1
|
Dell'Isola GB, Perinelli MG, Frulli A, D'Onofrio G, Fattorusso A, Siciliano M, Ferrara P, Striano P, Verrotti A. Exploring neurodevelopment in CDKL5 deficiency disorder: Current insights and future directions. Epilepsy Behav 2025; 171:110504. [PMID: 40414190 DOI: 10.1016/j.yebeh.2025.110504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 05/20/2025] [Accepted: 05/20/2025] [Indexed: 05/27/2025]
Abstract
CDKL5 Deficiency Disorder (CDD) is a rare and severe neurodevelopmental condition marked by profound developmental delays, early-onset epilepsy, and significant impairments in motor and communication skills. The outcomes in CDD are shaped by various factors, including early-onset epilepsy and environmental influences. Genotype-phenotype correlations reveal that specific CDKL5 mutations impact developmental milestones, although considerable variability persists. Recent advancements have introduced novel antiseizure medications and emerging treatments such as gene therapy and targeted molecular interventions. Despite these promising developments, managing CDD effectively requires a comprehensive approach that integrates pharmacological treatments with neuro-rehabilitation strategies. Research has progressed in developing validated tools for assessing motor and language abilities in CDD, but monitoring neurodevelopment remains challenging due to the absence of longitudinal studies and standardized measures. This study delves into the developmental delays associated with CDD, providing an in-depth analysis of its clinical characteristics, pathogenetic mechanisms, and genetic background. It aims to uncover the pathways disrupted by CDKL5 mutations and their effects on neuronal development and function. Additionally, the study reviews potential therapeutic strategies to mitigate CDD's impact, offering a comprehensive overview of interventions to enhance patient outcomes.
Collapse
Affiliation(s)
- Giovanni Battista Dell'Isola
- Saint Camillus International University of Health Sciences, Rome, Italy; Department of Developmental Disabilities, IRCCS San Raffaele Roma, Rome, Italy.
| | - Martina Giorgia Perinelli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy.
| | - Alessia Frulli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy.
| | - Gianluca D'Onofrio
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy.
| | | | - Margherita Siciliano
- Clinic of Child and Adolescent Neuropsychiatry, Department of Mental Health, Physical and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Pietro Ferrara
- Unit of Pediatrics, Campus Bio-Medico University, Rome, Italy.
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; Giannina Gaslini Institute, Scientific Institute for Research and Health Care, Genoa, Italy.
| | | |
Collapse
|
2
|
Damiani F, Giuliano MG, Cornuti S, Putignano E, Tognozzi A, Suckow V, Kalscheuer VM, Pizzorusso T, Tognini P. Multi-site investigation of gut microbiota in CDKL5 deficiency disorder mouse models: Targeting dysbiosis to improve neurological outcomes. Cell Rep 2025; 44:115546. [PMID: 40220293 PMCID: PMC12014524 DOI: 10.1016/j.celrep.2025.115546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/31/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025] Open
Abstract
Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is a rare neurodevelopmental disorder often associated with gastrointestinal (GI) issues and subclinical immune dysregulation, suggesting a link to the gut microbiota. We analyze the fecal microbiota composition in two CDKL5 knockout (KO) mouse models at postnatal days (P) 25, 32 (youth), and 70 (adulthood), revealing significant microbial imbalances, particularly during juvenile stages. To investigate the role of the intestinal microbiota in CDD and assess causality, we administer antibiotics, which lead to improved visual cortical responses and reduce hyperactivity. Additionally, microglia morphology changes, indicative of altered surveillance and activation states, are reversed. Strikingly, fecal transplantation from CDKL5 KO to wild-type (WT) recipient mice successfully transfers both visual response deficits and hyperactive behavior. These findings show that gut microbiota alterations contribute to the severity of neurological symptoms in CDD, shedding light on the interplay between microbiota, microglia, and neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Francesca Damiani
- Laboratory of Biology BIO@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Maria Grazia Giuliano
- Laboratory of Biology BIO@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy; Health Science Interdisciplinary Center, Sant'Anna School of Advanced Studies, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Sara Cornuti
- Laboratory of Biology BIO@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Elena Putignano
- Institute of Neuroscience, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy
| | - Andrea Tognozzi
- Laboratory of Biology BIO@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy; PhD Program in Clinical and Translational Science, University of Pisa, Via Savi 10, 56126 Pisa, Italy
| | - Vanessa Suckow
- Max Planck Institute for Molecular Genetics, Ihnestraße 63, 14195 Berlin, Germany
| | - Vera M Kalscheuer
- Max Planck Institute for Molecular Genetics, Ihnestraße 63, 14195 Berlin, Germany
| | - Tommaso Pizzorusso
- Laboratory of Biology BIO@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy; Institute of Neuroscience, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy
| | - Paola Tognini
- Health Science Interdisciplinary Center, Sant'Anna School of Advanced Studies, Piazza Martiri della Libertà 33, 56127 Pisa, Italy.
| |
Collapse
|
3
|
Bennett RG, Tibaudo ME, Mazel EC, Y. N. Implications of cerebral/cortical visual impairment on life and learning: insights and strategies from lived experiences. Front Hum Neurosci 2025; 18:1496153. [PMID: 39830153 PMCID: PMC11739301 DOI: 10.3389/fnhum.2024.1496153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Affiliation(s)
- Rachel G. Bennett
- Perkins School for the Blind, CVI Center, Watertown, MA, United States
| | | | - Ellen C. Mazel
- Perkins School for the Blind, Educational Programs, Watertown, MA, United States
| | - Nai Y.
