.gov, number NCT02097693. RESULTS Sixteen patients (age: 13.4 ± 2.9 years) were recruited by seven clinical sites. Primary outcome at 12-month follow-up is as follows: mean CPCHILD increased by 4.2 ± 10.4 points (95% CI [confidence interval] -1.3 to 9.7; P = 0.125); among secondary outcomes: improvement in COPM performance measure of 1.1 ± 1.5 points (95% CI 0.2 to 1.9; P = 0.02) and in the SF-36 physical health component by 5.1 ± 6.2 points (95% CI 0.7 to 9.6; P = 0.028). Otherwise, there are no significant changes. CONCLUSION Evidence to recommend DBS as routine treatment to improve quality of life in pediatric patients with dyskinetic cerebral palsy is not yet sufficient. Extended follow-up in larger cohorts will determine the impact of DBS further to guide treatment decisions in these often severely disabled patients.
Collapse
Affiliation(s)
- Anne Koy
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Andrea A Kühn
- Department of Neurology, Charité University Medicine Berlin, Berlin, Germany
| | - Julius Huebl
- Department of Neurology, Charité University Medicine Berlin, Berlin, Germany.,Department of Neurology, Munich Municipal Hospital Bogenhausen, Munich, Germany
| | | | - Anne K van Riesen
- Department of Pediatric Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Matthias Eckenweiler
- Department of Neuropediatrics and Muscle Disorders, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Cornelia Rensing-Zimmermann
- Department of Neuropediatrics and Muscle Disorders, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Volker Arnd Coenen
- Department of Stereotactic and Functional Neurosurgery, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Stereotactic and Functional Neurosurgery, Center for Deep Brain Stimulation, University Medical Center, Freiburg, Germany
| | - Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Assel Saryyeva
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Hans Hartmann
- Department of Pediatrics, Clinic for Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Martin Haeussler
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Cordula Matthies
- Department of Stereotactic and Functional Neurosurgery, University Hospital Würzburg, Würzburg, Germany
| | - Annette Horn
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Alfons Schnitzler
- Department of Neurology, Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jan Vesper
- Department of Functional Neurosurgery and Stereotaxy, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Alireza Gharabaghi
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tübingen, Tübingen, Germany
| | - Daniel Weiss
- Centre for Neurology, Department for Neurodegenerative Diseases, and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Andrea Bevot
- Department of Pediatrics, Medical Faculty, University of Tübingen, Tübingen, Germany
| | - Warren Marks
- Department of Neurology, Cook Children's Medical Center, Fort Worth, Texas, USA.,Department of Pediatrics, University of North Texas Health Sciences Center, Fort Worth, Texas, USA
| | - Angela Pomykal
- Department of Neurology, Cook Children's Medical Center, Fort Worth, Texas, USA
| | - Elegast Monbaliu
- Department of Rehabilitation Sciences, KU Leuven Campus Bruges, Brugge, Belgium
| | | | - Joerg Mueller
- Department of Neurology, Vivantes Klinikum Spandau, Berlin, Germany
| | | | - Till Dembek
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jochen Wirths
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Petra Schiller
- Institute of Medical Statistics and Computational Biology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Martin Hellmich
- Institute of Medical Statistics and Computational Biology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Lars Timmermann
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Department of Neurology, University Hospital of Marburg, Marburg, Germany
| | | |
Collapse
|
28
|
Towards Precision Therapies for Inherited Disorders of Neurodegeneration with Brain Iron Accumulation. Tremor Other Hyperkinet Mov (N Y) 2021; 11:51. [PMID: 34909266 PMCID: PMC8641530 DOI: 10.5334/tohm.661] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/05/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Neurodegeneration with brain iron accumulation (NBIA) disorders comprise a group of rare but devastating inherited neurological diseases with unifying features of progressive cognitive and motor decline, and increased iron deposition in the basal ganglia. Although at present there are no proven disease-modifying treatments, the severe nature of these monogenic disorders lends to consideration of personalized medicine strategies, including targeted gene therapy. In this review we summarize the progress and future direction towards precision therapies for NBIA disorders. Methods: This review considered all relevant publications up to April 2021 using a systematic search strategy of PubMed and clinical trials databases. Results: We review what is currently known about the underlying pathophysiology of NBIA disorders, common NBIA disease pathways, and how this knowledge has influenced current management strategies and clinical trial design. The safety profile, efficacy and clinical outcome of clinical studies are reviewed. Furthermore, the potential for future therapeutic approaches is also discussed. Discussion: Therapeutic options in NBIAs remain very limited, with no proven disease-modifying treatments at present. However, a number of different approaches are currently under development with increasing focus on targeted precision therapies. Recent advances in the field give hope that novel strategies, such as gene therapy, gene editing and substrate replacement therapies are both scientifically and financially feasible for these conditions. Highlights This article provides an up-to-date review of the current literature about Neurodegeneration with Brain Iron Accumulation (NBIA), with a focus on disease pathophysiology, current and previously trialed therapies, and future treatments in development, including consideration of potential genetic therapy approaches.
Collapse
|
29
|
Fan H, Zheng Z, Yin Z, Zhang J, Lu G. Deep Brain Stimulation Treating Dystonia: A Systematic Review of Targets, Body Distributions and Etiology Classifications. Front Hum Neurosci 2021; 15:757579. [PMID: 34899219 PMCID: PMC8663760 DOI: 10.3389/fnhum.2021.757579] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/27/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Deep brain stimulation (DBS) is a typical intervention treating drug-refractory dystonia. Currently, the selection of the better target, the GPi or STN, is debatable. The outcomes of DBS treating dystonia classified by body distribution and etiology is also a popular question. Objective: To comprehensively compare the efficacy, quality of life, mood, and adverse effects (AEs) of GPi-DBS vs. STN-DBS in dystonia as well as in specific types of dystonia classified by body distribution and etiology. Methods: PubMed, Embase, the Cochrane Library, and Google Scholar were searched to identify studies of GPi-DBS and STN-DBS in populations with dystonia. The efficacy, quality of life, mood, and adverse effects were quantitatively compared. Meta-regression analyses were also performed. This analysis has been registered in PROSPERO under the number CRD42020146145. Results: Thirty five studies were included in the main analysis, in which 319 patients underwent GPI-DBS and 113 patients underwent STN-DBS. The average follow-up duration was 12.48 months (range, 3–49 months). The GPI and STN groups were equivalent in terms of efficacy, quality of life, mood, and occurrence of AEs. The focal group demonstrated significantly better disability symptom improvement (P = 0.012) than the segmental and generalized groups but showed less SF-36 enhancement than the segmental group (P < 0.001). The primary groups exhibited significantly better movement and disability symptom improvements than the secondary non-hereditary group (P < 0.005), which demonstrated only disability symptom improvement compared with the secondary hereditary group (P < 0.005). The primary hereditary and idiopathic groups had a significantly lower frequency of AEs than the secondary non-hereditary group (P < 0.005). The correlation between disability symptom improvement and movement symptom improvement was also significant (P < 0.05). Conclusion: GPi-DBS and STN-DBS were both safe and resulted in excellent improvement in efficacy and quality of life in patients with dystonia. Compared with patients with segmental dystonia, patients with focal dystonia demonstrated better improvement in dystonia symptoms but less enhancement of quality of life. Those with primary dystonia had a better response to DBS in terms of efficacy than those with secondary dystonia. Patients who exhibit a significant improvement in movement symptoms might also exhibit excellent improvement in disability symptoms.
Collapse
Affiliation(s)
- Houyou Fan
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zijian Zheng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zixiao Yin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guohui Lu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
30
|
Singh J, Lanzarini E, Nardocci N, Santosh P. Movement disorders in patients with Rett syndrome: A systematic review of evidence and associated clinical considerations. Psychiatry Clin Neurosci 2021; 75:369-393. [PMID: 34472659 PMCID: PMC9298304 DOI: 10.1111/pcn.13299] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/28/2021] [Accepted: 08/20/2021] [Indexed: 12/18/2022]
Abstract
AIM This systematic review identified and thematically appraised clinical evidence of movement disorders in patients with Rett syndrome (RTT). METHOD Using PRISMA criteria, six electronic databases were searched from inception to April 2021. A thematic analysis was then undertaken on the extracted data to identify potential themes. RESULTS Following the thematic analysis, six themes emerged: (i) clinical features of abnormal movement behaviors; (ii) mutational profile and its impact on movement disorders; (iii) symptoms and stressors that impact on movement disorders; (iv) possible underlying neurobiological mechanisms; (v) quality of life and movement disorders; and (vi) treatment of movement disorders. Current guidelines for managing movement disorders in general were then reviewed to provide possible treatment recommendations for RTT. CONCLUSION Our study offers an enriched data set for clinical investigations and treatment of fine and gross motor issues in RTT. A detailed understanding of genotype-phenotype relationships of movement disorders allows for more robust genetic counseling for families but can also assist healthcare professionals in terms of monitoring disease progression in RTT. The synthesis also showed that environmental enrichment would be beneficial for improving some aspects of movement disorders. The cerebellum, basal ganglia, alongside dysregulation of the cortico-basal ganglia-thalamo-cortical loop, are likely anatomical targets. A review of treatments for movement disorders also helped to provide recommendations for treating and managing movement disorders in patients with RTT.
Collapse
Affiliation(s)
- Jatinder Singh
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Centre for Interventional Paediatric Psychopharmacology and Rare Diseases, South London and Maudsley NHS Foundation Trust, London, UK.,Centre for Personalised Medicine in Rett Syndrome, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Evamaria Lanzarini
- Child and Adolescent Neuropsychiatry Unit, Infermi Hospital, Rimini, Italy
| | - Nardo Nardocci
- Department of Paediatric Neurology, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Paramala Santosh
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Centre for Interventional Paediatric Psychopharmacology and Rare Diseases, South London and Maudsley NHS Foundation Trust, London, UK.,Centre for Personalised Medicine in Rett Syndrome, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
31
|
Lodh R, Amin S, Ammar A, Bellis L, Brink P, Calisto A, Crimmins D, Eunson P, Forsyth RJ, Goodden J, Kaminska M, Kehoe J, Kirkpatrick M, Kumar R, Leonard J, Lording A, Martin K, Miller R, Mordekar SR, Pettorini B, Smith M, Smith R, Sneade C, Whitney A, Vloeberghs M, Zaki H, Lumsden DE. Intrathecal baclofen pumps in the management of hypertonia in childhood: a UK and Ireland wide survey. Arch Dis Child 2021; 106:1202-1206. [PMID: 33853760 DOI: 10.1136/archdischild-2020-321487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/03/2021] [Accepted: 03/13/2021] [Indexed: 11/03/2022]
Abstract
BACKGROUND Intrathecal baclofen (ITB) is a useful treatment for hypertonia where non-invasive treatments have been ineffective or poorly tolerated. There is an absence of national guidance on selection criteria and a lack of literature regarding patient characteristics and treatment details for children and young people (CYP) receiving ITB therapy in the UK and Ireland. We aimed to gather patient and treatment characteristics for CYP receiving ITB in the UK and Ireland. METHODS An electronic survey was sent to all paediatric ITB centres in the UK and Ireland. Anonymised data were returned between December 2019 and April 2020. CYP >16 years and those awaiting ITB pump removal were excluded from the dataset. RESULTS 176 CYP were identified as receiving ITB therapy across the UK and Ireland. The majority of CYP with ITB pumps were non-ambulant (93%) with a diagnosis of cerebral palsy (79%). Median age of ITB insertion was 9 years; median current age was 14 years. 79% of CYP had significant spasticity, 55% had significant dystonia. The most commonly used ITB dosing modes were continuous (73%) and flexible (23%). CONCLUSIONS ITB pumps were most frequently used for non-ambulant CYP with cerebral palsy and existence of spasticity and/or dystonia in the UK and Ireland. Most CYP were receiving a continuous dose of ITB. There is significant variation in the number of paediatric ITB pumps across UK and Ireland. There is a need for development of nationally accepted paediatric referral criteria and clinical standards for ITB use.
