1
|
Trada M, Novara C, Moretto M, Burzi E, Tinti D, De Sanctis L. Diagnosis and Treatment of Neonatal Diabetes Caused by ATP-Channel Mutations: Genetic Insights, Sulfonylurea Therapy, and Future Directions. CHILDREN (BASEL, SWITZERLAND) 2025; 12:219. [PMID: 40003320 PMCID: PMC11854417 DOI: 10.3390/children12020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/27/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025]
Abstract
BACKGROUND Neonatal diabetes (NDM) is a rare genetic disorder diagnosed in infants under six months of age, characterized by persistent hyperglycemia resulting from insufficient or absent insulin production. Unlike the more common forms of diabetes, such as type 1 diabetes (T1D) and type 2 diabetes (T2D), NDM is predominantly caused by monogenic mutations affecting ATP-sensitive potassium (K-ATP) channels in pancreatic beta cells. The most common mutations involved in NDM are found in the KCNJ11 and ABCC8 genes, which encode the Kir6.2 and SUR1 subunits of the K-ATP channel, respectively. These mutations prevent normal insulin secretion by disrupting the function of the K-ATP channel. While genetic advances have identified about 40 genes implicated in NDM, the KCNJ11 and ABCC8 mutations are most commonly seen. METHODS This review provides a comprehensive exploration of the genetic basis, clinical presentation, and treatment strategies for NDM including the role of sulfonylureas, which have revolutionized the management of this condition. Furthermore, it presents a detailed case study of an infant diagnosed with an ABCC8 mutation, illustrating the pivotal role of genetic testing in guiding clinical decisions. CONCLUSIONS Finally, the article discusses challenges in management, such as the persistence of neurological impairments, and outlines potential directions for future research including genetic therapies and prenatal diagnosis.
Collapse
Affiliation(s)
- Michela Trada
- Department of Pediatric Endocrinology, Regina Margherita Children’s Hospital, 10126 Torino, Italy; (M.T.); (L.D.S.)
| | - Chiara Novara
- Department of Public Health and Pediatric Sciences, University of Torino, 10126 Torino, Italy
| | - Martina Moretto
- Department of Public Health and Pediatric Sciences, University of Torino, 10126 Torino, Italy
| | - Edoardo Burzi
- Department of Public Health and Pediatric Sciences, University of Torino, 10126 Torino, Italy
| | - Davide Tinti
- Department of Pediatric Endocrinology, Regina Margherita Children’s Hospital, 10126 Torino, Italy; (M.T.); (L.D.S.)
| | - Luisa De Sanctis
- Department of Pediatric Endocrinology, Regina Margherita Children’s Hospital, 10126 Torino, Italy; (M.T.); (L.D.S.)
- Department of Public Health and Pediatric Sciences, University of Torino, 10126 Torino, Italy
| |
Collapse
|
2
|
Alam KA, Svalastoga P, Martinez A, Glennon JC, Haavik J. Potassium channels in behavioral brain disorders. Molecular mechanisms and therapeutic potential: A narrative review. Neurosci Biobehav Rev 2023; 152:105301. [PMID: 37414376 DOI: 10.1016/j.neubiorev.2023.105301] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
Potassium channels (K+-channels) selectively control the passive flow of potassium ions across biological membranes and thereby also regulate membrane excitability. Genetic variants affecting many of the human K+-channels are well known causes of Mendelian disorders within cardiology, neurology, and endocrinology. K+-channels are also primary targets of many natural toxins from poisonous organisms and drugs used within cardiology and metabolism. As genetic tools are improving and larger clinical samples are being investigated, the spectrum of clinical phenotypes implicated in K+-channels dysfunction is rapidly expanding, notably within immunology, neurosciences, and metabolism. K+-channels that previously were considered to be expressed in only a few organs and to have discrete physiological functions, have recently been found in multiple tissues and with new, unexpected functions. The pleiotropic functions and patterns of expression of K+-channels may provide additional therapeutic opportunities, along with new emerging challenges from off-target effects. Here we review the functions and therapeutic potential of K+-channels, with an emphasis on the nervous system, roles in neuropsychiatric disorders and their involvement in other organ systems and diseases.
Collapse
Affiliation(s)
| | - Pernille Svalastoga
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway; Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway
| | | | - Jeffrey Colm Glennon
- Conway Institute for Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Dublin, Ireland.
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, Norway; Division of Psychiatry, Haukeland University Hospital, Norway.