- Consultant, San Francisco, CA, United States
| |
Collapse
|
4
|
Haviland I, Hector RD, Swanson LC, Verran AS, Sherrill E, Frazier Z, Denny AM, Lucash J, Zhang B, Dubbs HA, Marsh ED, Weisenberg JL, Leonard H, Crippa M, Cogliati F, Russo S, Suter B, Rajaraman R, Percy AK, Schreiber JM, Demarest S, Benke TA, Chopra M, Yu TW, Olson HE. Deletions in the CDKL5 5' untranslated region lead to CDKL5 deficiency disorder. Am J Med Genet A 2025; 197:e63843. [PMID: 39205479 PMCID: PMC11637933 DOI: 10.1002/ajmg.a.63843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
Pathogenic variants in the cyclin-dependent kinase-like 5 (CDKL5) gene are associated with CDKL5 deficiency disorder (CDD), a severe X-linked developmental and epileptic encephalopathy. Deletions affecting the 5' untranslated region (UTR) of CDKL5, which involve the noncoding exon 1 and/or alternatively spliced first exons (exons 1a-e), are uncommonly reported. We describe genetic and phenotypic characteristics for 15 individuals with CDKL5 partial gene deletions affecting the 5' UTR. All individuals presented characteristic features of CDD, including medically refractory infantile-onset epilepsy, global developmental delay, and visual impairment. We performed RNA sequencing on fibroblast samples from three individuals with small deletions involving exons 1 and/or 1a/1b only. Results demonstrated reduced CDKL5 mRNA expression with no evidence of expression from alternatively spliced first exons. Our study broadens the genotypic spectrum for CDD by adding to existing evidence that deletions affecting the 5' UTR of the CDKL5 gene are associated with the disorder. We propose that smaller 5' UTR deletions may require additional molecular testing approaches such as RNA sequencing to determine pathogenicity.
Collapse
Affiliation(s)
- Isabel Haviland
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ralph D Hector
- Simons Initiative for the Developing Brain & Patrick Wild Centre, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Lindsay C Swanson
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Aubrie Soucy Verran
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Emma Sherrill
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Zoë Frazier
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - AnneMarie M Denny
- Division of Pediatric Neurology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jenna Lucash
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Bo Zhang
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Holly A Dubbs
- Division of Child Neurology, Children's Hospital of Philadelphia, Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Eric D Marsh
- Division of Child Neurology, Children's Hospital of Philadelphia, Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Judith L Weisenberg
- Department of Pediatric Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Helen Leonard
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
| | - Milena Crippa
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Francesca Cogliati
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Silvia Russo
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Bernhard Suter
- Division of Child Neurology, Texas Children's Hospital, Departments of Neurology and Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Rajsekar Rajaraman
- Division of Pediatric Neurology, UCLA Mattel Children's Hospital, Los Angeles, California, USA
| | - Alan K Percy
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - John M Schreiber
- Division of Epilepsy, Neurophysiology, and Critical Care Neurology, Children's National Hospital, Washington, DC, USA
| | - Scott Demarest
- Department of Pediatrics and Neurology, Precision Medicine Institute, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado, USA
| | - Timothy A Benke
- Department of Pediatrics, Pharmacology and Neurology, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado, USA
| | - Maya Chopra
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Timothy W Yu
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Heather E Olson
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
- Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Glass MR, Whye D, Anderson NC, Wood D, Makhortova NR, Polanco T, Kim KH, Donovan KE, Vaccaro L, Jain A, Cacchiarelli D, Sun L, Olson H, Buttermore ED, Sahin M. Excitatory Cortical Neurons from CDKL5 Deficiency Disorder Patient-Derived Organoids Show Early Hyperexcitability Not Identified in Neurogenin2 Induced Neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.11.622878. [PMID: 39605742 PMCID: PMC11601297 DOI: 10.1101/2024.11.11.622878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
CDKL5 deficiency disorder (CDD) is a rare developmental and epileptic encephalopathy resulting from variants in cyclin-dependent kinase-like 5 (CDKL5) that lead to impaired kinase activity or loss of function. CDD is one of the most common genetic etiologies identified in epilepsy cohorts. To study how CDKL5 variants impact human neuronal activity, gene expression and morphology, CDD patient-derived induced pluripotent stem cells and their isogenic controls were differentiated into excitatory neurons using either an NGN2 induction protocol or a guided cortical organoid differentiation. Patient-derived neurons from both differentiation paradigms had decreased phosphorylated EB2, a known molecular target of CDKL5. Induced neurons showed no detectable differences between cases and isogenic controls in network activity using a multielectrode array, or in MAP2+ neurite length, and only two genes were differentially expressed. However, patient-derived neurons from the organoid differentiation showed increased synchrony and weighted mean firing rate on the multielectrode array within the first month of network maturation. CDD patient-derived cortical neurons had lower expression of CDKL5 and HS3ST1, which may change the extracellular matrix around the synapse and contribute to hyperexcitability. Similar to the induced neurons, there were no differences in neurite length across or within patient-control cell lines. Induced neurons have poor cortical specification while the organoid derived neurons expressed cortical markers, suggesting that the changes in neuronal excitability and gene expression are specific to cortical excitatory neurons. Examining molecular mechanisms of early hyperexcitability in cortical neurons is a promising avenue for identification of CDD therapeutics.