Collapse
Affiliation(s)
- Rajib Lodh
- Department of Paediatric Neurosciences, Leeds Children's Hospital, Leeds, West Yorkshire, UK
| | - Sam Amin
- Department of Paediatric Neurology, University Hospitals Bristol, Bristol, UK
| | - Amr Ammar
- Department of Paediatric Neurosciences, Queens Medical Centre, Nottingham, UK
| | - Lucy Bellis
- Department of Paediatric Neurology, Great North Children's Hospital, Newcastle Upon Tyne, UK
| | - Phillip Brink
- Department of Paediatric Neurology, Tayside Children's Hospital, Dundee, UK
| | - Amedeo Calisto
- Department of Paediatric Neurosciences, John Radcliffe Hospital, Oxford, UK
| | - Darach Crimmins
- Department of Pediatric Neurosurgery, Temple St Children's University Hospital, Dublin, Ireland
| | - Paul Eunson
- Department of Paediatric Neurology, Royal Hospital for Sick Children, Edinburgh, UK
| | - Rob J Forsyth
- Department of Paediatric Neurology, Great North Children's Hospital, Newcastle Upon Tyne, UK.,Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - John Goodden
- Leeds Children's Hospital, Leeds, West Yorkshire, UK
| | - Margaret Kaminska
- Complex Motor Disorder Service, Evelina Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Joanne Kehoe
- Department of Paediatric Neurology, Central Remedial Clinic, Dublin, Ireland
| | - Martin Kirkpatrick
- Department of Paediatric Neurology, Tayside University Hospitals NHS Trust, Dundee, UK
| | - Ram Kumar
- Department of Paediatric Neurology, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - Jane Leonard
- Department of Paediatric Neurology, Central Remedial Clinic, Dublin, Ireland
| | - Alice Lording
- Department of Paediatric Neurology, Southampton Children's Hospital, Southampton, UK
| | - Katherine Martin
- Department of Paediatric Neurosciences, Nottingham University Hospitals, Nottingham, UK
| | - Russell Miller
- Department of Paediatric Neurology, Great North Children's Hospital, Newcastle Upon Tyne, UK
| | - Santosh R Mordekar
- Department of Paediatric Neurology, Sheffield Children's Hospital, Sheffield, UK
| | - Benedetta Pettorini
- Department of Paediatric Neurosciences, Alder Hey Children's NHS Foundation Trust, Liverpool, Merseyside, UK
| | - Martin Smith
- Department of Paediatric Neurosciences, John Radcliffe Hospital, Oxford, UK
| | - Rachel Smith
- Department of Paediatric Neurosciences, University Hospitals Bristol, Bristol, UK
| | - Christine Sneade
- Department of Paediatric Neurosciences, Alder Hey Children's NHS Foundation Trust, Liverpool, Merseyside, UK
| | - Andrea Whitney
- Department of Paediatric Neurology, Southampton Children's Hospital, Southampton, UK
| | - Michael Vloeberghs
- Department of Paediatric Neurosciences, Queens Medical Centre, Nottingham, UK
| | - Hesham Zaki
- Department of Neurosciences, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Daniel E Lumsden
- Department of Paediatric Neurosciences, Guy's and St Thomas' NHS Foundation Trust, London, UK.,Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
32
|
Bohn E, Goren K, Switzer L, Falck‐Ytter Y, Fehlings D. Pharmacological and neurosurgical interventions for individuals with cerebral palsy and dystonia: a systematic review update and meta-analysis. Dev Med Child Neurol 2021; 63:1038-1050. [PMID: 33772789 PMCID: PMC8451898 DOI: 10.1111/dmcn.14874] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/02/2021] [Indexed: 12/30/2022]
Abstract
AIM To update a systematic review of evidence published up to December 2015 for pharmacological/neurosurgical interventions among individuals with cerebral palsy (CP) and dystonia. METHOD Searches were updated (January 2016 to May 2020) for oral baclofen, trihexyphenidyl, benzodiazepines, clonidine, gabapentin, levodopa, botulinum neurotoxin (BoNT), intrathecal baclofen (ITB), and deep brain stimulation (DBS), and from database inception for medical cannabis. Eligible studies included at least five individuals with CP and dystonia and reported on dystonia, goal achievement, motor function, pain/comfort, ease of caregiving, quality of life (QoL), or adverse events. Evidence certainty was evaluated using GRADE. RESULTS Nineteen new studies met inclusion criteria (two trihexyphenidyl, one clonidine, two BoNT, nine ITB, six DBS), giving a total of 46 studies (four randomized, 42 non-randomized) comprising 915 participants when combined with those from the original systematic review. Very low certainty evidence supported improved dystonia (clonidine, ITB, DBS) and goal achievement (clonidine, BoNT, ITB, DBS). Low to very low certainty evidence supported improved motor function (DBS), pain/comfort (clonidine, BoNT, ITB, DBS), ease of caregiving (clonidine, BoNT, ITB), and QoL (ITB, DBS). Trihexyphenidyl, clonidine, BoNT, ITB, and DBS may increase adverse events. No studies were identified for benzodiazepines, gabapentin, oral baclofen, and medical cannabis. INTERPRETATION Evidence evaluating the use of pharmacological and neurosurgical management options for individuals with CP and dystonia is limited to between low and very low certainty. What this paper adds Meta-analysis suggests that intrathecal baclofen (ITB) and deep brain stimulation (DBS) may improve dystonia and pain. Meta-analysis suggests that DBS may improve motor function. Clonidine, botulinum neurotoxin, ITB, and DBS may improve achievement of individualized goals. ITB and DBS may improve quality of life. No direct evidence is available for oral baclofen, benzodiazepines, gabapentin, or medical cannabis.
Collapse
Affiliation(s)
- Emma Bohn
- Holland Bloorview Kids Rehabilitation HospitalTorontoOntarioCanada,Department of PaediatricsUniversity of TorontoTorontoOntarioCanada
| | - Katherine Goren
- Holland Bloorview Kids Rehabilitation HospitalTorontoOntarioCanada,Department of PaediatricsUniversity of TorontoTorontoOntarioCanada
| | - Lauren Switzer
- Holland Bloorview Kids Rehabilitation HospitalTorontoOntarioCanada,Department of PaediatricsUniversity of TorontoTorontoOntarioCanada
| | - Yngve Falck‐Ytter
- Division of Gastroenterology and HepatologyVeteran Affairs North East Ohio Health Care SystemCase Western Reserve UniversityClevelandOHUSA
| | - Darcy Fehlings
- Holland Bloorview Kids Rehabilitation HospitalTorontoOntarioCanada,Department of PaediatricsUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
33
|
McClelland VM, Lin JP. Sensorimotor Integration in Childhood Dystonia and Dystonic Cerebral Palsy-A Developmental Perspective. Front Neurol 2021; 12:668081. [PMID: 34367047 PMCID: PMC8343097 DOI: 10.3389/fneur.2021.668081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/07/2021] [Indexed: 11/15/2022] Open
Abstract
Dystonia is a disorder of sensorimotor integration, involving dysfunction within the basal ganglia, cortex, cerebellum, or their inter-connections as part of the sensorimotor network. Some forms of dystonia are also characterized by maladaptive or exaggerated plasticity. Development of the neuronal processes underlying sensorimotor integration is incompletely understood but involves activity-dependent modeling and refining of sensorimotor circuits through processes that are already taking place in utero and which continue through infancy, childhood, and into adolescence. Several genetic dystonias have clinical onset in early childhood, but there is evidence that sensorimotor circuit development may already be disrupted prenatally in these conditions. Dystonic cerebral palsy (DCP) is a form of acquired dystonia with perinatal onset during a period of rapid neurodevelopment and activity-dependent refinement of sensorimotor networks. However, physiological studies of children with dystonia are sparse. This discussion paper addresses the role of neuroplasticity in the development of sensorimotor integration with particular focus on the relevance of these mechanisms for understanding childhood dystonia, DCP, and implications for therapy selection, including neuromodulation and timing of intervention.
Collapse
Affiliation(s)
- Verity M McClelland
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Children's Neurosciences Department, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Jean-Pierre Lin
- Children's Neurosciences Department, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
34
|
Larsh T, Wu SW, Vadivelu S, Grant GA, O'Malley JA. Deep Brain Stimulation for Pediatric Dystonia. Semin Pediatr Neurol 2021; 38:100896. [PMID: 34183138 DOI: 10.1016/j.spen.2021.100896] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/26/2022]
Abstract
Dystonia is one of the most common pediatric movement disorders and can have a profound impact on the lives of children and their caregivers. Response to pharmacologic treatment is often unsatisfactory. Deep brain stimulation (DBS) has emerged as a promising treatment option for children with medically refractory dystonia. In this review we highlight the relevant literature related to DBS for pediatric dystonia, with emphasis on the background, indications, prognostic factors, challenges, and future directions of pediatric DBS.