| |
Collapse
|
3
|
Greeley SAW, Polak M, Njølstad PR, Barbetti F, Williams R, Castano L, Raile K, Chi DV, Habeb A, Hattersley AT, Codner E. ISPAD Clinical Practice Consensus Guidelines 2022: The diagnosis and management of monogenic diabetes in children and adolescents. Pediatr Diabetes 2022; 23:1188-1211. [PMID: 36537518 PMCID: PMC10107883 DOI: 10.1111/pedi.13426] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Siri Atma W. Greeley
- Section of Pediatric and Adult Endocrinology, Diabetes and Metabolism, Kovler Diabetes Center and Comer Children's HospitalUniversity of Chicago MedicineChicagoIllinoisUSA
| | - Michel Polak
- Hôpital Universitaire Necker‐Enfants MaladesUniversité de Paris Cité, INSERM U1016, Institut IMAGINEParisFrance
| | - Pål R. Njølstad
- Department of Clinical ScienceUniversity of Bergen, and Children and Youth Clinic, Hauk eland University HospitalBergenNorway
| | - Fabrizio Barbetti
- Clinical Laboratory UnitBambino Gesù Children's Hospital, IRCCSRomeItaly
| | - Rachel Williams
- National Severe Insulin Resistance ServiceCambridge University Hospitals NHS TrustCambridgeUK
| | - Luis Castano
- Endocrinology and Diabetes Research Group, Biocruces Bizkaia Health Research InstituteCruces University Hospital, CIBERDEM, CIBERER, Endo‐ERN, UPV/EHUBarakaldoSpain
| | - Klemens Raile
- Department of Paediatric Endocrinology and DiabetologyCharité – UniversitätsmedizinBerlinGermany
| | - Dung Vu Chi
- Center for Endocrinology, Metabolism, Genetics and Molecular Therapy, Departement of Pediatric Endocrinology and DiabetesVietnam National Children's HospitalHanoiVietnam
- Department of Pediatrics and Department of Biology and Medical GeneticsHanoi Medical UniversityHanoiVietnam
| | - Abdelhadi Habeb
- Department of PediatricsPrince Mohamed bin Abdulaziz Hopsital, National Guard Health AffairsMadinahSaudi Arabia
| | - Andrew T. Hattersley
- Institute of Biomedical and Clinical SciencesUniversity of Exeter Medical SchoolExeterUK
| | - Ethel Codner
- Institute of Maternal and Child ResearchSchool of Medicine, University of ChileSantiagoChile
| |
Collapse
|
4
|
de Gouveia Buff Passone C, Giani E, Vaivre-Douret L, Kariyawasam D, Berdugo M, Garcin L, Beltrand J, Bernardo WM, Polak M. Sulfonylurea for improving neurological features in neonatal diabetes: A systematic review and meta-analyses. Pediatr Diabetes 2022; 23:675-692. [PMID: 35657808 DOI: 10.1111/pedi.13376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/19/2022] [Accepted: 05/31/2022] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE In monogenic diabetes due to KCNJ11 and ABCC8 mutations that impair KATP- channel function, sulfonylureas improve long-term glycemic control. Although KATP channels are extensively expressed in the brain, the effect of sulfonylureas on neurological function has varied widely. We evaluated published evidence about potential effects of sulfonylureas on neurological features, especially epilepsy, cognition, motor function and muscular tone, visuo-motor integration, and attention deficits in children and adults with KCNJ11 and ABCC8-related neonatal-onset diabetes mellitus. RESEARCH DESIGN AND METHODS We conducted a systematic review and meta-analyses of the literature (PROSPERO, CRD42021254782), including individual-patient data, according to PRISMA, using RevMan software. We also graded the level of evidence. RESULTS We selected 34 of 776 publications. The evaluation of global neurological function before and after sulfonylurea (glibenclamide) treatment in 114 patients yielded a risk difference (RD) of 58% (95%CI, 43%-74%; I2 = 54%) overall and 73% (95%CI, 32%-113%; I2 = 0%) in the subgroup younger than 4 years; the level of evidence was moderate and high, respectively. EEG studies of epilepsy showed a RD of 56% (95%CI, 23%-89%; I2 = 34%) in patients with KCNJ11 mutations, with a high quality of evidence. For hypotonia and motor function, the RDs were 90% (95%CI, 69%-111%; I2 = 0%) and 73% (95%CI, 35%-111%; I2 = 0%), respectively, with a high level of evidence. CONCLUSIONS Glibenclamide significantly improved neurological abnormalities in patients with neonatal-onset diabetes due to KCNJ11 or ABCC8 mutations. Hypotonia was the symptom that responded best. Earlier treatment initiation was associated with greater benefits.
Collapse
Affiliation(s)
- Caroline de Gouveia Buff Passone
- Pediatric Endocrinology, Gynaecology and Diabetology, Centre de Référence des Pathologies Gynécologiques Rares et des Maladies Endocriniennes Rares de la Croissance et du Développement, Hôpital Universitaire Necker Enfants Malades, Université de Paris, Paris, France.,Department of Endocrinology, Metabolism and Diabetes, Inserm U1016, Cochin Institute, Paris, France.,Pediatric Endocrinology Department, University of Sao Paulo, Sao Paulo, Brazil
| | - Elisa Giani
- Pediatric Endocrinology, Gynaecology and Diabetology, Centre de Référence des Pathologies Gynécologiques Rares et des Maladies Endocriniennes Rares de la Croissance et du Développement, Hôpital Universitaire Necker Enfants Malades, Université de Paris, Paris, France.,Department of Endocrinology, Metabolism and Diabetes, Inserm U1016, Cochin Institute, Paris, France.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Laurence Vaivre-Douret
- Faculty of Health, Department of Medicine Paris Descartes, Université de Paris, and Institut Universitaire de France (IUF), Paris, France.,National Institute of Health and Medical Research (INSERM UMR 1018-CESP), Faculty of Medicine, University of Paris-Saclay, UVSQ, Villejuif, France.,Imagine Institute, Paris, France
| | - Dulanjalee Kariyawasam
- Pediatric Endocrinology, Gynaecology and Diabetology, Centre de Référence des Pathologies Gynécologiques Rares et des Maladies Endocriniennes Rares de la Croissance et du Développement, Hôpital Universitaire Necker Enfants Malades, Université de Paris, Paris, France.,Imagine Institute, Paris, France
| | - Marianne Berdugo
- Physiopathology of Ocular Diseases: Therapeutic Innovations, Sorbonne-Université and Université de Paris, Inserm UMRS 1138, Paris, France
| | - Laure Garcin
- Pediatric Endocrinology, Gynaecology and Diabetology, Centre de Référence des Pathologies Gynécologiques Rares et des Maladies Endocriniennes Rares de la Croissance et du Développement, Hôpital Universitaire Necker Enfants Malades, Université de Paris, Paris, France
| | - Jacques Beltrand
- Pediatric Endocrinology, Gynaecology and Diabetology, Centre de Référence des Pathologies Gynécologiques Rares et des Maladies Endocriniennes Rares de la Croissance et du Développement, Hôpital Universitaire Necker Enfants Malades, Université de Paris, Paris, France.,Department of Endocrinology, Metabolism and Diabetes, Inserm U1016, Cochin Institute, Paris, France.,Imagine Institute, Paris, France
| | | | - Michel Polak
- Pediatric Endocrinology, Gynaecology and Diabetology, Centre de Référence des Pathologies Gynécologiques Rares et des Maladies Endocriniennes Rares de la Croissance et du Développement, Hôpital Universitaire Necker Enfants Malades, Université de Paris, Paris, France.,Department of Endocrinology, Metabolism and Diabetes, Inserm U1016, Cochin Institute, Paris, France.,Imagine Institute, Paris, France
| |
Collapse
|
5
|
Hammoud B, Greeley SAW. Growth and development in monogenic forms of neonatal diabetes. Curr Opin Endocrinol Diabetes Obes 2022; 29:65-77. [PMID: 34864759 PMCID: PMC11056188 DOI: 10.1097/med.0000000000000699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Neonatal diabetes mellitus (NDM) is a rare disorder in which 80-85% of infants diagnosed under 6 months of age will be found to have an underlying monogenic cause. This review will summarize what is known about growth and neurodevelopmental difficulties among individuals with various forms of NDM. RECENT FINDINGS Patients with NDM often have intrauterine growth restriction and/or low birth weight because of insulin deficiency in utero and the severity and likelihood of ongoing growth concerns after birth depends on the specific cause. A growing list of rare recessive causes of NDM are associated with neurodevelopmental and/or growth problems that can either be related to direct gene effects on brain development, or may be related to a variety of co-morbidities. The most common form of NDM results in spectrum of neurological disability due to expression of mutated KATP channels throughout the brain. SUMMARY Monogenic causes of neonatal diabetes are characterized by variable degree of restriction of growth in utero because of deficiency of insulin that depends on the specific gene cause. Many forms also include a spectrum of neurodevelopmental disability because of mutation-related effects on brain development. Longer term study is needed to clarify longitudinal effects on growth into adulthood.