Collapse
|
6
|
Perinelli MG, Abbott M, Balagura G, Riva A, Amadori E, Verrotti A, Demarest S, Striano P. Prevalence of cerebral visual impairment in developmental and Epileptic Encephalopathies: a systematic review protocol. Syst Rev 2024; 13:223. [PMID: 39217383 PMCID: PMC11365209 DOI: 10.1186/s13643-024-02638-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Developmental and Epileptic Encephalopathies (DEEs) are defined by drug-resistant seizures and neurodevelopmental disorders. Over 50% of patients have a genetic cause. Studies have shown that patients with DEEs, regardless of genetic diagnosis, experience a central visual function disorder known as Cerebral (cortical) Visual Impairment (CVI). The prevalence of CVI in DEE patients is currently unknown. A quantitative synthesis of existing data on the prevalence rates of this condition would aid in understanding the magnitude of the problem, outlining future research, and suggesting the need for therapeutic strategies for early identification and prevention of the disorder. METHODS The protocol followed the PRISMA-P statement for systematic review and meta-analysis protocols. The review will adhere to the JBI Manual for Evidence Synthesis (Systematic Reviews of Prevalence and Incidence) and use the CoCoPop framework to establish eligibility criteria. We will conduct a comprehensive search of several databases, including MEDLINE, EMBASE, Science Direct, Scopus, PsychINFO, Wiley, Highwire Press, and Cochrane Library of Systematic Reviews. Our primary focus will be determining the prevalence of cerebral visual impairments (Condition) in patients with developmental and epileptic encephalopathy (Population). To ensure clarity, we will provide a narrative summary of the risk of bias in the studies we include. The Cochrane Q statistic will be used to assess heterogeneity between studies. If the quantitative synthesis includes more than 10 studies, potential sources of heterogeneity will be investigated through subgroup and meta-regression analyses. Meta(bias)es analysis will also be performed. The quality of evidence for all outcomes will be evaluated using the Grading of Recommendations Assessment Development and Evaluation (GRADE) working group methodology. DISCUSSION This protocol outlines a systematic review and meta-analysis to identify, collect, evaluate, and integrate epidemiological knowledge related to the prevalence of CVI in patients with DEEs. To the best of our knowledge, no other systematic review and meta-analysis has addressed this specific issue. The results will provide useful information for understanding the extent of the problem, outlining future research, and suggesting the need for early identification strategies. SYSTEMATIC REVIEW REGISTRATIONS This Systematic Review Protocol was registered in PROSPERO (CRD42023448910).
Collapse
Affiliation(s)
- Martina Giorgia Perinelli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, IRCCS Istituto "G. Gaslini", Via Gaslini 5, 16148, Genova, Italy
| | - Megan Abbott
- Department of Neurology, Children's Hospital Colorado, Aurora, CO, USA
- Department of Pediatrics, University of Colorado at Denver, Aurora, CO, USA
| | - Ganna Balagura
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, IRCCS Istituto "G. Gaslini", Via Gaslini 5, 16148, Genova, Italy
| | - Antonella Riva
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, IRCCS Istituto "G. Gaslini", Via Gaslini 5, 16148, Genova, Italy
| | | | - Alberto Verrotti
- Department of Medical and Surgical Sciences, Pediatric Clinic, University of Perugia, Perugia, Italy
| | - Scott Demarest
- Department of Neurology, Children's Hospital Colorado, Aurora, CO, USA
- Department of Pediatrics, University of Colorado at Denver, Aurora, CO, USA
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, IRCCS Istituto "G. Gaslini", Via Gaslini 5, 16148, Genova, Italy.
- IRCCS Istituto Giannina Gaslini, Genoa, Italy.
| |
Collapse
|
7
|
Amin S, Møller RS, Aledo‐Serrano A, Arzimanoglou A, Bager P, Jóźwiak S, Kluger GJ, López‐Cabeza S, Nabbout R, Partridge C, Schubert‐Bast S, Specchio N, Kälviäinen R. Providing quality care for people with CDKL5 deficiency disorder: A European expert panel opinion on the patient journey. Epilepsia Open 2024; 9:832-849. [PMID: 38450883 PMCID: PMC11145618 DOI: 10.1002/epi4.12914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 01/21/2024] [Indexed: 03/08/2024] Open
Abstract
Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is a developmental and epileptic encephalopathy caused by variants in the CDKL5 gene. The disorder is characterized by intractable early-onset seizures, severe neurodevelopmental delay, hypotonia, motor disabilities, cerebral (cortical) visual impairment and microcephaly. With no disease-modifying therapies available for CDD, treatment is symptomatic with an initial focus on seizure control. Another unmet need in the management of people with CDD is the lack of evidence to aid standardized care and guideline development. To address this gap, experts in CDD and representatives from patient advocacy groups from Denmark, Finland, France, Germany, Italy, Poland, Spain, and the United Kingdom convened to form an Expert Working Group. The aim was to provide an expert opinion consensus on how to ensure quality care in routine clinical practice within the European setting, including in settings with limited experience or resources for multidisciplinary care of CDD and other developmental and epileptic encephalopathies. By means of one-to-one interviews around the current treatment landscape in CDD, insights from the Expert Working Group were collated and developed into a Europe-specific patient journey for individuals with CDD, which was later validated by the group. Further discussions followed to gain consensus of opinions on challenges and potential solutions for achieving quality care in this setting. The panel recognized the benefit of early genetic testing, a holistic personalized approach to seizure control (taking into consideration various factors such as concomitant medications and comorbidities), and age- and comorbidity-dependent multidisciplinary care for optimizing patient outcomes and quality of life. However, their insights and experiences also highlighted much disparity in management approaches and resources across different European countries. Development of standardized European recommendations is required to align realistic diagnostic criteria, treatment goals, and management approaches that can be adapted for different settings. PLAIN LANGUAGE SUMMARY: Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is a rare condition caused by a genetic mutation with a broad range of symptoms apparent from early childhood, including epileptic seizures that do not respond to medication and severe delays in development. Due to the lack of guidance on managing CDD, international experts and patient advocates discussed best practices in the care of people with CDD in Europe. The panel agreed that early testing, a personalized approach to managing seizures, and access to care from different disciplines are beneficial. Development of guidelines to ensure that care is standardized would also be valuable.