Collapse
Affiliation(s)
- Travis Larsh
- Center for Pediatric Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH
| | - Steve W Wu
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Pediatrics, University of Cincinnati, Cincinnati, OH
| | - Sudhakar Vadivelu
- Division of Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Gerald A Grant
- Department of Neurosurgery, Division of Pediatric Neurosurgery, Stanford University School of Medicine, Palo Alto, CA
| | - Jennifer A O'Malley
- Department of Neurology, Division of Child Neurology, Stanford University School of Medicine, Palo Alto, CA.
| |
Collapse
|
35
|
Subthalamic Nucleus Stimulation in Pediatric Isolated Dystonia: A 10-Year Follow-up. Can J Neurol Sci 2021; 47:328-335. [PMID: 32252836 DOI: 10.1017/cjn.2020.32] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To evaluate the short-term and long-term clinical effectiveness and safety of subthalamic nucleus deep brain stimulation (STN-DBS) for medically intractable pediatric isolated dystonia. METHODS Using a longitudinal retrospective design, we assessed the clinical outcomes of nine patients who underwent STN-DBS for treatment-refractory pediatric isolated dystonia one decade ago (mean age at surgery: 15.9 ± 4.5 years). The primary clinical outcome used was assessed by retrospective video analyses of patients' dystonia symptoms using the Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS). Clinical assessments were performed at baseline, 1-year follow-up (1-yr FU), and 10-year follow-up (10-yr FU). Adverse side effects, including surgery-related, device-related, and stimulation-related effects, were also documented. RESULTS After STN-DBS surgery, the mean improvement in the BFMDRS motor score was 77.1 ± 26.6% at 1-yr FU and 90.4 ± 10.4% at 10-yr FU. Similarly, the mean BFMDRS disability score was improved by 69.5 ± 13.6% at 1-yr FU and by 86.5 ± 13.9% at 10-yr FU. The clinical improvements gained at 10-yr FU were significantly larger than those observed at 1-yr FU. Negative correlations were found between the duration of disease to age at surgery ratio (DD/AS) and the improvements in the BFMDRS motor score and total score at 1-yr FU and 10-yr FU. CONCLUSION To our knowledge, this study provides the first clinical evidence for the short- and long-term effectiveness and safety of STN-DBS for pediatric isolated dystonia. Additionally, putative evidence is provided that earlier STN-DBS intervention in patients with refractory pediatric isolated dystonia may improve short- and long-term clinical outcomes.
Collapse
|
36
|
Furlanetti L, Ellenbogen J, Gimeno H, Ainaga L, Narbad V, Hasegawa H, Lin JP, Ashkan K, Selway R. Targeting accuracy of robot-assisted deep brain stimulation surgery in childhood-onset dystonia: a single-center prospective cohort analysis of 45 consecutive cases. J Neurosurg Pediatr 2021; 27:677-687. [PMID: 33862592 DOI: 10.3171/2020.10.peds20633] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/06/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Deep brain stimulation (DBS) is an established treatment for pediatric dystonia. The accuracy of electrode implantation is multifactorial and remains a challenge in this age group, mainly due to smaller anatomical targets in very young patients compared to adults, and also due to anatomical abnormalities frequently associated with some etiologies of dystonia. Data on the accuracy of robot-assisted DBS surgery in children are limited. The aim of the current paper was to assess the accuracy of robot-assisted implantation of DBS leads in a series of patients with childhood-onset dystonia. METHODS Forty-five children with dystonia undergoing implantation of DBS leads under general anesthesia between 2017 and 2019 were included. Robot-assisted stereotactic implantation of the DBS leads was performed. The final position of the electrodes was verified with an intraoperative 3D scanner (O-arm). Coordinates of the planned electrode target and actual electrode position were obtained and compared, looking at the radial error, depth error, absolute error, and directional error, as well as the euclidean distance. Functional assessment data prospectively collected by a multidisciplinary pediatric complex motor disorders team were analyzed with regard to motor skills, individualized goal achievement, and patients' and caregivers' expectations. RESULTS A total of 90 DBS electrodes were implanted and 48.5% of the patients were female. The mean age was 11.0 ± 0.6 years (range 3-18 years). All patients received bilateral DBS electrodes into the globus pallidus internus. The median absolute errors in x-, y-, and z-axes were 0.85 mm (range 0.00-3.25 mm), 0.75 mm (range 0.05-2.45 mm), and 0.75 mm (range 0.00-3.50 mm), respectively. The median euclidean distance from the target to the actual electrode position was 1.69 ± 0.92 mm, and the median radial error was 1.21 ± 0.79. The robot-assisted technique was easily integrated into the authors' surgical practice, improving accuracy and efficiency, and reducing surgical time significantly along the learning curve. No major perioperative complications occurred. CONCLUSIONS Robot-assisted stereotactic implantation of DBS electrodes in the pediatric age group is a safe and accurate surgical method. Greater accuracy was present in this cohort in comparison to previous studies in which conventional stereotactic frame-based techniques were used. Robotic DBS surgery and neuroradiological advances may result in further improvement in surgical targeting and, consequently, in better clinical outcome in the pediatric population.
Collapse
Affiliation(s)
- Luciano Furlanetti
- 1Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London
- 4King's Health Partners Academic Health Sciences Centre, London, United Kingdom
| | | | - Hortensia Gimeno
- 2Complex Motor Disorders Service, Evelina London Children's Hospital, Guy's and St. Thomas' NHS Foundation Trust, London
- 4King's Health Partners Academic Health Sciences Centre, London, United Kingdom
| | - Laura Ainaga
- 2Complex Motor Disorders Service, Evelina London Children's Hospital, Guy's and St. Thomas' NHS Foundation Trust, London
- 4King's Health Partners Academic Health Sciences Centre, London, United Kingdom
| | - Vijay Narbad
- 1Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London
| | - Harutomo Hasegawa
- 1Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London
- 4King's Health Partners Academic Health Sciences Centre, London, United Kingdom
| | - Jean-Pierre Lin
- 2Complex Motor Disorders Service, Evelina London Children's Hospital, Guy's and St. Thomas' NHS Foundation Trust, London
- 4King's Health Partners Academic Health Sciences Centre, London, United Kingdom
| | - Keyoumars Ashkan
- 1Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London
- 4King's Health Partners Academic Health Sciences Centre, London, United Kingdom
| | - Richard Selway
- 1Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London
- 4King's Health Partners Academic Health Sciences Centre, London, United Kingdom
| |
Collapse
|
37
|
Chintalapati K, Miao H, Mathur A, Neil J, Aravamuthan BR. Objective and Clinically Feasible Analysis of Diffusion MRI Data can Help Predict Dystonia After Neonatal Brain Injury. Pediatr Neurol 2021; 118:6-11. [PMID: 33677143 DOI: 10.1016/j.pediatrneurol.2020.11.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/12/2020] [Accepted: 11/15/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Dystonia in cerebral palsy is debilitating but underdiagnosed precluding targeted treatment that is most effective if instituted early. Deep gray matter injury is associated with dystonic cerebral palsy but is difficult to quantify. Objective and clinically feasible identification of injury preceding dystonia could help determine the children at the highest risk for developing dystonia and thus facilitate early dystonia detection. METHODS We examined brain magnetic resonance images from four- to five-day-old neonates after therapeutic hypothermia for hypoxic-ischemic encephalopathy at a tertiary care center. Apparent diffusion coefficient values in the striatum and thalamus were determined using a web-based viewer integrated with the electronic medical record (IBM iConnect Access). The notes of specialists in neonatal neurology, pediatric movement disorders, and pediatric cerebral palsy (physicians most familiar with motor phenotyping after neonatal brain injury) were screened for all subjects through age of five years for motor phenotype documentation. RESULTS Striatal and thalamic apparent diffusion coefficient values significantly predicted dystonia with receiver operator characteristic areas under the curve of 0.862 (P = 0.0004) and 0.838 (P = 0.001), respectively (n = 50 subjects). Striatal apparent diffusion coefficient values less than 1.014 × 10-3 mm2/s provided 100% specificity and 70% sensitivity for dystonia. Thalamic apparent diffusion coefficient values less than 0.973 × 10-3 mm2/s provided 100% specificity and 80% sensitivity for dystonia. CONCLUSIONS Lower striatal and thalamic apparent diffusion coefficient values predicted dystonia in four- to five-day-old neonates who underwent therapeutic hypothermia for hypoxic ischemic encephalopathy. Objective and clinically feasible neonatal brain imaging assessment could help increase vigilance for dystonia in cerebral palsy.
Collapse
Affiliation(s)
- Keerthana Chintalapati
- Division of Pediatric Neurology, Department of Neurology, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri
| | - Hanyang Miao
- Division of Pediatric Neurology, Department of Neurology, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri
| | - Amit Mathur
- Division of Neonatology, Department of Pediatrics, St. Louis University and Cardinal Glennon Children's Hospital, St. Louis, Missouri
| | - Jeff Neil
- Division of Pediatric Neurology, Department of Neurology, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri
| | - Bhooma R Aravamuthan
- Division of Pediatric Neurology, Department of Neurology, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri.
| |
Collapse
|
38
|
Efficacy and safety of general anesthesia deep brain stimulation for dystonia: an individual patient data meta-analysis of 341 cases. Neurol Sci 2021; 42:2661-2671. [PMID: 33855621 DOI: 10.1007/s10072-021-05214-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/20/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE The efficacy and safety of deep brain stimulation (DBS) under general anesthesia for the treatment of dystonia have not yet been confirmed with high level of evidence. This meta-analysis with pooled individual patient data aims to assess the clinical outcomes and identify the potential prognostic factors of dystonia patients who underwent general anesthesia DBS. METHODS We searched PubMed, Web of Science, and Embase for articles describing patients with dystonia who underwent asleep DBS and had individual Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) scores. The relative improvement in BFMDRS scores was considered the primary outcome. Pearson correlation analyses and multivariate linear regression analysis were conducted to explore the prognostic factors. RESULTS A total of 34 studies involving 341 patients were included. The mean postoperative improvement in BFMDRS-M (BFMDRS movement subscale) and BFMDRS-D (BFMDRS disability subscale) scores were 58.6±36.2% and 48.5±38.7% at the last follow-up visit, respectively, with a mean follow-up time of 22.4±27.6 months. Age at surgery and disease duration showed a negative correlation with the percent improvement of BFMDRS-M (%) at the last visit (r=-0.134, P=0.013; r=-0.165, P=0.006). In the stepwise multivariate regression, only disease duration remained a relevant factor. Additionally, the adverse events were acceptable. CONCLUSION General anesthesia DBS is a safe, effective, and feasible option for dystonia patients in the long term. Shorter disease duration predicts better clinical outcomes.
Collapse
|
39
|
Forman EB, King MD, Gorman KM. Fifteen-minute consultation: Approach to investigation and management of childhood dystonia. Arch Dis Child Educ Pract Ed 2021; 106:71-77. [PMID: 32928841 DOI: 10.1136/archdischild-2019-318131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 01/09/2020] [Accepted: 05/30/2020] [Indexed: 11/03/2022]
Abstract
Dystonia is a hyperkinetic movement disorder characterised by sustained or intermittent muscle contractions causing abnormal movements, postures or both. Dystonia is a challenging condition to diagnose and treat. Dystonia is often under-recognised in children, particularly in cerebral palsy, and frequently coexists with spasticity. This guide aims to simplify the approach to diagnosis, investigation and treatment of childhood-onset dystonia. The principle of treatment is similar regardless of the underlying aetiology: identification of potential triggers and consideration of both pharmacological and surgical options.