Collapse
Affiliation(s)
- Batoul Hammoud
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, and Kovler Diabetes Center, University of Chicago, Chicago, Illinois, USA
| | | |
Collapse
|
6
|
Cacciatore M, Grasso EA, Tripodi R, Chiarelli F. Impact of glucose metabolism on the developing brain. Front Endocrinol (Lausanne) 2022; 13:1047545. [PMID: 36619556 PMCID: PMC9816389 DOI: 10.3389/fendo.2022.1047545] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Glucose is the most important substrate for proper brain functioning and development, with an increased glucose consumption in relation to the need of creating new brain structures and connections. Therefore, alterations in glucose homeostasis will inevitably be associated with changes in the development of the Nervous System. Several studies demonstrated how the alteration of glucose homeostasis - both hyper and hypoglycemia- may interfere with the development of brain structures and cognitivity, including deficits in intelligence quotient, anomalies in learning and memory, as well as differences in the executive functions. Importantly, differences in brain structure and functionality were found after a single episode of diabetic ketoacidosis suggesting the importance of glycemic control and stressing the need of screening programs for type 1 diabetes to protect children from this dramatic condition. The exciting progresses of the neuroimaging techniques such as diffusion tensor imaging, has helped to improve the understanding of the effects, outcomes and mechanisms underlying brain changes following dysglycemia, and will lead to more insights on the physio-pathological mechanisms and related neurological consequences about hyper and hypoglycemia.
Collapse
|
7
|
Dalgin G, Tryba AK, Cohen AP, Park SY, Philipson LH, Greeley SAW, Garcia AJ. Developmental defects and impaired network excitability in a cerebral organoid model of KCNJ11 p.V59M-related neonatal diabetes. Sci Rep 2021; 11:21590. [PMID: 34732776 PMCID: PMC8566525 DOI: 10.1038/s41598-021-00939-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 10/14/2021] [Indexed: 11/09/2022] Open
Abstract
The gene KCNJ11 encodes Kir6.2 a major subunit of the ATP-sensitive potassium channel (KATP) expressed in both the pancreas and brain. Heterozygous gain of function mutations in KCNJ11 can cause neonatal diabetes mellitus (NDM). In addition, many patients exhibit neurological defects ranging from modest learning disorders to severe cognitive dysfunction and seizures. However, it remains unclear to what extent these neurological deficits are due to direct brain-specific activity of mutant KATP. We have generated cerebral organoids derived from human induced pluripotent stem cells (hiPSCs) possessing the KCNJ11 mutation p.Val59Met (V59M) and from non-pathogenic/normal hiPSCs (i.e., control/WT). Control cerebral organoids developed neural networks that could generate stable synchronized bursting neuronal activity whereas those derived from V59M cerebral organoids showed reduced synchronization. Histocytochemical studies revealed a marked reduction in neurons localized to upper cortical layer-like structures in V59M cerebral organoids suggesting dysfunction in the development of cortical neuronal network. Examination of temporal transcriptional profiles of neural stem cell markers revealed an extended window of SOX2 expression in V59M cerebral organoids. Continuous treatment of V59M cerebral organoids with the KATP blocker tolbutamide partially rescued the neurodevelopmental differences. Our study demonstrates the utility of human cerebral organoids as an investigative platform for studying the effects of KCNJ11 mutations on neurophysiological outcome.
Collapse
Affiliation(s)
- Gokhan Dalgin
- Section of Endocrinology, Diabetes and Metabolism, Departments of Medicine and Pediatrics, Kovler Diabetes Center, The University of Chicago, Chicago, IL, USA.
| | - Andrew K Tryba
- Section of Pediatric Neurology, Department of Pediatrics, The University of Chicago, Chicago, IL, USA
| | - Ashley P Cohen
- Chicago Medical School, Rosalind Franklin University, North Chicago, IL, USA
| | - Soo-Young Park
- Section of Endocrinology, Diabetes and Metabolism, Departments of Medicine and Pediatrics, Kovler Diabetes Center, The University of Chicago, Chicago, IL, USA
| | - Louis H Philipson
- Section of Endocrinology, Diabetes and Metabolism, Departments of Medicine and Pediatrics, Kovler Diabetes Center, The University of Chicago, Chicago, IL, USA
| | - Siri Atma W Greeley
- Section of Endocrinology, Diabetes and Metabolism, Departments of Medicine and Pediatrics, Kovler Diabetes Center, The University of Chicago, Chicago, IL, USA
| | - Alfredo J Garcia
- Section of Emergency Medicine, Department of Medicine, Institute for Integrative Physiology, Grossman Institute for Neuroscience, The University of Chicago, Chicago, USA.