Collapse
Affiliation(s)
- Sam Amin
- University Hospitals BristolBristolUK
| | - Rikke S. Møller
- The Danish Epilepsy Centre, FiladelfiaDianalundDenmark
- Department of Regional Health Research, Faculty of Health SciencesUniversity of Southern DenmarkOdenseDenmark
| | - Angel Aledo‐Serrano
- Vithas Madrid La Milagrosa University HospitalVithas Hospital GroupMadridSpain
| | | | | | | | - Gerhard Josef Kluger
- Epilepsy Center for Children and AdolescentsVogtareuthGermany
- Paracelsus Medical University SalzburgSalzburgAustria
| | | | - Rima Nabbout
- Necker‐Enfants Malades HospitalUniversité Paris Cité, Imagine InstituteParisFrance
| | | | - Susanne Schubert‐Bast
- Center of Neurology and NeurosurgeryEpilepsy Center Frankfurt Rhine‐MainGoethe‐University and University Hospital FrankfurtFrankfurt am MainGermany
- LOEWE Center for Personalized and Translational Epilepsy Research (CePTER)Goethe‐UniversityFrankfurt am MainGermany
- University Children's HospitalGoethe‐University and University Hospital FrankfurtFrankfurt am MainGermany
| | | | - Reetta Kälviäinen
- University of Eastern Finland and Epilepsy CenterKuopio University HospitalKuopioFinland
| |
Collapse
|
8
|
Daniels C, Greene C, Smith L, Pestana-Knight E, Demarest S, Zhang B, Benke TA, Poduri A, Olson H, CDKL5 Study Group. CDKL5 deficiency disorder and other infantile-onset genetic epilepsies. Dev Med Child Neurol 2024; 66:456-468. [PMID: 37771170 PMCID: PMC10922313 DOI: 10.1111/dmcn.15747] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 07/25/2023] [Accepted: 08/02/2023] [Indexed: 09/30/2023]
Abstract
AIM To differentiate phenotypic features of individuals with CDKL5 deficiency disorder (CDD) from those of individuals with other infantile-onset epilepsies. METHOD We performed a retrospective cohort study and ascertained individuals with CDD and comparison individuals with infantile-onset epilepsy who had epilepsy gene panel testing. We reviewed records, updated variant classifications, and compared phenotypic features. Wilcoxon rank-sum tests and χ2 or Fisher's exact tests were performed for between-cohort comparisons. RESULTS We identified 137 individuals with CDD (110 females, 80.3%; median age at last follow-up 3 year 11 months) and 313 individuals with infantile-onset epilepsies (156 females, 49.8%; median age at last follow-up 5 years 2 months; 35% with genetic diagnosis). Features reported significantly more frequently in the CDD group than in the comparison cohort included developmental and epileptic encephalopathy (81% vs 66%), treatment-resistant epilepsy (95% vs 71%), sequential seizures (46% vs 6%), epileptic spasms (66% vs 42%, with hypsarrhythmia in 30% vs 48%), regression (52% vs 29%), evolution to Lennox-Gastaut syndrome (23% vs 5%), diffuse hypotonia (72% vs 36%), stereotypies (69% vs 11%), paroxysmal movement disorders (29% vs 17%), cerebral visual impairment (94% vs 28%), and failure to thrive (38% vs 22%). INTERPRETATION CDD, compared with other suspected or confirmed genetic epilepsies presenting in the first year of life, is more often characterized by a combination of treatment-resistant epilepsy, developmental and epileptic encephalopathy, sequential seizures, spasms without hypsarrhythmia, diffuse hypotonia, paroxysmal movement disorders, cerebral visual impairment, and failure to thrive. Defining core phenotypic characteristics will improve precision diagnosis and treatment.