Collapse
Affiliation(s)
- Eva Bridget Forman
- Department of Neurology and Clinical Neurophysiology, Children's Health Ireland at Temple Street, Dublin, Ireland
| | - Mary D King
- Department of Neurology and Clinical Neurophysiology, Children's Health Ireland at Temple Street, Dublin, Ireland
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Kathleen M Gorman
- Department of Neurology and Clinical Neurophysiology, Children's Health Ireland at Temple Street, Dublin, Ireland
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
40
|
Smith SE, Gannotti M, Hurvitz EA, Jensen FE, Krach LE, Kruer MC, Msall ME, Noritz G, Rajan DS, Aravamuthan BR. Adults with Cerebral Palsy Require Ongoing Neurologic Care: A Systematic Review. Ann Neurol 2021; 89:860-871. [PMID: 33550625 DOI: 10.1002/ana.26040] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/04/2021] [Accepted: 01/24/2021] [Indexed: 12/19/2022]
Abstract
Cerebral palsy (CP) neurologic care and research efforts typically focus on children. However, most people with CP are adults. Adults with CP are at increased risk of new neurologic conditions, such as stroke and myelopathy, that require ongoing neurologic surveillance to distinguish them from baseline motor impairments. Neurologic factors could also contribute to the motor function decline, chronic pain, and chronic fatigue that are commonly experienced by adults with CP. Based on a systematic literature review, we suggest (1) guidelines for neurologic surveillance and neurologist referral and (2) clinical research questions regarding the evolving neurologic risks for adults with CP. ANN NEUROL 2021;89:860-871.
Collapse
Affiliation(s)
- Sarah E Smith
- Washington University School of Medicine, St Louis, MO, USA
| | - Mary Gannotti
- Shriners Hospitals for Children, Cerebral Palsy Network, University of Hartford, West Hartford, CT, USA
| | - Edward A Hurvitz
- Department of Physical Medicine and Rehabilitation, Michigan Medicine/University of Michigan, Ann Arbor, MI, USA
| | - Frances E Jensen
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Linda E Krach
- Gillette Children's Specialty Healthcare, Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Michael C Kruer
- Cerebral Palsy & Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA.,Departments of Child Health, Neurology, and Cellular & Molecular Medicine and Program in Genetics, University of Arizona College of Medicine-Phoenix Children's Hospital, Tucson, AZ, USA
| | - Michael E Msall
- University of Chicago Kennedy Research Center on Neurodevelopmental Disabilities, Chicago, IL, USA
| | - Garey Noritz
- Department of Pediatrics, Nationwide Children's Hospital and the Ohio State University, Columbus, OH, USA
| | - Deepa S Rajan
- Department of Pediatrics, Division of Child Neurology, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bhooma R Aravamuthan
- Department of Neurology, Division of Pediatric Neurology, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
41
|
Martino D, Deeb W, Jimenez-Shahed J, Malaty I, Pringsheim TM, Fasano A, Ganos C, Wu W, Okun MS. The 5 Pillars in Tourette Syndrome Deep Brain Stimulation Patient Selection: Present and Future. Neurology 2021; 96:664-676. [PMID: 33593864 DOI: 10.1212/wnl.0000000000011704] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 01/14/2021] [Indexed: 11/15/2022] Open
Abstract
The selection of patients with Tourette syndrome (TS) for deep brain stimulation (DBS) surgery rests on 5 fundamental pillars. However, the operationalization of the multidisciplinary screening process to evaluate these pillars remains highly diverse, especially across sites. High tic severity and tic-related impact on quality of life (first 2 pillars) require confirmation from objective, validated measures, but malignant features of TS should per se suffice to fulfill this pillar. Failure of behavioral and pharmacologic therapies (third pillar) should be assessed taking into account refractoriness through objective and subjective measures supporting lack of efficacy of all interventions of proven efficacy, as well as true lack of tolerability, adherence, or access. Educational interventions and use of remote delivery formats (for behavioral therapies) play a role in preventing misjudgment of treatment failure. Stability of comorbid psychiatric disorders for 6 months (fourth pillar) is needed to confirm the predominant impact of tics on quality of life, to prevent pseudo-refractoriness, and to maximize the future DBS response. The 18-year age limit (fifth pillar) is currently under reappraisal, considering the potential impact of severe tics in adolescence and the predictive effect of tic severity in childhood on tic severity when transitioning into adulthood. Future advances should aim at a consensus-based definition of failure of specific, noninvasive treatment strategies for tics and of the minimum clinical observation period before considering DBS treatment, the stability of behavioral comorbidities, and the use of a prospective international registry data to identify predictors of positive response to DBS, especially in younger patients.
Collapse
Affiliation(s)
- Davide Martino
- From the Department of Clinical Neurosciences (D.M., T.M.P.), Cumming School of Medicine, University of Calgary, Calgary AB, Canada; Hotchkiss Brain Institute (D.M., T.M.P.), University of Calgary, Calgary AB, Canada; Alberta Children's Hospital Research Institute (D.M.), University of Calgary, Calgary AB, Canada; Mathison Centre for Mental Health Research and Education (D.M., T.M.P.), Calgary, AB, Canada; UMass Memorial Medical Center and UMass Medical School (W.D.), Worcester, MA, United States; Department of Neurology (J.J.-S.), Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Neurology (I.M., M.S.O.), Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, United States; Department of Psychiatry (T.M.P.), Pediatrics and Community Health Sciences, University of Calgary, AB, Canada; Edmond J. Safra Program in Parkinson's Disease (A.F.), Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Ontario, Canada; Division of Neurology, University of Toronto, Toronto, Ontario, Canada; Krembil Brain Institute (A.F.), Toronto, Ontario, Canada; CenteR for Advancing Neurotechnological Innovation to Application (CRANIA) (A.F.), Toronto, ON, Canada; Movement Disorders and Neuromodulation Unit (C.G.), Charité, University Medicine Berlin, Department of Neurology, Berlin, Germany; and Strategic Regulatory Partners (W.W.), LLC.
| | - Wissam Deeb
- From the Department of Clinical Neurosciences (D.M., T.M.P.), Cumming School of Medicine, University of Calgary, Calgary AB, Canada; Hotchkiss Brain Institute (D.M., T.M.P.), University of Calgary, Calgary AB, Canada; Alberta Children's Hospital Research Institute (D.M.), University of Calgary, Calgary AB, Canada; Mathison Centre for Mental Health Research and Education (D.M., T.M.P.), Calgary, AB, Canada; UMass Memorial Medical Center and UMass Medical School (W.D.), Worcester, MA, United States; Department of Neurology (J.J.-S.), Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Neurology (I.M., M.S.O.), Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, United States; Department of Psychiatry (T.M.P.), Pediatrics and Community Health Sciences, University of Calgary, AB, Canada; Edmond J. Safra Program in Parkinson's Disease (A.F.), Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Ontario, Canada; Division of Neurology, University of Toronto, Toronto, Ontario, Canada; Krembil Brain Institute (A.F.), Toronto, Ontario, Canada; CenteR for Advancing Neurotechnological Innovation to Application (CRANIA) (A.F.), Toronto, ON, Canada; Movement Disorders and Neuromodulation Unit (C.G.), Charité, University Medicine Berlin, Department of Neurology, Berlin, Germany; and Strategic Regulatory Partners (W.W.), LLC
| | - Joohi Jimenez-Shahed
- From the Department of Clinical Neurosciences (D.M., T.M.P.), Cumming School of Medicine, University of Calgary, Calgary AB, Canada; Hotchkiss Brain Institute (D.M., T.M.P.), University of Calgary, Calgary AB, Canada; Alberta Children's Hospital Research Institute (D.M.), University of Calgary, Calgary AB, Canada; Mathison Centre for Mental Health Research and Education (D.M., T.M.P.), Calgary, AB, Canada; UMass Memorial Medical Center and UMass Medical School (W.D.), Worcester, MA, United States; Department of Neurology (J.J.-S.), Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Neurology (I.M., M.S.O.), Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, United States; Department of Psychiatry (T.M.P.), Pediatrics and Community Health Sciences, University of Calgary, AB, Canada; Edmond J. Safra Program in Parkinson's Disease (A.F.), Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Ontario, Canada; Division of Neurology, University of Toronto, Toronto, Ontario, Canada; Krembil Brain Institute (A.F.), Toronto, Ontario, Canada; CenteR for Advancing Neurotechnological Innovation to Application (CRANIA) (A.F.), Toronto, ON, Canada; Movement Disorders and Neuromodulation Unit (C.G.), Charité, University Medicine Berlin, Department of Neurology, Berlin, Germany; and Strategic Regulatory Partners (W.W.), LLC
| | - Irene Malaty
- From the Department of Clinical Neurosciences (D.M., T.M.P.), Cumming School of Medicine, University of Calgary, Calgary AB, Canada; Hotchkiss Brain Institute (D.M., T.M.P.), University of Calgary, Calgary AB, Canada; Alberta Children's Hospital Research Institute (D.M.), University of Calgary, Calgary AB, Canada; Mathison Centre for Mental Health Research and Education (D.M., T.M.P.), Calgary, AB, Canada; UMass Memorial Medical Center and UMass Medical School (W.D.), Worcester, MA, United States; Department of Neurology (J.J.-S.), Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Neurology (I.M., M.S.O.), Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, United States; Department of Psychiatry (T.M.P.), Pediatrics and Community Health Sciences, University of Calgary, AB, Canada; Edmond J. Safra Program in Parkinson's Disease (A.F.), Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Ontario, Canada; Division of Neurology, University of Toronto, Toronto, Ontario, Canada; Krembil Brain Institute (A.F.), Toronto, Ontario, Canada; CenteR for Advancing Neurotechnological Innovation to Application (CRANIA) (A.F.), Toronto, ON, Canada; Movement Disorders and Neuromodulation Unit (C.G.), Charité, University Medicine Berlin, Department of Neurology, Berlin, Germany; and Strategic Regulatory Partners (W.W.), LLC
| | - Tamara M Pringsheim
- From the Department of Clinical Neurosciences (D.M., T.M.P.), Cumming School of Medicine, University of Calgary, Calgary AB, Canada; Hotchkiss Brain Institute (D.M., T.M.P.), University of Calgary, Calgary AB, Canada; Alberta Children's Hospital Research Institute (D.M.), University of Calgary, Calgary AB, Canada; Mathison Centre for Mental Health Research and Education (D.M., T.M.P.), Calgary, AB, Canada; UMass Memorial Medical Center and UMass Medical School (W.D.), Worcester, MA, United States; Department of Neurology (J.J.-S.), Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Neurology (I.M., M.S.O.), Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, United States; Department of Psychiatry (T.M.P.), Pediatrics and Community Health Sciences, University of Calgary, AB, Canada; Edmond J. Safra Program in Parkinson's Disease (A.F.), Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Ontario, Canada; Division of Neurology, University of Toronto, Toronto, Ontario, Canada; Krembil Brain Institute (A.F.), Toronto, Ontario, Canada; CenteR for Advancing Neurotechnological Innovation to Application (CRANIA) (A.F.), Toronto, ON, Canada; Movement Disorders and Neuromodulation Unit (C.G.), Charité, University Medicine Berlin, Department of Neurology, Berlin, Germany; and Strategic Regulatory Partners (W.W.), LLC