| |
Collapse
|
8
|
He B, Li X, Zhou Z. Continuous spectrum of glucose dysmetabolism due to the KCNJ11 gene mutation-Case reports and review of the literature. J Diabetes 2021; 13:19-32. [PMID: 32935446 DOI: 10.1111/1753-0407.13114] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/20/2020] [Accepted: 09/03/2020] [Indexed: 12/01/2022] Open
Abstract
The KCNJ11 gene encodes the Kir6.2 subunit of the adenosine triphosphate-sensitive potassium (KATP ) channel, which plays a key role in insulin secretion. Monogenic diseases caused by KCNJ11 gene mutation are rare and easily misdiagnosed. It has been shown that mutations in the KCNJ11 gene are associated with neonatal diabetes mellitus (NDM), maturity-onset diabetes of the young 13 (MODY13), type 2 diabetes mellitus (T2DM), and hyperinsulinemic hypoglycemia. We report four patients with KCNJ11 gene mutations and provide a systematic review of the literature. A boy with diabetes onset at the age of 1 month was misdiagnosed as type 1 diabetes mellitus (T1DM) for 12 years and received insulin therapy continuously, resulting in poor glycemic control. He was diagnosed as NDM with KCNJ11 E322K gene mutation, and glibenclamide was given to replace exogenous insulin. The successful transfer time was 4 months, much longer than the previous unsuccessful standard of 4 weeks. The other three patients were two sisters and their mother; the younger sister was misdiagnosed with T1DM at 13 years old, while the elder sister was diagnosed with diabetes (type undefined) at 16 years old. They were treated with insulin for 3 years, with poor glycemic control. Their mother was diagnosed with T2DM and achieved good glycemia control with glimepiride. They were diagnosed as MODY13 because of the autosomal dominant inheritance of two generations, early onset of diabetes before 25 years of age in the two sisters, and the presence of the KCNJ11 N48D gene mutation. All patients successfully transferred to sulfonylureas with excellent glycemic control. Therefore, the wide spectrum of clinical phenotypes of glucose dysmetabolism caused by KCNJ11 should be recognized to reduce misdiagnosis and implement appropriate treatment.
Collapse
Affiliation(s)
- Binbin He
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education; National Clinical Research Center for Metabolic Diseases, Changsha, China
| | - Xia Li
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education; National Clinical Research Center for Metabolic Diseases, Changsha, China
| | - Zhiguang Zhou
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education; National Clinical Research Center for Metabolic Diseases, Changsha, China
| |
Collapse
|
9
|
Abstract
Neonatal diabetes (ND) appears during the first months of life and is caused by a single gene mutation. It is heterogenous and very different compared to other forms of multi-factorial or polygenic diabetes. Clinically, this form is extremely severe, however, early genetic diagnosis is pivotal for successful therapy. A large palette of genes is demonstrated to be a cause of ND, however, the mechanisms of permanent hyperglycemia are different. This review will give an overview of more frequent genetic mutations causing ND, including the function of the mutated genes and the specific therapy for certain sub-forms.
Collapse
Affiliation(s)
- M Kocova
- Medical Faculty, University Cyril and Methodius, Skopje, Republic of Macedonia
| |
Collapse
|
10
|
Kessi M, Chen B, Peng J, Tang Y, Olatoutou E, He F, Yang L, Yin F. Intellectual Disability and Potassium Channelopathies: A Systematic Review. Front Genet 2020; 11:614. [PMID: 32655623 PMCID: PMC7324798 DOI: 10.3389/fgene.2020.00614] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/20/2020] [Indexed: 01/15/2023] Open
Abstract
Intellectual disability (ID) manifests prior to adulthood as severe limitations to intellectual function and adaptive behavior. The role of potassium channelopathies in ID is poorly understood. Therefore, we aimed to evaluate the relationship between ID and potassium channelopathies. We hypothesized that potassium channelopathies are strongly associated with ID initiation, and that both gain- and loss-of-function mutations lead to ID. This systematic review explores the burden of potassium channelopathies, possible mechanisms, advancements using animal models, therapies, and existing gaps. The literature search encompassed both PubMed and Embase up to October 2019. A total of 75 articles describing 338 cases were included in this review. Nineteen channelopathies were identified, affecting the following genes: KCNMA1, KCNN3, KCNT1, KCNT2, KCNJ10, KCNJ6, KCNJ11, KCNA2, KCNA4, KCND3, KCNH1, KCNQ2, KCNAB1, KCNQ3, KCNQ5, KCNC1, KCNB1, KCNC3, and KCTD3. Twelve of these genes presented both gain- and loss-of-function properties, three displayed gain-of-function only, three exhibited loss-of-function only, and one had unknown function. How gain- and loss-of-function mutations can both lead to ID remains largely unknown. We identified only a few animal studies that focused on the mechanisms of ID in relation to potassium channelopathies and some of the few available therapeutic options (channel openers or blockers) appear to offer limited efficacy. In conclusion, potassium channelopathies contribute to the initiation of ID in several instances and this review provides a comprehensive overview of which molecular players are involved in some of the most prominent disease phenotypes.
Collapse
Affiliation(s)
- Miriam Kessi
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China.,Kilimanjaro Christian Medical University College, Moshi, Tanzania.,Mawenzi Regional Referral Hospital, Moshi, Tanzania
| | - Baiyu Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Yulin Tang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Eleonore Olatoutou
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Fang He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Lifen Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| |
Collapse
|
11
|
Svalastoga P, Sulen Å, Fehn JR, Aukland SM, Irgens H, Sirnes E, Fevang SKE, Valen E, Elgen IB, Njølstad PR. Intellectual Disability in K ATP Channel Neonatal Diabetes. Diabetes Care 2020; 43:526-533. [PMID: 31932458 DOI: 10.2337/dc19-1013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 11/25/2019] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Neonatal diabetes has been shown to be associated with high neuropsychiatric morbidity in a genotype-phenotype-dependent manner. However, the specific impact of different mutations on intellectual functioning is still insufficiently characterized. Specifically, only a small number of subjects with developmental delay have been comprehensively assessed, creating a knowledge gap about patients carrying the heaviest burden. RESEARCH DESIGN AND METHODS We assessed the intellectual functioning and mental health of the complete Norwegian population with KATP channel neonatal diabetes. Eight sulfonylurea-treated children (five with the p.V59M genotype [KCNJ11]) were assessed using age-matched control subjects with type 1 diabetes. The investigations included a physical and motor developmental examination, cerebral MRI, psychometrical examination, and questionnaires assessing intellectual capabilities and psychiatric morbidity. RESULTS A strong genotype-phenotype correlation was found, revealing the p.V59M genotype as highly associated with substantial intellectual disability, with no significant correlation with the time of sulfonylurea initiation. Consistent with previous studies, other genotypes were associated with minor cognitive impairment. Cerebral MRI verified normal brain anatomy in all but one child. CONCLUSIONS We here presented a comprehensive assessment of intellectual functioning in the largest cohort of p.V59M subjects to date. The level of intellectual disability revealed not only changes the interpretation of other psychological measures but downplays a strong protective effect of sulfonylurea. Within the scope of this study, we could not find evidence supporting an early treatment start to be beneficial, although a weaker effect cannot be ruled out.