Collapse
Affiliation(s)
- Carolyn Daniels
- Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
| | - Caitlin Greene
- Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
| | - Lacey Smith
- Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
| | - Elia Pestana-Knight
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Scott Demarest
- Children’s Hospital Colorado, Aurora, CO, USA
- Department of Pediatrics, University of Colorado, School of Medicine, Aurora, CO, USA
| | - Bo Zhang
- Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
| | - Timothy A Benke
- Children’s Hospital Colorado, Aurora, CO, USA
- Department of Pediatrics, University of Colorado, School of Medicine, Aurora, CO, USA
- Department of Pharmacology, University of Colorado, School of Medicine, Aurora, CO, USA
- Department of Neurology, University of Colorado, School of Medicine, Aurora, CO, USA
- Department of Otolaryngology, University of Colorado, School of Medicine, Aurora, CO, USA
| | - Annapurna Poduri
- Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Division of Epilepsy and Clinical Neurophysiology and Epilepsy Genetics Program, Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Heather Olson
- Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Division of Epilepsy and Clinical Neurophysiology and Epilepsy Genetics Program, Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
9
|
Aznar-Laín G, Fernández-Mayoralas DM, Caicoya AG, Rocamora R, Pérez-Jurado LA. CDKL5 Deficiency Disorder Without Epilepsy. Pediatr Neurol 2023; 144:84-89. [PMID: 37201242 DOI: 10.1016/j.pediatrneurol.2023.04.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/14/2023] [Accepted: 04/19/2023] [Indexed: 05/20/2023]
Abstract
Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) has epilepsy as a cardinal feature. Here we report two new female patients and review six previously published patients, one male and five females, with features of CDD but who never developed epilepsy. In contrast with the classical and severe CDD phenotype, they presented with milder gross motor delays, autism spectrum disorder, and no visual cortical impairment. Prolonged video electroencephalography was normal in adult cases but showed interictal frontal-temporal bilateral spikes and sharp waves in sleep in the three-year-old girl. Causative CDKL5 variants included two likely gene damaging (nonsense and frameshift) and six missense variants, being de novo or maternally inherited from asymptomatic females with skewed X-chromosome inactivation (two missense variants). Our data indicate that a milder form of CDD without epilepsy can occur in some cases without clear correlation with specific variants in the CDKL5 gene.
Collapse
Affiliation(s)
- Gemma Aznar-Laín
- Paediatric Neurology, Hospital del Mar, Barcelona, Spain; Program in Neurosciences, Hospital del Mar Research Institute (IMIM), Barcelona, Spain; Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
| | | | - Anne G Caicoya
- Epilepsy Monitoring Unit, Quironsalud Hospital, Madrid, Spain
| | - Rodrigo Rocamora
- Program in Neurosciences, Hospital del Mar Research Institute (IMIM), Barcelona, Spain; Epilepsy Monitoring Unit, Department of Neurology, Hospital del Mar, Barcelona, Spain
| | - Luis A Pérez-Jurado
- Program in Neurosciences, Hospital del Mar Research Institute (IMIM), Barcelona, Spain; Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Genetics Service, Hospital del Mar, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Barcelona, Spain
| |
Collapse
|
10
|
Wong K, Junaid M, Demarest S, Saldaris J, Benke TA, Marsh ED, Downs J, Leonard H. Factors influencing the attainment of major motor milestones in CDKL5 deficiency disorder. Eur J Hum Genet 2023; 31:169-178. [PMID: 35978140 PMCID: PMC9905550 DOI: 10.1038/s41431-022-01163-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/22/2022] [Accepted: 07/21/2022] [Indexed: 11/09/2022] Open
Abstract
This study investigated the influence of factors at birth and in infancy on the likelihood of achieving major motor milestones in CDKL5 Deficiency Disorder (CDD). Data on 350 individuals with a pathogenic CDKL5 variant was sourced from the International CDKL5 Disorder Database. A first model included factors available at birth (e.g., sex, variant group and mosaicism) and the second additionally included factors available during infancy (e.g., age at seizure onset, number of anti-seizure medications used, experience of a honeymoon period and formal therapy). Cox regression was used to model the time to achieve the milestones. The probability of attaining the outcomes at specific ages was estimated by evaluating the time-to-event function at specific covariate values. Independent sitting and walking were achieved by 177/350 and 57/325 children respectively. By seven years of age, 67.1% of females but only 37.3% of males could sit independently. About a quarter each of females and males achieved independent walking by eight and six years, respectively. When observed from birth, female gender, a late truncating variant and mosaicism impacted most positively on the likelihood of independent sitting. When observed from one year, later seizure onset and experiencing a honeymoon period also improved the likelihood of independent sitting. Factors that favoured sitting (except gender) also improved walking. Having a truncating variant between aa178 and aa781 reduced the likelihood of achieving independent sitting and walking. It is possible to utilise factors occurring early in life to inform the likelihood of future motor development in CDD.
Collapse
Affiliation(s)
- Kingsley Wong
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| | - Mohammed Junaid
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| | - Scott Demarest
- Children's Hospital Colorado, Pediatric Neurology, University of Colorado School of Medicine, Aurora, USA
| | - Jacinta Saldaris
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| | - Tim A Benke
- Children's Hospital Colorado, Pediatric Neurology, University of Colorado School of Medicine, Aurora, USA
| | - Eric D Marsh
- Division of Neurology, Children's Hospital of Philadelphia, School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Jenny Downs
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| | - Helen Leonard
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
11
|
Keehan L, Haviland I, Gofin Y, Swanson LC, El Achkar CM, Schreiber J, VanNoy GE, O’Heir E, O’Donnell-Luria A, Lewis RA, Magoulas P, Tran A, Azamian MS, Chao HT, Pham L, Samaco RC, Elsea S, Thorpe E, Kesari A, Perry D, Undiagnosed Diseases Network, Lee B, Lalani SR, Rosenfeld JA, Olson HE, Burrage LC. Wide range of phenotypic severity in individuals with late truncations unique to the predominant CDKL5 transcript in the brain. Am J Med Genet A 2022; 188:3516-3524. [PMID: 35934918 PMCID: PMC9669137 DOI: 10.1002/ajmg.a.62940] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/10/2022] [Accepted: 06/19/2022] [Indexed: 01/31/2023]
Abstract
Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is caused by heterozygous or hemizygous variants in CDKL5 and is characterized by refractory epilepsy, cognitive and motor impairments, and cerebral visual impairment. CDKL5 has multiple transcripts, of which the longest transcripts, NM_003159 and NM_001037343, have been used historically in clinical laboratory testing. However, the transcript NM_001323289 is the most highly expressed in brain and contains 170 nucleotides at the 3' end of its last exon that are noncoding in other transcripts. Two truncating variants in this region have been reported in association with a CDD phenotype. To clarify the significance and range of phenotypes associated with late truncating variants in this region of the predominant transcript in the brain, we report detailed information on two individuals, updated clinical information on a third individual, and a summary of published and unpublished individuals reported in ClinVar. The two new individuals (one male and one female) each had a relatively mild clinical presentation including periods of pharmaco-responsive epilepsy, independent walking and limited purposeful communication skills. A previously reported male continued to have a severe phenotype. Overall, variants in this region demonstrate a range of clinical severity consistent with reports in CDD but with the potential for milder presentation.