| | - Alfonso Fasano
- From the Department of Clinical Neurosciences (D.M., T.M.P.), Cumming School of Medicine, University of Calgary, Calgary AB, Canada; Hotchkiss Brain Institute (D.M., T.M.P.), University of Calgary, Calgary AB, Canada; Alberta Children's Hospital Research Institute (D.M.), University of Calgary, Calgary AB, Canada; Mathison Centre for Mental Health Research and Education (D.M., T.M.P.), Calgary, AB, Canada; UMass Memorial Medical Center and UMass Medical School (W.D.), Worcester, MA, United States; Department of Neurology (J.J.-S.), Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Neurology (I.M., M.S.O.), Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, United States; Department of Psychiatry (T.M.P.), Pediatrics and Community Health Sciences, University of Calgary, AB, Canada; Edmond J. Safra Program in Parkinson's Disease (A.F.), Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Ontario, Canada; Division of Neurology, University of Toronto, Toronto, Ontario, Canada; Krembil Brain Institute (A.F.), Toronto, Ontario, Canada; CenteR for Advancing Neurotechnological Innovation to Application (CRANIA) (A.F.), Toronto, ON, Canada; Movement Disorders and Neuromodulation Unit (C.G.), Charité, University Medicine Berlin, Department of Neurology, Berlin, Germany; and Strategic Regulatory Partners (W.W.), LLC
| | - Christos Ganos
- From the Department of Clinical Neurosciences (D.M., T.M.P.), Cumming School of Medicine, University of Calgary, Calgary AB, Canada; Hotchkiss Brain Institute (D.M., T.M.P.), University of Calgary, Calgary AB, Canada; Alberta Children's Hospital Research Institute (D.M.), University of Calgary, Calgary AB, Canada; Mathison Centre for Mental Health Research and Education (D.M., T.M.P.), Calgary, AB, Canada; UMass Memorial Medical Center and UMass Medical School (W.D.), Worcester, MA, United States; Department of Neurology (J.J.-S.), Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Neurology (I.M., M.S.O.), Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, United States; Department of Psychiatry (T.M.P.), Pediatrics and Community Health Sciences, University of Calgary, AB, Canada; Edmond J. Safra Program in Parkinson's Disease (A.F.), Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Ontario, Canada; Division of Neurology, University of Toronto, Toronto, Ontario, Canada; Krembil Brain Institute (A.F.), Toronto, Ontario, Canada; CenteR for Advancing Neurotechnological Innovation to Application (CRANIA) (A.F.), Toronto, ON, Canada; Movement Disorders and Neuromodulation Unit (C.G.), Charité, University Medicine Berlin, Department of Neurology, Berlin, Germany; and Strategic Regulatory Partners (W.W.), LLC
| | - Winifred Wu
- From the Department of Clinical Neurosciences (D.M., T.M.P.), Cumming School of Medicine, University of Calgary, Calgary AB, Canada; Hotchkiss Brain Institute (D.M., T.M.P.), University of Calgary, Calgary AB, Canada; Alberta Children's Hospital Research Institute (D.M.), University of Calgary, Calgary AB, Canada; Mathison Centre for Mental Health Research and Education (D.M., T.M.P.), Calgary, AB, Canada; UMass Memorial Medical Center and UMass Medical School (W.D.), Worcester, MA, United States; Department of Neurology (J.J.-S.), Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Neurology (I.M., M.S.O.), Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, United States; Department of Psychiatry (T.M.P.), Pediatrics and Community Health Sciences, University of Calgary, AB, Canada; Edmond J. Safra Program in Parkinson's Disease (A.F.), Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Ontario, Canada; Division of Neurology, University of Toronto, Toronto, Ontario, Canada; Krembil Brain Institute (A.F.), Toronto, Ontario, Canada; CenteR for Advancing Neurotechnological Innovation to Application (CRANIA) (A.F.), Toronto, ON, Canada; Movement Disorders and Neuromodulation Unit (C.G.), Charité, University Medicine Berlin, Department of Neurology, Berlin, Germany; and Strategic Regulatory Partners (W.W.), LLC
| | - Michael S Okun
- From the Department of Clinical Neurosciences (D.M., T.M.P.), Cumming School of Medicine, University of Calgary, Calgary AB, Canada; Hotchkiss Brain Institute (D.M., T.M.P.), University of Calgary, Calgary AB, Canada; Alberta Children's Hospital Research Institute (D.M.), University of Calgary, Calgary AB, Canada; Mathison Centre for Mental Health Research and Education (D.M., T.M.P.), Calgary, AB, Canada; UMass Memorial Medical Center and UMass Medical School (W.D.), Worcester, MA, United States; Department of Neurology (J.J.-S.), Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Neurology (I.M., M.S.O.), Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, United States; Department of Psychiatry (T.M.P.), Pediatrics and Community Health Sciences, University of Calgary, AB, Canada; Edmond J. Safra Program in Parkinson's Disease (A.F.), Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Ontario, Canada; Division of Neurology, University of Toronto, Toronto, Ontario, Canada; Krembil Brain Institute (A.F.), Toronto, Ontario, Canada; CenteR for Advancing Neurotechnological Innovation to Application (CRANIA) (A.F.), Toronto, ON, Canada; Movement Disorders and Neuromodulation Unit (C.G.), Charité, University Medicine Berlin, Department of Neurology, Berlin, Germany; and Strategic Regulatory Partners (W.W.), LLC
| |
Collapse
|
42
|
Luciano MS, Robichaux-Viehoever A, Dodenhoff KA, Gittings M, Viser AC, Racine CA, Bledsoe IO, Pereira C, Wang S, Starr PA, Ostrem JL. Thalamic deep brain stimulation for acquired dystonia in children and young adults: a phase 1 clinical trial. J Neurosurg Pediatr 2021; 27:203-212. [PMID: 33254134 PMCID: PMC8155109 DOI: 10.3171/2020.7.peds20348] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/07/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the feasibility and preliminary efficacy and safety of combined bilateral ventralis oralis posterior/ventralis intermedius (Vop/Vim) deep brain stimulation (DBS) for the treatment of acquired dystonia in children and young adults. Pallidal DBS is efficacious for severe, medication-refractory isolated dystonia, providing 50%-60% long-term improvement. Unfortunately, pallidal stimulation response rates in acquired dystonia are modest and unpredictable, with frequent nonresponders. Acquired dystonia, most commonly caused by cerebral palsy, is more common than isolated dystonia in pediatric populations and is more recalcitrant to standard treatments. Given the limitations of pallidal DBS in acquired dystonia, there is a need to explore alternative brain targets. Preliminary evidence has suggested that thalamic stimulation may be efficacious for acquired dystonia. METHODS Four participants, 3 with perinatal brain injuries and 1 with postencephalitic symptomatic dystonia, underwent bilateral Vop/Vim DBS and bimonthly evaluations for 12 months. The primary efficacy outcome was the change in Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) and Barry-Albright Dystonia Scale (BADS) scores between the baseline and 12-month assessments. Video documentation was used for blinded ratings. Secondary outcomes included evaluation of spasticity (Modified Ashworth Scale score), quality of life (Pediatric Quality of Life Inventory [PedsQL] and modified Unified Parkinson's Disease Rating Scale Part II [UPDRS-II] scores), and neuropsychological assessments. Adverse events were monitored for safety. RESULTS All participants tolerated the procedure well, and there were no safety concerns or serious adverse events. There was an average improvement of 21.5% in the BFMDRS motor subscale score, but the improvement was only 1.6% according to the BADS score. Following blinded video review, dystonia severity ratings were even more modest. Secondary outcomes, however, were more encouraging, with the BFMDRS disability subscale score improving by 15.7%, the PedsQL total score by 27%, and the modified UPDRS-II score by 19.3%. Neuropsychological assessment findings were unchanged 1 year after surgery. CONCLUSIONS Bilateral thalamic neuromodulation by DBS for severe, medication-refractory acquired dystonia was well tolerated. Primary and secondary outcomes showed highly variable treatment effect sizes comparable to those of pallidal stimulation in this population. As previously described, improvements in quality of life and disability were not reflected in dystonia severity scales, suggesting a need for the development of scales specifically for acquired dystonia.Clinical trial registration no.: NCT03078816 (clinicaltrials.gov).
Collapse
Affiliation(s)
- Marta San Luciano
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Amy Robichaux-Viehoever
- Department of Neurology, Division of Child Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Kristen A Dodenhoff
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Melissa Gittings
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Aaron C Viser
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Caroline A Racine
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Ian O Bledsoe
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Christa Pereira
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Sarah Wang
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Philip A Starr
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Jill L Ostrem
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
43
|
Sui Y, Tian Y, Ko WKD, Wang Z, Jia F, Horn A, De Ridder D, Choi KS, Bari AA, Wang S, Hamani C, Baker KB, Machado AG, Aziz TZ, Fonoff ET, Kühn AA, Bergman H, Sanger T, Liu H, Haber SN, Li L. Deep Brain Stimulation Initiative: Toward Innovative Technology, New Disease Indications, and Approaches to Current and Future Clinical Challenges in Neuromodulation Therapy. Front Neurol 2021; 11:597451. [PMID: 33584498 PMCID: PMC7876228 DOI: 10.3389/fneur.2020.597451] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/23/2020] [Indexed: 01/17/2023] Open
Abstract
Deep brain stimulation (DBS) is one of the most important clinical therapies for neurological disorders. DBS also has great potential to become a great tool for clinical neuroscience research. Recently, the National Engineering Laboratory for Neuromodulation at Tsinghua University held an international Deep Brain Stimulation Initiative workshop to discuss the cutting-edge technological achievements and clinical applications of DBS. We specifically addressed new clinical approaches and challenges in DBS for movement disorders (Parkinson's disease and dystonia), clinical application toward neurorehabilitation for stroke, and the progress and challenges toward DBS for neuropsychiatric disorders. This review highlighted key developments in (1) neuroimaging, with advancements in 3-Tesla magnetic resonance imaging DBS compatibility for exploration of brain network mechanisms; (2) novel DBS recording capabilities for uncovering disease pathophysiology; and (3) overcoming global healthcare burdens with online-based DBS programming technology for connecting patient communities. The successful event marks a milestone for global collaborative opportunities in clinical development of neuromodulation to treat major neurological disorders.