Collapse
Affiliation(s)
- Pernille Svalastoga
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Pediatrics and Adolescents, Haukeland University Hospital, Bergen, Norway
| | - Åsta Sulen
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Jarle R Fehn
- Department of Child and Adolescent Psychiatry, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Stein M Aukland
- Department of Radiology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Henrik Irgens
- Department of Pediatrics and Adolescents, Haukeland University Hospital, Bergen, Norway
| | - Eivind Sirnes
- Department of Pediatrics and Adolescents, Haukeland University Hospital, Bergen, Norway
| | - Silje K E Fevang
- Department of Child and Adolescent Psychiatry, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Eivind Valen
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Irene B Elgen
- Department of Child and Adolescent Psychiatry, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Pål R Njølstad
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway .,Department of Pediatrics and Adolescents, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
12
|
De Franco E, Saint-Martin C, Brusgaard K, Knight Johnson AE, Aguilar-Bryan L, Bowman P, Arnoux JB, Larsen AR, Sanyoura M, Greeley SAW, Calzada-León R, Harman B, Houghton JAL, Nishimura-Meguro E, Laver TW, Ellard S, Del Gaudio D, Christesen HT, Bellanné-Chantelot C, Flanagan SE. Update of variants identified in the pancreatic β-cell K ATP channel genes KCNJ11 and ABCC8 in individuals with congenital hyperinsulinism and diabetes. Hum Mutat 2020; 41:884-905. [PMID: 32027066 PMCID: PMC7187370 DOI: 10.1002/humu.23995] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 01/08/2020] [Accepted: 02/04/2020] [Indexed: 01/03/2023]
Abstract
The most common genetic cause of neonatal diabetes and hyperinsulinism is pathogenic variants in ABCC8 and KCNJ11. These genes encode the subunits of the β-cell ATP-sensitive potassium channel, a key component of the glucose-stimulated insulin secretion pathway. Mutations in the two genes cause dysregulated insulin secretion; inactivating mutations cause an oversecretion of insulin, leading to congenital hyperinsulinism, whereas activating mutations cause the opposing phenotype, diabetes. This review focuses on variants identified in ABCC8 and KCNJ11, the phenotypic spectrum and the treatment implications for individuals with pathogenic variants.
Collapse
Affiliation(s)
- Elisa De Franco
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Cécile Saint-Martin
- Department of Genetics, Pitié-Salpêtrière Hospital, AP-HP, Sorbonne University, Paris, France
| | - Klaus Brusgaard
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Amy E Knight Johnson
- Department of Human Genetics, University of Chicago Genetic Services Laboratory, The University of Chicago, Chicago, Illinois
| | | | - Pamela Bowman
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Jean-Baptiste Arnoux
- Reference Center for Inherited Metabolic Diseases, Necker-Enfants Malades Hospital, Paris, France
| | - Annette Rønholt Larsen
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark
| | - May Sanyoura
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, Kovler Diabetes Center, University of Chicago, Chicago, Illinois
| | - Siri Atma W Greeley
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, Kovler Diabetes Center, University of Chicago, Chicago, Illinois
| | - Raúl Calzada-León
- Pediatric Endocrinology, Endocrine Service, National Institute for Pediatrics, Mexico City, Mexico
| | - Bradley Harman
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Jayne A L Houghton
- Department of Molecular Genetics, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Elisa Nishimura-Meguro
- Department of Pediatric Endocrinology, Children's Hospital, National Medical Center XXI Century, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Thomas W Laver
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Sian Ellard
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK.,Department of Molecular Genetics, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Daniela Del Gaudio
- Department of Human Genetics, University of Chicago Genetic Services Laboratory, The University of Chicago, Chicago, Illinois
| | - Henrik Thybo Christesen
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark.,Odense Pancreas Center, Odense University Hospital, Odense, Denmark
| | | | - Sarah E Flanagan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| |
Collapse
|
13
|
Shidler KL, Letourneau LR, Novak LM. Uncommon Presentations of Diabetes: Zebras in the Herd. Clin Diabetes 2020; 38:78-92. [PMID: 31975755 PMCID: PMC6969666 DOI: 10.2337/cd19-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The majority of patients with diabetes are diagnosed as having either type 1 or type 2 diabetes. However, when encountered in clinical practice, some patients may not match the classic diagnostic criteria or expected clinical presentation for either type of the disease. Latent autoimmune, ketosis-prone, and monogenic diabetes are nonclassical forms of diabetes that are often misdiagnosed as either type 1 or type 2 diabetes. Recognizing the distinguishing clinical characteristics and understanding the diagnostic criteria for each will lead to appropriate treatment, facilitate personalized medicine, and improve patient outcomes.
Collapse
Affiliation(s)
- Karen L. Shidler
- North Central Indiana Area Health Education Center, Rochester, IN
| | | | - Lucia M. Novak
- Riverside Diabetes Center, Riverside Medical Associates, Riverdale, MD
| |
Collapse
|
14
|
Abstract
Neonatal diabetes mellitus (DM) is defined by the onset of persistent hyperglycemia within the first six months of life but may present up to 12 months of life. A gene mutation affecting pancreatic beta cells or synthesis/secretion of insulin is present in more than 80% of the children with neonatal diabetes. Neonatal DM can be transient, permanent, or be a component of a syndrome. Genetic testing is important as a specific genetic mutation can significantly alter the treatment and outcome. Patients with mutations of either KCNJ11 or ABCC8 that encode subunits of the KATP channel gene mutation can be managed with sulfonylurea oral therapy while patients with other genetic mutations require insulin treatment.