Collapse
Affiliation(s)
- Laura Keehan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Isabel Haviland
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
| | - Yoel Gofin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Hospital, Houston, TX, USA
| | - Lindsay C. Swanson
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
| | - Christelle Moufawad El Achkar
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
| | - John Schreiber
- Division of Epilepsy, Neurophysiology, and Critical Care Neurology, 8404 Children's National Hospital, Washington, DC, USA
| | - Grace E. VanNoy
- Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Emily O’Heir
- Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Anne O’Donnell-Luria
- Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Richard A. Lewis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Hospital, Houston, TX, USA
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | - Pilar Magoulas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Hospital, Houston, TX, USA
| | - Alyssa Tran
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Mahshid S. Azamian
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Hsiao-Tuan Chao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Hospital, Houston, TX, USA
- Departments of Neuroscience and Pediatrics, Division of Neurology and Developmental Neuroscience, BCM, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
- McNair Medical Institute at the Robert and Janice McNair Foundation, Houston, TX, USA
| | - Lisa Pham
- The Meyer Center for Developmental Pediatrics, Texas Children’s Hospital, Houston, TX, USA
| | - Rodney C. Samaco
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Sarah Elsea
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Hospital, Houston, TX, USA
| | - Seema R. Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Hospital, Houston, TX, USA
| | - Jill A. Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Heather E. Olson
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Equal contributions
| | - Lindsay C. Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Hospital, Houston, TX, USA
- Equal contributions
| |
Collapse
|
12
|
Downs J, Jacoby P, Saldaris J, Leonard H, Benke T, Marsh E, Demarest S. Negative impact of insomnia and daytime sleepiness on quality of life in individuals with the cyclin-dependent kinase-like 5 deficiency disorder. J Sleep Res 2022; 31:e13600. [PMID: 35415902 PMCID: PMC9489598 DOI: 10.1111/jsr.13600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/15/2022] [Accepted: 03/21/2022] [Indexed: 12/30/2022]
Abstract
Cyclin-dependent kinase-like 5 (CDKL5) gene pathogenic variants result in CDKL5 deficiency disorder (CDD). Early onset intractable epilepsy and severe developmental delays are prominent symptoms of CDD. Comorbid sleep disturbances are a major concerning symptom for families. We aimed to explore the relationship between insomnia, daytime sleepiness, sleep medications and quality of life in children with CDD. Caregivers of 129 children with CDD in the International CDKL5 Disorder Database completed the Quality-of-Life Inventory-Disability (QI-Disability) questionnaire and "Disorders of Maintaining Sleep" (DIMS) and the "Disorders of Excessive Somnolence" (DOES) items of the Sleep Disturbance Scale for Children. Adjusting for covariates, a unit increase in DOES score was associated with reduced quality of life total (coefficient -3.06, 95% confidence interval [CI] 1.35-7.80), physical health (coefficient -7.20, 95% CI -10.64, -3.76) and negative emotions (coefficient -3.90, 95% CI -7.38, -0.42) scores. Adjusting for covariates, a unit increase in DIMS score was associated with reduced negative emotions (coefficient -6.02, 95% CI -10.18, -2.86). Use of sleep medications had small influences on the effect sizes. This study highlights the importance of sleep problems as a determinant of quality of life in children with CDD, consistent with effects observed for other groups of children with intellectual disability. Excessive daytime sleepiness was particularly associated with detrimental effects on quality of life. Further research in optimal behavioural and pharmaceutical management of sleep problems for this population is required.