Collapse
Affiliation(s)
- Yanan Sui
- National Engineering Laboratory for Neuromodulation, Tsinghua University, Beijing, China
| | - Ye Tian
- National Engineering Laboratory for Neuromodulation, Tsinghua University, Beijing, China
| | - Wai Kin Daniel Ko
- National Engineering Laboratory for Neuromodulation, Tsinghua University, Beijing, China
| | - Zhiyan Wang
- National Engineering Laboratory for Neuromodulation, Tsinghua University, Beijing, China
| | - Fumin Jia
- National Engineering Laboratory for Neuromodulation, Tsinghua University, Beijing, China
| | - Andreas Horn
- Charité, Department of Neurology, Movement Disorders and Neuromodulation Unit, University Medicine Berlin, Berlin, Germany
| | - Dirk De Ridder
- Section of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Ki Sueng Choi
- Department of Psychiatry and Behavioural Science, Emory University, Atlanta, GA, United States.,Department of Radiology, Mount Sinai School of Medicine, New York, NY, United States.,Department of Neurosurgery, Mount Sinai School of Medicine, New York, NY, United States
| | - Ausaf A Bari
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, United States
| | - Shouyan Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Clement Hamani
- Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Kenneth B Baker
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States.,Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Andre G Machado
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States.,Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Tipu Z Aziz
- Department of Neurosurgery, John Radcliffe Hospital, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Erich Talamoni Fonoff
- Department of Neurology, University of São Paulo Medical School, São Paulo, Brazil.,Hospital Sírio-Libanês and Hospital Albert Einstein, São Paulo, Brazil
| | - Andrea A Kühn
- Charité, Department of Neurology, Movement Disorders and Neuromodulation Unit, University Medicine Berlin, Berlin, Germany
| | - Hagai Bergman
- Department of Medical Neurobiology (Physiology), Institute of Medical Research-Israel-Canada (IMRIC), Faculty of Medicine, Jerusalem, Israel.,The Edmond and Lily Safra Center for Brain Research (ELSC), The Hebrew University and Department of Neurosurgery, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | - Terence Sanger
- University of Southern California, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Hesheng Liu
- Department of Neuroscience, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Suzanne N Haber
- Department of Pharmacology and Physiology, University of Rochester School of Medicine & Dentistry, Rochester, NY, United States.,McLean Hospital and Harvard Medical School, Belmont, MA, United States
| | - Luming Li
- National Engineering Laboratory for Neuromodulation, Tsinghua University, Beijing, China
| |
Collapse
|
44
|
Cif L, Demailly D, Lin JP, Barwick KE, Sa M, Abela L, Malhotra S, Chong WK, Steel D, Sanchis-Juan A, Ngoh A, Trump N, Meyer E, Vasques X, Rankin J, Allain MW, Applegate CD, Attaripour Isfahani S, Baleine J, Balint B, Bassetti JA, Baple EL, Bhatia KP, Blanchet C, Burglen L, Cambonie G, Seng EC, Bastaraud SC, Cyprien F, Coubes C, d’Hardemare V, Deciphering Developmental Disorders Study, Doja A, Dorison N, Doummar D, Dy-Hollins ME, Farrelly E, Fitzpatrick DR, Fearon C, Fieg EL, Fogel BL, Forman EB, Fox RG, Genomics England Research Consortium, Gahl WA, Galosi S, Gonzalez V, Graves TD, Gregory A, Hallett M, Hasegawa H, Hayflick SJ, Hamosh A, Hully M, Jansen S, Jeong SY, Krier JB, Krystal S, Kumar KR, Laurencin C, Lee H, Lesca G, François LL, Lynch T, Mahant N, Martinez-Agosto JA, Milesi C, Mills KA, Mondain M, Morales-Briceno H, NIHR BioResource, Ostergaard JR, Pal S, Pallais JC, Pavillard F, Perrigault PF, Petersen AK, Polo G, Poulen G, Rinne T, Roujeau T, Rogers C, Roubertie A, Sahagian M, Schaefer E, Selim L, Selway R, Sharma N, Signer R, Soldatos AG, Stevenson DA, Stewart F, Tchan M, Undiagnosed Diseases Network, Verma IC, de Vries BBA, Wilson JL, Wong DA, Zaitoun R, Zhen D, et alCif L, Demailly D, Lin JP, Barwick KE, Sa M, Abela L, Malhotra S, Chong WK, Steel D, Sanchis-Juan A, Ngoh A, Trump N, Meyer E, Vasques X, Rankin J, Allain MW, Applegate CD, Attaripour Isfahani S, Baleine J, Balint B, Bassetti JA, Baple EL, Bhatia KP, Blanchet C, Burglen L, Cambonie G, Seng EC, Bastaraud SC, Cyprien F, Coubes C, d’Hardemare V, Deciphering Developmental Disorders Study, Doja A, Dorison N, Doummar D, Dy-Hollins ME, Farrelly E, Fitzpatrick DR, Fearon C, Fieg EL, Fogel BL, Forman EB, Fox RG, Genomics England Research Consortium, Gahl WA, Galosi S, Gonzalez V, Graves TD, Gregory A, Hallett M, Hasegawa H, Hayflick SJ, Hamosh A, Hully M, Jansen S, Jeong SY, Krier JB, Krystal S, Kumar KR, Laurencin C, Lee H, Lesca G, François LL, Lynch T, Mahant N, Martinez-Agosto JA, Milesi C, Mills KA, Mondain M, Morales-Briceno H, NIHR BioResource, Ostergaard JR, Pal S, Pallais JC, Pavillard F, Perrigault PF, Petersen AK, Polo G, Poulen G, Rinne T, Roujeau T, Rogers C, Roubertie A, Sahagian M, Schaefer E, Selim L, Selway R, Sharma N, Signer R, Soldatos AG, Stevenson DA, Stewart F, Tchan M, Undiagnosed Diseases Network, Verma IC, de Vries BBA, Wilson JL, Wong DA, Zaitoun R, Zhen D, Znaczko A, Dale RC, de Gusmão CM, Friedman J, Fung VSC, King MD, Mohammad SS, Rohena L, Waugh JL, Toro C, Raymond FL, Topf M, Coubes P, Gorman KM, Kurian MA. KMT2B-related disorders: expansion of the phenotypic spectrum and long-term efficacy of deep brain stimulation. Brain 2020; 143:3242-3261. [PMID: 33150406 PMCID: PMC7719027 DOI: 10.1093/brain/awaa304] [Show More Authors] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/28/2020] [Accepted: 07/13/2020] [Indexed: 12/31/2022] Open
Abstract
Heterozygous mutations in KMT2B are associated with an early-onset, progressive and often complex dystonia (DYT28). Key characteristics of typical disease include focal motor features at disease presentation, evolving through a caudocranial pattern into generalized dystonia, with prominent oromandibular, laryngeal and cervical involvement. Although KMT2B-related disease is emerging as one of the most common causes of early-onset genetic dystonia, much remains to be understood about the full spectrum of the disease. We describe a cohort of 53 patients with KMT2B mutations, with detailed delineation of their clinical phenotype and molecular genetic features. We report new disease presentations, including atypical patterns of dystonia evolution and a subgroup of patients with a non-dystonic neurodevelopmental phenotype. In addition to the previously reported systemic features, our study has identified co-morbidities, including the risk of status dystonicus, intrauterine growth retardation, and endocrinopathies. Analysis of this study cohort (n = 53) in tandem with published cases (n = 80) revealed that patients with chromosomal deletions and protein truncating variants had a significantly higher burden of systemic disease (with earlier onset of dystonia) than those with missense variants. Eighteen individuals had detailed longitudinal data available after insertion of deep brain stimulation for medically refractory dystonia. Median age at deep brain stimulation was 11.5 years (range: 4.5-37.0 years). Follow-up after deep brain stimulation ranged from 0.25 to 22 years. Significant improvement of motor function and disability (as assessed by the Burke Fahn Marsden's Dystonia Rating Scales, BFMDRS-M and BFMDRS-D) was evident at 6 months, 1 year and last follow-up (motor, P = 0.001, P = 0.004, and P = 0.012; disability, P = 0.009, P = 0.002 and P = 0.012). At 1 year post-deep brain stimulation, >50% of subjects showed BFMDRS-M and BFMDRS-D improvements of >30%. In the long-term deep brain stimulation cohort (deep brain stimulation inserted for >5 years, n = 8), improvement of >30% was maintained in 5/8 and 3/8 subjects for the BFMDRS-M and BFMDRS-D, respectively. The greatest BFMDRS-M improvements were observed for trunk (53.2%) and cervical (50.5%) dystonia, with less clinical impact on laryngeal dystonia. Improvements in gait dystonia decreased from 20.9% at 1 year to 16.2% at last assessment; no patient maintained a fully independent gait. Reduction of BFMDRS-D was maintained for swallowing (52.9%). Five patients developed mild parkinsonism following deep brain stimulation. KMT2B-related disease comprises an expanding continuum from infancy to adulthood, with early evidence of genotype-phenotype correlations. Except for laryngeal dysphonia, deep brain stimulation provides a significant improvement in quality of life and function with sustained clinical benefit depending on symptoms distribution.