Collapse
Affiliation(s)
- Amanda Dahl
- Division of Pediatric Endocrinology and Metabolism, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Seema Kumar
- Division of Pediatric Endocrinology and Metabolism, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
- Correspondence: Seema Kumar Division of Pediatric Endocrinology and Metabolism, Department of Pediatric and Adolescent Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN55590, USATel +1 507-284-3300Fax +1 507-284-0727 Email
| |
Collapse
|
15
|
Letourneau LR, Greeley SAW. Precision Medicine: Long-Term Treatment with Sulfonylureas in Patients with Neonatal Diabetes Due to KCNJ11 Mutations. Curr Diab Rep 2019; 19:52. [PMID: 31250216 PMCID: PMC6894166 DOI: 10.1007/s11892-019-1175-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
PURPOSE OF REVIEW The goal of this review is to provide updates on the safety and efficacy of long-term sulfonylurea use in patients with KCNJ11-related diabetes. Publications from 2004 to the present were reviewed with an emphasis on literature since 2014. RECENT FINDINGS Sulfonylureas, often taken at high doses, have now been utilized effectively in KCNJ11 patients for over 10 years. Mild-moderate hypoglycemia can occur, but in two studies with a combined 975 patient-years on sulfonylureas, no severe hypoglycemic events were reported. Improvements in neurodevelopment and motor function after transition to sulfonylureas continue to be described. Sulfonylureas continue to be an effective, sustainable, and safe treatment for KCNJ11-related diabetes. Ongoing follow-up of patients in research registries will allow for deeper understanding of the facilitators and barriers to long-term sustainability. Further understanding of the effect of sulfonylurea on long-term neurodevelopmental outcomes, and the potential for adjunctive therapies, is needed.
Collapse
Affiliation(s)
- Lisa R Letourneau
- Section of Pediatric and Adult Endocrinology, Diabetes, and Metabolism Kovler Diabetes Center, University of Chicago, 5841 S. Maryland Ave., MC1027-N235, Chicago, IL, 60637, USA
| | - Siri Atma W Greeley
- Section of Pediatric and Adult Endocrinology, Diabetes, and Metabolism Kovler Diabetes Center, University of Chicago, 5841 S. Maryland Ave., MC1027-N235, Chicago, IL, 60637, USA.
| |
Collapse
|
16
|
Bowman P, Day J, Torrens L, Shepherd MH, Knight BA, Ford TJ, Flanagan SE, Chakera A, Hattersley AT, Zeman A. Cognitive, Neurological, and Behavioral Features in Adults With KCNJ11 Neonatal Diabetes. Diabetes Care 2019; 42:215-224. [PMID: 30377186 PMCID: PMC6354912 DOI: 10.2337/dc18-1060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/22/2018] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Central nervous system (CNS) features in children with permanent neonatal diabetes (PNDM) due to KCNJ11 mutations have a major impact on affected families. Sulfonylurea therapy achieves outstanding metabolic control but only partial improvement in CNS features. The effects of KCNJ11 mutations on the adult brain and their functional impact are not well understood. We aimed to characterize the CNS features in adults with KCNJ11 PNDM compared with adults with INS PNDM. RESEARCH DESIGN AND METHODS Adults with PNDM due to KCNJ11 mutations (n = 8) or INS mutations (n = 4) underwent a neurological examination and completed standardized neuropsychological tests/questionnaires about development/behavior. Four individuals in each group underwent a brain MRI scan. Test scores were converted to Z scores using normative data, and outcomes were compared between groups. RESULTS In individuals with KCNJ11 mutations, neurological examination was abnormal in seven of eight; predominant features were subtle deficits in coordination/motor sequencing. All had delayed developmental milestones and/or required learning support/special schooling. Half had features and/or a clinical diagnosis of autism spectrum disorder. KCNJ11 mutations were also associated with impaired attention, working memory, and perceptual reasoning and reduced intelligence quotient (IQ) (median IQ KCNJ11 vs. INS mutations 76 vs. 111, respectively; P = 0.02). However, no structural brain abnormalities were noted on MRI. The severity of these features was related to the specific mutation, and they were absent in individuals with INS mutations. CONCLUSIONS KCNJ11 PNDM is associated with specific CNS features that are not due to long-standing diabetes, persist into adulthood despite sulfonylurea therapy, and represent the major burden from KCNJ11 mutations.
Collapse
Affiliation(s)
- Pamela Bowman
- University of Exeter Medical School, Exeter, U.K. .,Exeter National Institute for Health Research Clinical Research Facility, Exeter, U.K
| | - Jacob Day
- University of Exeter Medical School, Exeter, U.K.,Exeter National Institute for Health Research Clinical Research Facility, Exeter, U.K
| | - Lorna Torrens
- Kent Neuropsychology Service, Kent and Medway NHS and Social Care Partnership Trust, Gillingham, U.K
| | - Maggie H Shepherd
- University of Exeter Medical School, Exeter, U.K.,Exeter National Institute for Health Research Clinical Research Facility, Exeter, U.K
| | - Bridget A Knight
- University of Exeter Medical School, Exeter, U.K.,Exeter National Institute for Health Research Clinical Research Facility, Exeter, U.K
| | | | | | - Ali Chakera
- University of Exeter Medical School, Exeter, U.K.,Exeter National Institute for Health Research Clinical Research Facility, Exeter, U.K
| | - Andrew T Hattersley
- University of Exeter Medical School, Exeter, U.K.,Exeter National Institute for Health Research Clinical Research Facility, Exeter, U.K
| | - Adam Zeman
- University of Exeter Medical School, Exeter, U.K
| |
Collapse
|
17
|
Hattersley AT, Greeley SAW, Polak M, Rubio-Cabezas O, Njølstad PR, Mlynarski W, Castano L, Carlsson A, Raile K, Chi DV, Ellard S, Craig ME. ISPAD Clinical Practice Consensus Guidelines 2018: The diagnosis and management of monogenic diabetes in children and adolescents. Pediatr Diabetes 2018; 19 Suppl 27:47-63. [PMID: 30225972 DOI: 10.1111/pedi.12772] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 08/07/2018] [Indexed: 02/06/2023] Open
Affiliation(s)
- Andrew T Hattersley
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, UK
| | - Siri A W Greeley
- The University of Chicago Medicine, Comer Children's Hospital, Chicago, Illinois
| | - Michel Polak
- Hôpital Universitaire Necker-Enfants Malades, Université Paris Descartes, Paris, France
| | - Oscar Rubio-Cabezas
- Department of Paediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Pål R Njølstad
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Wojciech Mlynarski
- Department of Pediatrics, Oncology, Hematology and Diabetology, Medical University of Lodz, Lodz, Poland
| | - Luis Castano