Collapse
Affiliation(s)
- Jenny Downs
- Telethon Kids Institute, Centre for Child Health ResearchThe University of Western AustraliaPerthAustralia
- Curtin School of Allied HealthCurtin UniversityPerthAustralia
| | - Peter Jacoby
- Telethon Kids Institute, Centre for Child Health ResearchThe University of Western AustraliaPerthAustralia
| | - Jacinta Saldaris
- Telethon Kids Institute, Centre for Child Health ResearchThe University of Western AustraliaPerthAustralia
| | - Helen Leonard
- Telethon Kids Institute, Centre for Child Health ResearchThe University of Western AustraliaPerthAustralia
| | - Tim Benke
- Children's Hospital Colorado, Paediatric NeurologyUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Eric Marsh
- Division of Neurology, Children's Hospital of Philadelphia, School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Scott Demarest
- Children's Hospital Colorado, Paediatric NeurologyUniversity of Colorado School of MedicineAuroraColoradoUSA
| |
Collapse
|
13
|
Leonard H, Downs J, Benke TA, Swanson L, Olson H, Demarest S. CDKL5 deficiency disorder: clinical features, diagnosis, and management. Lancet Neurol 2022; 21:563-576. [PMID: 35483386 PMCID: PMC9788833 DOI: 10.1016/s1474-4422(22)00035-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 12/19/2021] [Accepted: 01/18/2022] [Indexed: 12/25/2022]
Abstract
CDKL5 deficiency disorder (CDD) was first identified as a cause of human disease in 2004. Although initially considered a variant of Rett syndrome, CDD is now recognised as an independent disorder and classified as a developmental epileptic encephalopathy. It is characterised by early-onset (generally within the first 2 months of life) seizures that are usually refractory to polypharmacy. Development is severely impaired in patients with CDD, with only a quarter of girls and a smaller proportion of boys achieving independent walking; however, there is clinical variability, which is probably genetically determined. Gastrointestinal, sleep, and musculoskeletal problems are common in CDD, as in other developmental epileptic encephalopathies, but the prevalence of cerebral visual impairment appears higher in CDD. Clinicians diagnosing infants with CDD need to be familiar with the complexities of this disorder to provide appropriate counselling to the patients' families. Despite some benefit from ketogenic diets and vagal nerve stimulation, there has been little evidence that conventional antiseizure medications or their combinations are helpful in CDD, but further treatment trials are finally underway.
Collapse
Affiliation(s)
- Helen Leonard
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia.
| | - Jenny Downs
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia; Curtin School of Allied Health, Curtin University, Perth, WA, Australia
| | - Tim A Benke
- Department of Neurology, Children's Hospital Colorado, Aurora, CO, USA; Department of Pediatrics, University of Colorado at Denver, Aurora, CO, USA; Department of Pharmacology, University of Colorado at Denver, Aurora, CO, USA; Department of Neurology, University of Colorado at Denver, Aurora, CO, USA; Department of Otolaryngology, University of Colorado at Denver, Aurora, CO, USA
| | - Lindsay Swanson
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Heather Olson
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Scott Demarest
- Department of Neurology, Children's Hospital Colorado, Aurora, CO, USA; Department of Pediatrics, University of Colorado at Denver, Aurora, CO, USA; Department of Neurology, University of Colorado at Denver, Aurora, CO, USA
| |
Collapse
|
14
|
Saldaris J, Leonard H, Jacoby P, Marsh ED, Benke TA, Demarest S, Downs J. Initial Validation and Reliability of the CDKL5 Deficiency Disorder Hand Function Scale (CDD-Hand). J Child Neurol 2022; 37:541-547. [PMID: 35422141 PMCID: PMC9149062 DOI: 10.1177/08830738221091044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Pathogenic variants in the CDKL5 gene result in CDKL5 deficiency disorder (CDD), which is characterized by early-onset epilepsy, severe developmental delay, and often, cortical visual impairment. Validated clinical outcome measures are needed for future clinical trials to be successful. This study aimed to adapt the Rett Syndrome Hand Function Scale for CDKL5 deficiency disorder and evaluate its feasibility, acceptability, content validity, and reliability. Consultation with a cortical visual impairment experienced specialist and the Consumer Reference Group informed modifications to the instructions of the Rett Syndrome Hand Function Scale for children with CDKL5 deficiency disorder (CDD-Hand). Eighty-six families registered with the International CDKL5 Disorder Database provided video clips of their child's hand function and provided feedback about the measure. Video data were coded by 2 researchers to evaluate intra- and interrater reliability. This study provides initial evidence of validation and reliability. The scale appears to be suitable for a range of ages and functional abilities for CDKL5 deficiency disorder.
Collapse
Affiliation(s)
- Jacinta Saldaris
- Telethon Kids Institute, Centre for Child Health Research, The University of Western Australia, Perth, Australia
| | - Helen Leonard
- Telethon Kids Institute, Centre for Child Health Research, The University of Western Australia, Perth, Australia
| | - Peter Jacoby
- Telethon Kids Institute, Centre for Child Health Research, The University of Western Australia, Perth, Australia
| | - Eric D. Marsh
- Division of Neurology, Children’s Hospital of Philadelphia, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tim A. Benke
- Children’s Hospital Colorado, Paediatric Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Scott Demarest
- Children’s Hospital Colorado, Paediatric Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Jenny Downs
- Telethon Kids Institute, Centre for Child Health Research, The University of Western Australia, Perth, Australia
- School of Allied Health, Curtin University, Perth, Australia
| |
Collapse
|
15
|
Saby JN, Mulcahey PJ, Zavez AE, Peters SU, Standridge SM, Swanson LC, Lieberman DN, Olson HE, Key AP, Percy AK, Neul JL, Nelson CA, Roberts TPL, Benke TA, Marsh ED. Electrophysiological biomarkers of brain function in CDKL5 deficiency disorder. Brain Commun 2022; 4:fcac197. [PMID: 35974796 PMCID: PMC9374482 DOI: 10.1093/braincomms/fcac197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/05/2022] [Accepted: 08/02/2022] [Indexed: 11/14/2022] Open
Abstract