Collapse
Affiliation(s)
- Laura Cif
- Département de Neurochirurgie, Unité des Pathologies Cérébrales Résistantes, Unité de Recherche sur les Comportements et Mouvements Anormaux, Hôpital Gui de Chauliac, Centre Hospitalier Régional Montpellier, Montpellier, France
- Faculté de médecine, Université de Montpellier, France
| | - Diane Demailly
- Département de Neurochirurgie, Unité des Pathologies Cérébrales Résistantes, Unité de Recherche sur les Comportements et Mouvements Anormaux, Hôpital Gui de Chauliac, Centre Hospitalier Régional Montpellier, Montpellier, France
- Faculté de médecine, Université de Montpellier, France
| | - Jean-Pierre Lin
- Complex Motor Disorder Service, Children's Neurosciences Department, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
- Children’s Neuromodulation Group, Women and Children’s Health Institute, Faculty of life Sciences and Medicine (FOLSM), King’s Health Partners, London, UK
| | - Katy E Barwick
- Molecular Neurosciences, Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Mario Sa
- Complex Motor Disorder Service, Children's Neurosciences Department, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Lucia Abela
- Molecular Neurosciences, Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Sony Malhotra
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, London, UK
| | - Wui K Chong
- Developmental Imaging and Biophysics, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Dora Steel
- Molecular Neurosciences, Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Neurology, Great Ormond Street Hospital, London, UK
| | - Alba Sanchis-Juan
- NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Haematology, NHS Blood and Transplant Centre, University of Cambridge, Cambridge, UK
| | - Adeline Ngoh
- Molecular Neurosciences, Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Neurology, Great Ormond Street Hospital, London, UK
| | - Natalie Trump
- Molecular Neurosciences, Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Esther Meyer
- Molecular Neurosciences, Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
| | | | - Julia Rankin
- Clinical Genetics, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Meredith W Allain
- Division of Medical Genetics, Department of Pediatrics, Stanford University, Palo Alto, CA, USA
| | - Carolyn D Applegate
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sanaz Attaripour Isfahani
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Julien Baleine
- Unité de Soins Intensifs et Réanimation Pédiatrique et Néonatale, Hôpital Universitaire de Montpellier, Montpellier, France
| | - Bettina Balint
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- Department of Neurology, University Hospital Heidelberg, Heidelberg, Germany
| | - Jennifer A Bassetti
- Division of Medical Genetics, Department of Pediatrics, Weill Cornell Medical College, New York, NY, USA
| | - Emma L Baple
- Clinical Genetics, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
- Institute of Biomedical and Clinical Science RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Catherine Blanchet
- Département d’Oto-Rhino-Laryngologie et Chirurgie Cervico-Faciale, Hôpital Universitaire de Montpellier, Montpellier, France
| | - Lydie Burglen
- Département de génétique médicale, APHP Hôpital Armand Trousseau, Paris, France
| | - Gilles Cambonie
- Unité de Soins Intensifs et Réanimation Pédiatrique et Néonatale, Hôpital Universitaire de Montpellier, Montpellier, France
| | - Emilie Chan Seng
- Département de Neurochirurgie, Unité des Pathologies Cérébrales Résistantes, Unité de Recherche sur les Comportements et Mouvements Anormaux, Hôpital Gui de Chauliac, Centre Hospitalier Régional Montpellier, Montpellier, France
- Faculté de médecine, Université de Montpellier, France
| | | | - Fabienne Cyprien
- Département de Neurochirurgie, Unité des Pathologies Cérébrales Résistantes, Unité de Recherche sur les Comportements et Mouvements Anormaux, Hôpital Gui de Chauliac, Centre Hospitalier Régional Montpellier, Montpellier, France
- Faculté de médecine, Université de Montpellier, France
| | - Christine Coubes
- Département de Génétique médicale, Maladies rares et médecine personnalisée, CHU Montpellier, Montpellier, France
| | - Vincent d’Hardemare
- Unité Dyspa, Neurochirurgie Pédiatrique, Hôpital Fondation Rothschild, Paris, France
| | | | - Asif Doja
- Division of Neurology, Children’s Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Nathalie Dorison
- Unité Dyspa, Neurochirurgie Pédiatrique, Hôpital Fondation Rothschild, Paris, France
| | - Diane Doummar
- Neuropédiatrie, Centre de référence neurogénétique mouvement anormaux de l’enfant, Hôpital Armand Trousseau, AP-HP, Sorbonne Université, France
| | - Marisela E Dy-Hollins
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Ellyn Farrelly
- Division of Medical Genetics, Department of Pediatrics, Stanford University, Palo Alto, CA, USA
- Department of Pediatrics, Lucile Packard Children’s Hospital at Stanford, CA, USA
| | - David R Fitzpatrick
- Human Genetics Unit, Medical and Developmental Genetics, University of Edinburgh Western General Hospital, Edinburgh, Scotland, UK
| | - Conor Fearon
- Department of Neurology, The Dublin Neurological Institute at the Mater Misericordiae University Hospital, Dublin, Ireland
| | - Elizabeth L Fieg
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Brent L Fogel
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Eva B Forman
- Department of Paediatric Neurology and Clinical Neurophysiology, Children's Health Ireland at Temple Street, Dublin, Ireland
| | - Rachel G Fox
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | | | - William A Gahl
- Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Serena Galosi
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Victoria Gonzalez
- Département de Neurochirurgie, Unité des Pathologies Cérébrales Résistantes, Unité de Recherche sur les Comportements et Mouvements Anormaux, Hôpital Gui de Chauliac, Centre Hospitalier Régional Montpellier, Montpellier, France
- Faculté de médecine, Université de Montpellier, France
| | - Tracey D Graves
- Department of Neurology, Hinchingbrooke Hospital, North West Anglia NHS Foundation Trust, Huntingdon, UK
| | - Allison Gregory
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Harutomo Hasegawa
- Complex Motor Disorder Service, Children's Neurosciences Department, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
- Children’s Neuromodulation Group, Women and Children’s Health Institute, Faculty of life Sciences and Medicine (FOLSM), King’s Health Partners, London, UK
| | - Susan J Hayflick
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
- Department of Paediatrics, Oregon Health and Science University, Portland, OR, USA
| | - Ada Hamosh
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marie Hully
- Département de Neurologie, APHP-Necker-Enfants Malades, Paris, France
| | - Sandra Jansen
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Suh Young Jeong
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | - Joel B Krier
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sidney Krystal
- Département de Neuroradiologie, Hôpital Fondation Rothschild, Paris
| | - Kishore R Kumar
- Translational Genomics Group, Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Department of Neurogenetics, Kolling Institute, University of Sydney and Royal North Shore Hospital, St Leonards, NSW, Australia
- Molecular Medicine Laboratory, Concord Hospital, Sydney, NSW, Australia
| | - Chloé Laurencin
- Département de Neurologie, Hôpital Neurologique Pierre Wertheimer, Lyon, France
| | - Hane Lee
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Gaetan Lesca
- Département de Génétique, Hôpital Universitaire de Lyon, Lyon, France
| | | | - Timothy Lynch
- Department of Neurology, The Dublin Neurological Institute at the Mater Misericordiae University Hospital, Dublin, Ireland
- UCD School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Neil Mahant
- Movement Disorders Unit, Department of Neurology, Westmead Hospital, Westmead, NSW, Australia
| | - Julian A Martinez-Agosto
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Division of Medical Genetics, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Christophe Milesi
- Unité de Soins Intensifs et Réanimation Pédiatrique et Néonatale, Hôpital Universitaire de Montpellier, Montpellier, France
| | - Kelly A Mills
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michel Mondain
- Département d’Oto-Rhino-Laryngologie et Chirurgie Cervico-Faciale, Hôpital Universitaire de Montpellier, Montpellier, France
| | - Hugo Morales-Briceno
- Movement Disorders Unit, Department of Neurology, Westmead Hospital, Westmead, NSW, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - NIHR BioResource
- NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - John R Ostergaard
- Centre for Rare Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Swasti Pal
- Institute of Genetics and Genomics, Sir Ganga Ram Hospital, Rajender Nagar, New Delhi, India
| | - Juan C Pallais
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Frédérique Pavillard
- Département d’Anesthésie-Réanimation Gui de Chauliac, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Pierre-Francois Perrigault
- Département d’Anesthésie-Réanimation Gui de Chauliac, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | | | - Gustavo Polo
- Département de Neurochirurgie Fonctionnelle, Hôpital Neurologique et Neurochirurgical, Pierre Wertheimer, Lyon, France
| | - Gaetan Poulen
- Département de Neurochirurgie, Unité des Pathologies Cérébrales Résistantes, Unité de Recherche sur les Comportements et Mouvements Anormaux, Hôpital Gui de Chauliac, Centre Hospitalier Régional Montpellier, Montpellier, France
- Faculté de médecine, Université de Montpellier, France
| | - Tuula Rinne
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Thomas Roujeau
- Département de Neurochirurgie, Unité des Pathologies Cérébrales Résistantes, Unité de Recherche sur les Comportements et Mouvements Anormaux, Hôpital Gui de Chauliac, Centre Hospitalier Régional Montpellier, Montpellier, France
| | - Caleb Rogers
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | - Agathe Roubertie
- Département de Neuropédiatrie, Hôpital Universitaire de Montpellier, Montpellier, France
- INSERM U1051, Institut des Neurosciences de Montpellier, Montpellier, France
| | - Michelle Sahagian
- Division of Neurology, Rady Children's Hospital San Diego, CA, USA
- Department of Neuroscience, University of California San Diego, CA, USA
| | - Elise Schaefer
- Medical Genetics, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Laila Selim
- Cairo University Children Hospital, Pediatric Neurology and Metabolic division, Cairo, Egypt
| | - Richard Selway
- Department of Neurosurgery, King's College Hospital, London, UK
| | - Nutan Sharma
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Rebecca Signer
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Ariane G Soldatos
- Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - David A Stevenson
- Division of Medical Genetics, Department of Pediatrics, Stanford University, Palo Alto, CA, USA
| | - Fiona Stewart
- Department of Genetic Medicine, Belfast Health and Social Care Trust, Belfast, UK
| | - Michel Tchan
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- Department of Genetics, Westmead Hospital, Westmead, NSW, Australia
| | - Undiagnosed Diseases Network
- Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ishwar C Verma
- Institute of Genetics and Genomics, Sir Ganga Ram Hospital, Rajender Nagar, New Delhi, India
| | - Bert B A de Vries
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jenny L Wilson
- Division of Pediatric Neurology, Department of Pediatrics, Oregon Health and Science University, Portland, OR, USA
| | - Derek A Wong
- Division of Medical Genetics, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Raghda Zaitoun
- Department of Paediatrics, Neurology Division, Ain Shams University Hospital, Cairo, Egypt
| | - Dolly Zhen
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | - Anna Znaczko
- Department of Genetic Medicine, Belfast Health and Social Care Trust, Belfast, UK
| | - Russell C Dale
- Department of Paediatric Neurology, The Children's Hospital at Westmead, NSW, Australia
- Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Sydney NSW, Australia
| | - Claudio M de Gusmão
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Jennifer Friedman
- Division of Neurology, Rady Children's Hospital San Diego, CA, USA
- Department of Neuroscience, University of California San Diego, CA, USA
- Departments of Paediatrics, University of California, San Diego, CA, USA
- Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | - Victor S C Fung
- Movement Disorders Unit, Department of Neurology, Westmead Hospital, Westmead, NSW, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Mary D King
- Department of Paediatric Neurology and Clinical Neurophysiology, Children's Health Ireland at Temple Street, Dublin, Ireland
- UCD School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Shekeeb S Mohammad
- Department of Paediatric Neurology, The Children's Hospital at Westmead, NSW, Australia
- Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Sydney NSW, Australia
| | - Luis Rohena
- Division of Medical Genetics, Department of Pediatrics, San Antonio Military Medical Center, San Antonio, TX, USA
- Department of Pediatrics, Long School of Medicine, UT Health, San Antonio, TX, USA
| | - Jeff L Waugh
- Division of Pediatric Neurology, Department of Pediatrics, University of Texas Southwestern, Dallas, TX, USA
| | - Camilo Toro
- Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - F Lucy Raymond
- NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Maya Topf
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, London, UK
| | - Philippe Coubes
- Département de Neurochirurgie, Unité des Pathologies Cérébrales Résistantes, Unité de Recherche sur les Comportements et Mouvements Anormaux, Hôpital Gui de Chauliac, Centre Hospitalier Régional Montpellier, Montpellier, France
- Faculté de médecine, Université de Montpellier, France
| | - Kathleen M Gorman
- Molecular Neurosciences, Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Neurology, Great Ormond Street Hospital, London, UK
| | - Manju A Kurian
- Molecular Neurosciences, Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Neurology, Great Ormond Street Hospital, London, UK
| |
Collapse
|
45
|
Muñoz KA, Blumenthal-Barby J, Storch EA, Torgerson L, Lázaro-Muñoz G. Pediatric Deep Brain Stimulation for Dystonia: Current State and Ethical Considerations. Camb Q Healthc Ethics 2020; 29:557-573. [PMID: 32892777 PMCID: PMC9426302 DOI: 10.1017/s0963180120000316] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dystonia is a movement disorder that can have a debilitating impact on motor functions and quality of life. There are 250,000 cases in the United States, most with childhood onset. Due to the limited effectiveness and side effects of available treatments, pediatric deep brain stimulation (pDBS) has emerged as an intervention for refractory dystonia. However, there is limited clinical and neuroethics research in this area of clinical practice. This paper examines whether it is ethically justified to offer pDBS to children with refractory dystonia. Given the favorable risk-benefit profile, it is concluded that offering pDBS is ethically justified for certain etiologies of dystonia, but it is less clear for others. In addition, various ethical and policy concerns are discussed, which need to be addressed to optimize the practice of offering pDBS for dystonia. Strategies are proposed to help address these concerns as pDBS continues to expand.