- Endocrinology and Diabetes Research Group, BioCruces Health Research Institute, Cruces University Hospital, Barakaldo, Spain
| | - Annelie Carlsson
- Department of Clinical Sciences, Skåne University Hospital, Lund University, Lund, Sweden
| | - Klemens Raile
- Department of Paediatric Endocrinology and Diabetology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Dung V Chi
- Department of Endocrinology, Metabolism & Genetics, National Children's Hospital, Hanoi, Vietnam.,Department of Pediatrics, Hanoi Medical University, Hanoi, Vietnam
| | - Sian Ellard
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, UK
| | - Maria E Craig
- The Children's Hospital at Westmead and Discipline of Child Health and Adolescent Health, University of Sydney, Sydney, Australia.,School of Women's and Children's Health, University of New South Wales, Sydney, Australia
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Monogenic forms of diabetes have received increased attention and genetic testing is more widely available; however, many patients are still misdiagnosed as having type 1 (T1D) or type 2 diabetes. This review will address updates to monogenic diabetes prevalence, identification, treatment, and genetic testing. RECENT FINDINGS The creation of a T1D genetic risk score and the use of noninvasive urinary C-peptide creatinine ratios have provided new tools to aid in the discrimination of possible monogenic diabetes from likely T1D. Early, high-dose sulfonylurea treatment in infants with a KCNJ11 or ABCC8 mutation continues to be well tolerated and effective. As the field moves towards more comprehensive genetic testing methods, there is an increased opportunity to identify novel genetic causes. Genetic testing results continue to allow for personalized treatment but should provide patient information at an appropriate health literacy level. SUMMARY Although there have been clinical and genetic advances in monogenic diabetes, patients are still misdiagnosed. Improved insurance coverage of genetic testing is needed. The majority of data on monogenic diabetes has been collected from Caucasian populations, therefore, research studies should endeavor to include broader ethnic and racial diversity to provide comprehensive information for all populations.
Collapse
|
19
|
Bowman P, Sulen Å, Barbetti F, Beltrand J, Svalastoga P, Codner E, Tessmann EH, Juliusson PB, Skrivarhaug T, Pearson ER, Flanagan SE, Babiker T, Thomas NJ, Shepherd MH, Ellard S, Klimes I, Szopa M, Polak M, Iafusco D, Hattersley AT, Njølstad PR. Effectiveness and safety of long-term treatment with sulfonylureas in patients with neonatal diabetes due to KCNJ11 mutations: an international cohort study. Lancet Diabetes Endocrinol 2018; 6:637-646. [PMID: 29880308 PMCID: PMC6058077 DOI: 10.1016/s2213-8587(18)30106-2] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND KCNJ11 mutations cause permanent neonatal diabetes through pancreatic ATP-sensitive potassium channel activation. 90% of patients successfully transfer from insulin to oral sulfonylureas with excellent initial glycaemic control; however, whether this control is maintained in the long term is unclear. Sulfonylurea failure is seen in about 44% of people with type 2 diabetes after 5 years of treatment. Therefore, we did a 10-year multicentre follow-up study of a large international cohort of patients with KCNJ11 permanent neonatal diabetes to address the key questions relating to long-term efficacy and safety of sulfonylureas in these patients. METHODS In this multicentre, international cohort study, all patients diagnosed with KCNJ11 permanent neonatal diabetes at five laboratories in Exeter (UK), Rome (Italy), Bergen (Norway), Paris (France), and Krakow (Poland), who transferred from insulin to oral sulfonylureas before Nov 30, 2006, were eligible for inclusion. Clinicians collected clinical characteristics and annual data relating to glycaemic control, sulfonylurea dose, severe hypoglycaemia, side-effects, diabetes complications, and growth. The main outcomes of interest were sulfonylurea failure, defined as permanent reintroduction of daily insulin, and metabolic control, specifically HbA1c and sulfonylurea dose. Neurological features associated with KCNJ11 permanent neonatal diabetes were also assessed. This study is registered with ClinicalTrials.gov, number NCT02624817. FINDINGS 90 patients were identified as being eligible for inclusion and 81 were enrolled in the study and provided long-term (>5·5 years cut-off) outcome data. Median follow-up duration for the whole cohort was 10·2 years (IQR 9·3-10·8). At most recent follow-up (between Dec 1, 2012, and Oct 4, 2016), 75 (93%) of 81 participants remained on sulfonylurea therapy alone. Excellent glycaemic control was maintained for patients for whom we had paired data on HbA1c and sulfonylurea at all time points (ie, pre-transfer [for HbA1c], year 1, and most recent follow-up; n=64)-median HbA1c was 8·1% (IQR 7·2-9·2; 65·0 mmol/mol [55·2-77·1]) before transfer to sulfonylureas, 5·9% (5·4-6·5; 41·0 mmol/mol [35·5-47·5]; p<0·0001 vs pre-transfer) at 1 year, and 6·4% (5·9-7·3; 46·4 mmol/mol [41·0-56·3]; p<0·0001 vs year 1) at most recent follow-up (median 10·3 years [IQR 9·2-10·9]). In the same patients, median sulfonylurea dose at 1 year was 0·30 mg/kg per day (0·14-0·53) and at most recent follow-up visit was 0·23 mg/kg per day (0·12-0·41; p=0·03). No reports of severe hypoglycaemia were recorded in 809 patient-years of follow-up for the whole cohort (n=81). 11 (14%) patients reported mild, transient side-effects, but did not need to stop sulfonylurea therapy. Seven (9%) patients had microvascular complications; these patients had been taking insulin longer than those without complications (median age at transfer to sulfonylureas 20·5 years [IQR 10·5-24·0] vs 4·1 years [1·3-10·2]; p=0·0005). Initial improvement was noted following transfer to sulfonylureas in 18 (47%) of 38 patients with CNS features. After long-term therapy with sulfonylureas, CNS features were seen in 52 (64%) of 81 patients. INTERPRETATION High-dose sulfonylurea therapy is an appropriate treatment for patients with KCNJ11 permanent neonatal diabetes from diagnosis. This therapy is safe and highly effective, maintaining excellent glycaemic control for at least 10 years. FUNDING Wellcome Trust, Diabetes UK, Royal Society, European Research Council, Norwegian Research Council, Kristian Gerhard Jebsen Foundation, Western Norway Regional Health Authority, Southern and Eastern Norway Regional Health Authority, Italian Ministry of Health, Aide aux Jeunes Diabetiques, Societe Francophone du Diabete, Ipsen, Slovak Research and Development Agency, and Research and Development Operational Programme funded by the European Regional Development Fund.