CDKL5 deficiency disorder is a debilitating developmental and epileptic encephalopathy for which no targeted treatment exists. A number of promising therapeutics are under development for CDKL5 deficiency disorder but a lack of validated biomarkers of brain function and clinical severity may limit the ability to objectively assess the efficacy of new treatments as they become available. To address this need, the current study quantified electrophysiological measures in individuals with CDKL5 deficiency disorder and the association between these parameters and clinical severity. Visual and auditory evoked potentials, as well as resting EEG, were acquired across 5 clinical sites from 26 individuals with CDKL5 deficiency disorder. Evoked potential and quantitative EEG features were calculated and compared with typically developing individuals in an age- and sex-matched cohort. Baseline and Year 1 data, when available, were analysed and the repeatability of the results was tested. Two clinician-completed severity scales were used for evaluating the clinical relevance of the electrophysiological parameters. Group-level comparisons revealed reduced visual evoked potential amplitude in CDKL5 deficiency disorder individuals versus typically developing individuals. There were no group differences in the latency of the visual evoked potentials or in the latency or amplitude of the auditory evoked potentials. Within the CDKL5 deficiency disorder group, auditory evoked potential amplitude correlated with disease severity at baseline as well as Year 1. Multiple quantitative EEG features differed between CDKL5 deficiency disorder and typically developing participants, including amplitude standard deviation, 1/f slope and global delta, theta, alpha and beta power. Several quantitative EEG features correlated with clinical severity, including amplitude skewness, theta/delta ratio and alpha/delta ratio. The theta/delta ratio was the overall strongest predictor of severity and also among the most repeatable qEEG measures from baseline to Year 1. Together, the present findings point to the utility of evoked potentials and quantitative EEG parameters as objective measures of brain function and disease severity in future clinical trials for CDKL5 deficiency disorder. The results also underscore the utility of the current methods, which could be similarly applied to the identification and validation of electrophysiological biomarkers of brain function for other developmental encephalopathies.
Collapse
Affiliation(s)
| | | | - Alexis E Zavez
- Orphan Disease Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sarika U Peters
- Department of Pediatrics, Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Shannon M Standridge
- Cincinnati Children’s Hospital Medical Center, Division of Neurology and University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Lindsay C Swanson
- Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - David N Lieberman
- Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Heather E Olson
- Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Alexandra P Key
- Department of Hearing and Speech Sciences, Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Alan K Percy
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Jeffrey L Neul
- Department of Pediatrics, Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Charles A Nelson
- Laboratories of Cognitive Neuroscience, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Cambridge, MA 02115, USA
- Graduate School of Education, Harvard University, Cambridge, MA 02115, USA
| | - Timothy P L Roberts
- Division of Radiology Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Timothy A Benke
- Department of Pediatrics, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, CO 80045, USA
- Department of Neurology, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, CO 80045, USA
- Department of Pharmacology, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, CO 80045, USA
- Department of Otolaryngology, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, CO 80045, USA
| | - Eric D Marsh
- Correspondence to: Eric D. Marsh, MD Division of Child Neurology Abramson Research Building, Room 502E 3615 Civic Center Boulevard Philadelphia, PA 19104, USA E-mail:
| |
Collapse
|
16
|
Raja S, Emadi BS, Gaier ED, Gise RA, Fulton AB, Heidary G. Evaluation of the Relationship Between Preferential Looking Testing and Visual Evoked Potentials as a Biomarker of Cerebral Visual Impairment. Front Hum Neurosci 2021; 15:769259. [PMID: 34776912 PMCID: PMC8578861 DOI: 10.3389/fnhum.2021.769259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/05/2021] [Indexed: 11/25/2022] Open
Abstract
Cerebral visual impairment (CVI) is a leading cause of visual impairment in children in developed countries, but diagnostic tools to detect CVI are limited. We sought to analyze the visual acuity of children with CVI as assessed by visual evoked potentials (VEPs) and preferential looking test (PLT) to determine whether the relationship between the visual outcomes on these two testing methods may serve as a biomarker of CVI. We performed a retrospective chart review of patients with a confirmed diagnosis of CVI and at least one ophthalmological assessment with visual acuity measured by VEP and PLT. Of the 218 patients included in the study, the most common condition associated with CVI was an underlying genetic disorder (36%, 79/218). Treatment for seizures occurred in the majority of the entire cohort of patients (80%, 175/218). Ophthalmic comorbidities included retinal disease in 23 patients, optic nerve disease in 68 patients, nystagmus in 78 patients, and strabismus in 176 patients. When assessed by either VEP or PLT, visual acuity in children with CVI fell below expected norms. At initial and final presentations, VEP acuity exceeded PLT acuity by one or more octaves, and this difference was greater than expected compared with normal visual development. We propose utilizing this quantifiable disparity between VEP and PLT as a biomarker of CVI.
Collapse
Affiliation(s)
- Sruti Raja
- Department of Ophthalmology, University of Florida College of Medicine, Gainesville, FL, United States.,Department of Ophthalmology, Harvard Medical School and Boston Children's Hospital, Boston, MA, United States
| | - Batool Sahar Emadi
- Department of Ophthalmology, Harvard Medical School and Boston Children's Hospital, Boston, MA, United States
| | - Eric D Gaier
- Department of Ophthalmology, Harvard Medical School and Boston Children's Hospital, Boston, MA, United States.,Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Ryan A Gise
- Department of Ophthalmology, Harvard Medical School and Boston Children's Hospital, Boston, MA, United States
| | - Anne B Fulton
- Department of Ophthalmology, Harvard Medical School and Boston Children's Hospital, Boston, MA, United States
| | - Gena Heidary
- Department of Ophthalmology, Harvard Medical School and Boston Children's Hospital, Boston, MA, United States
| |
Collapse
|