Collapse
Affiliation(s)
- Katrina A. Muñoz
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX
| | | | - Eric A. Storch
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX
| | - Laura Torgerson
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX
| | - Gabriel Lázaro-Muñoz
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX
| |
Collapse
|
46
|
Tambirajoo K, Furlanetti L, Samuel M, Ashkan K. Subthalamic Nucleus Deep Brain Stimulation in Post-Infarct Dystonia. Stereotact Funct Neurosurg 2020; 98:386-398. [DOI: 10.1159/000509317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/10/2020] [Indexed: 11/19/2022]
Abstract
Dystonia secondary to cerebral infarcts presents months to years after the initial insult, is usually unilateral and causes significant morbidity. Deep brain stimulation (DBS) of the globus pallidus internus (GPi) is established as the most frequent target in the management of the dystonic symptoms. We report our experience with subthalamic nucleus (STN) DBS in 3 patients with post-infarct dystonia, in whom GPi DBS was not confidently possible due to the presence of striatal infarcts. Two patients had unilateral STN DBS implantation, whereas the third patient had bilateral STN DBS implantation for bilateral dystonic symptoms. Prospectively collected preoperative and postoperative functional assessment data including imaging, medication and neuropsychology evaluations were analyzed with regard to symptom improvement. Median follow-up period was 38.3 months (range 26–43 months). All patients had clinically valuable improvements in dystonic symptoms and pain control despite variable improvements in the Burke-Fahn-Marsden dystonia rating scores. In our series, we have demonstrated that STN DBS could be an alternative in the management of post-infarct dystonia in patients with abnormal striatal anatomy which precludes GPi DBS. A multidisciplinary team-based approach is essential for patient selection and management.
Collapse
|
47
|
Jiang H, Wang R, Zheng Z, Zhu J. Deep brain stimulation for the treatment of cerebral palsy: A review. BRAIN SCIENCE ADVANCES 2020. [DOI: 10.26599/bsa.2020.9050002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Deep brain stimulation (DBS) has been used as a safe and effective neuromodulation technique for treatment of various diseases. A large number of patients suffering from movement disorders such as dyskinesia may benefit from DBS. Cerebral palsy (CP) is a group of permanent disorders mainly involving motor impairment, and medical interventions are usually unsatisfactory or temporarily active, especially for dyskinetic CP. DBS may be another approach to the treatment of CP. In this review we discuss the targets for DBS and the mechanisms of action for the treatment of CP, and focus on presurgical assessment, efficacy for dystonia and other symptoms, safety, and risks.
Collapse
Affiliation(s)
- Hongjie Jiang
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Rui Wang
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zhe Zheng
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Junming Zhu
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
48
|
Tsuboi T, Cif L, Coubes P, Ostrem JL, Romero DA, Miyagi Y, Lozano AM, De Vloo P, Haq I, Meng F, Sharma N, Ozelius LJ, Wagle Shukla A, Cauraugh JH, Foote KD, Okun MS. Secondary Worsening Following DYT1 Dystonia Deep Brain Stimulation: A Multi-country Cohort. Front Hum Neurosci 2020; 14:242. [PMID: 32670041 PMCID: PMC7330126 DOI: 10.3389/fnhum.2020.00242] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/02/2020] [Indexed: 12/16/2022] Open
Abstract
Objective: To reveal clinical characteristics of suboptimal responses to deep brain stimulation (DBS) in a multi-country DYT1 dystonia cohort. Methods: In this multi-country multi-center retrospective study, we analyzed the clinical data of DYT1 patients who experienced suboptimal responses to DBS defined as <30% improvement in dystonia scales at the last follow-up compared with baseline. We used a literature-driven historical cohort of 112 DYT1 patients for comparison. Results: Approximately 8% of our study cohort (11 out of 132) experienced suboptimal responses to DBS. Compared with the historical cohort, the multi-country cohort with suboptimal responses had a significantly younger age at onset (mean, 7.0 vs. 8.4 years; p = 0.025) and younger age at DBS (mean, 12.0 vs. 18.6 years; p = 0.019). Additionally, cranial involvement was more common in the multi-country cohort (before DBS, 64% vs. 45%, p = 0.074; before or after DBS, 91% vs. 47%, p = 0.001). Mean motor improvement at the last follow-up from baseline were 0% and 66% for the multi-country and historical cohorts, respectively. All 11 patients of the multi-country cohort had generalization of dystonia within 2.5 years after disease onset. All patients experienced dystonia improvement of >30% postoperatively; however, secondary worsening of dystonia commenced between 6 months and 3 years following DBS. The improvement at the last follow-up was less than 30% despite optimally-placed leads, a trial of multiple programming settings, and additional DBS surgeries in all patients. The on-/off-stimulation comparison at the long-term follow-up demonstrated beneficial effects of DBS despite missing the threshold of 30% improvement over baseline. Conclusion: Approximately 8% of patients represent a more aggressive phenotype of DYT1 dystonia characterized by younger age at onset, faster disease progression, and cranial involvement, which seems to be associated with long-term suboptimal responses to DBS (e.g., secondary worsening). This information could be useful for both clinicians and patients in clinical decision making and patient counseling before and following DBS implantations. Patients with this phenotype may have different neuroplasticity, neurogenetics, or possibly distinct neurophysiology.
Collapse
Affiliation(s)
- Takashi Tsuboi
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States.,Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Laura Cif
- Department of Neurology, University Hospital Montpellier, Montpellier, France
| | - Philippe Coubes
- Department of Neurosurgery, University Hospital Montpellier, Montpellier, France
| | - Jill L Ostrem
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Danilo A Romero
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Yasushi Miyagi
- Department of Stereotactic and Functional Neurosurgery, Fukuoka Mirai Hospital, Fukuoka, Japan
| | - Andres M Lozano
- Division of Neurosurgery, Toronto Western Hospital Krembil Neuroscience Center, Toronto, ON, Canada.,Department of Neurosurgery, University of Toronto, Toronto, ON, Canada
| | - Philippe De Vloo
- Department of Neurosurgery, University of Toronto, Toronto, ON, Canada.,Department of Neurosurgery, KU Leuven, Leuven, Belgium
| | - Ihtsham Haq
- Department of Neurology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Fangang Meng
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Nutan Sharma
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, United States
| | - Laurie J Ozelius
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, United States
| | - Aparna Wagle Shukla
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - James H Cauraugh
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Kelly D Foote
- Department of Neurosurgery, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Michael S Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| |
Collapse
|
49
|
Hale AT, Monsour MA, Rolston JD, Naftel RP, Englot DJ. Deep brain stimulation in pediatric dystonia: a systematic review. Neurosurg Rev 2020; 43:873-880. [PMID: 30397842 PMCID: PMC6500764 DOI: 10.1007/s10143-018-1047-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/21/2018] [Accepted: 10/29/2018] [Indexed: 01/12/2023]
Abstract
While deep brain stimulation (DBS) treatment is relatively rare in children, it may have a role in dystonia to reduce motor symptoms and disability. Pediatric DBS studies are sparse and limited by small sample size, and thus, outcomes are poorly understood. Thus, we performed a systematic review of the literature including studies of DBS for pediatric (age < 21) dystonia. Patient demographics, disease causes and characteristics, motor scores, and disability scores were recorded at baseline and at last post-operative follow-up. We identified 19 studies reporting DBS outcomes in 76 children with dystonia. Age at surgery was 13.8 ± 3.9 (mean ± SD) years, and 58% of individuals were male. Post-operative follow-up duration was 2.8 ± 2.8 years. Sixty-eight percent of patients had primary dystonia (PD), of whom 56% had a pathological mutation in DYT1 (DYT1+). Across all patients, regardless of dystonia type, 43.8 ± 36% improvement was seen in Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) motor (-M) scores after DBS, while 43.7 ± 31% improvement was observed in BFMDRS disability (-D) scores. Patients with PD were more likely to experience ≥ 50% improvement (56%) in BFMDRS-M scores compared to patients with secondary causes of dystonia (21%, p = 0.004). DYT1+ patients were more likely to achieve ≥ 50% improvement (65%) in BFMDRS-D than DTY1- individuals (29%, p = 0.02), although there was no difference in BFMDRS-M ≥ 50% improvement rates between DYT1+ (66%) or DYT1- (43%) children (p = 0.11). While DBS is less common in pediatric patients, individuals with severe dystonia may receive worthwhile benefit with neuromodulation treatment.
Collapse
Affiliation(s)
- Andrew T Hale
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.
- Medical Scientist Training Program, Vanderbilt University School of Medicine, 2200 Pierce Ave. 610 Robinson Research Building, Nashville, TN, 37232, USA.
| | - Meredith A Monsour
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John D Rolston
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, USA
| | - Robert P Naftel
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Pediatric Neurosurgery, Monroe Carell Jr. Children's Hospital of Vanderbilt University, Nashville, TN, USA
| | - Dario J Englot
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Surgery and Engineering, Vanderbilt University Medical Center and Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
50
|
Abstract
The clinical use of deep brain stimulation (DBS) is among the most important advances in the clinical neurosciences in the past two decades. As a surgical tool, DBS can directly measure pathological brain activity and can deliver adjustable stimulation for therapeutic effect in neurological and psychiatric disorders correlated with dysfunctional circuitry. The development of DBS has opened new opportunities to access and interrogate malfunctioning brain circuits and to test the therapeutic potential of regulating the output of these circuits in a broad range of disorders. Despite the success and rapid adoption of DBS, crucial questions remain, including which brain areas should be targeted and in which patients. This Review considers how DBS has facilitated advances in our understanding of how circuit malfunction can lead to brain disorders and outlines the key unmet challenges and future directions in the DBS field. Determining the next steps in DBS science will help to define the future role of this technology in the development of novel therapeutics for the most challenging disorders affecting the human brain.
Collapse
|