Collapse
Affiliation(s)
| | - Åsta Sulen
- KG Jebsen Centre for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Paediatrics and Adolescents, Haukeland University Hospital, Bergen, Norway
| | | | - Jacques Beltrand
- Service Endocrinologie, Gynécologie et Diabétologie Pédiatrique, Hôpital Universitaire Necker Enfants Malades Paris, Assistance Publique-Hôpitaux de Paris, Faculté de Médecine Paris Descartes-Université Sorbonne Paris Cité, Inserm U1016, Institut Imagine, Paris, France
| | - Pernille Svalastoga
- KG Jebsen Centre for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Paediatrics and Adolescents, Haukeland University Hospital, Bergen, Norway
| | - Ethel Codner
- Institute for Maternal and Child Research, School of Medicine, University of Chile, Santiago, Chile
| | | | - Petur B Juliusson
- KG Jebsen Centre for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Paediatrics and Adolescents, Haukeland University Hospital, Bergen, Norway
| | | | - Ewan R Pearson
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, UK
| | | | | | | | - Maggie H Shepherd
- University of Exeter Medical School, Exeter, UK; Exeter NIHR Clinical Research Facility, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Sian Ellard
- University of Exeter Medical School, Exeter, UK
| | - Iwar Klimes
- Biomedical Research Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Magdalena Szopa
- Department of Metabolic Diseases, Jagiellonian University Medical College, Krakow, Poland
| | - Michel Polak
- Service Endocrinologie, Gynécologie et Diabétologie Pédiatrique, Hôpital Universitaire Necker Enfants Malades Paris, Assistance Publique-Hôpitaux de Paris, Faculté de Médecine Paris Descartes-Université Sorbonne Paris Cité, Inserm U1016, Institut Imagine, Paris, France
| | - Dario Iafusco
- Department of Paediatrics, University of Campania Luigi Vanvitelli, Naples, Italy
| | | | - Pål R Njølstad
- KG Jebsen Centre for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Paediatrics and Adolescents, Haukeland University Hospital, Bergen, Norway
| | | |
Collapse
|
20
|
Letourneau LR, Greeley SAW. Congenital Diabetes: Comprehensive Genetic Testing Allows for Improved Diagnosis and Treatment of Diabetes and Other Associated Features. Curr Diab Rep 2018; 18:46. [PMID: 29896650 PMCID: PMC6341981 DOI: 10.1007/s11892-018-1016-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE OF REVIEW The goal of this review is to provide updates on congenital (neonatal) diabetes from 2011 to present, with an emphasis on publications from 2015 to present. RECENT FINDINGS There has been continued worldwide progress in uncovering the genetic causes of diabetes presenting within the first year of life, including the recognition of nine new causes since 2011. Management has continued to be refined based on underlying molecular cause, and longer-term experience has provided better understanding of the effectiveness, safety, and sustainability of treatment. Associated conditions have been further clarified, such as neurodevelopmental delays and pancreatic insufficiency, including a better appreciation for how these "secondary" conditions impact quality of life for patients and their families. While continued research is essential to understand all forms of congenital diabetes, these cases remain a compelling example of personalized genetic medicine.
Collapse
Affiliation(s)
- Lisa R Letourneau
- Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, Kovler Diabetes Center, The University of Chicago, MC 1027/N235; 5841 S. Maryland Ave., Chicago, IL, 60637, USA
| | - Siri Atma W Greeley
- Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, Kovler Diabetes Center, The University of Chicago, MC 1027/N235; 5841 S. Maryland Ave., Chicago, IL, 60637, USA.
| |
Collapse
|
21
|
Abstract
Neonatal diabetes mellitus is likely to be due to an underlying monogenic defect when it occurs at less than 6 months of age. Early recognition and urgent genetic testing are important for predicting the clinical course and raising awareness of possible additional features. Early treatment of sulfonylurea-responsive types of neonatal diabetes may improve neurologic outcomes. It is important to distinguish neonatal diabetes mellitus from other causes of hyperglycemia in newborns. Other causes include infection, stress, inadequate pancreatic insulin production in preterm infants, among others. This review explores the diagnostic approach, mutation types, management, and clinical course of neonatal diabetes.
Collapse
Affiliation(s)
- Michelle Blanco Lemelman
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, MC 5053, 5841 South Maryland Avenue, Chicago, IL 60637, USA
| | - Lisa Letourneau
- Monogenic Diabetes Registry, University of Chicago Medicine, Kovler Diabetes Center, 900 East 57th Street, Chicago, IL 60637, USA
| | - Siri Atma W Greeley
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, Kovler Diabetes Center, The University of Chicago, 900 East 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
22
|
Yeung RO, Hannah-Shmouni F, Niederhoffer K, Walker MA. Not quite type 1 or type 2, what now? Review of monogenic, mitochondrial, and syndromic diabetes. Rev Endocr Metab Disord 2018; 19:35-52. [PMID: 29777474 DOI: 10.1007/s11154-018-9446-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Diabetes mellitus is a heterogeneous group of conditions defined by resultant chronic hyperglycemia. Given the increasing prevalence of diabetes mellitus and the increasing understanding of genetic etiologies, we present a broad review of rare genetic forms of diabetes that have differing diagnostic and/or treatment implications from type 1 and type 2 diabetes. Advances in understanding the genotype-phenotype associations in these rare forms of diabetes offer clinically available examples of evolving precision medicine where defining the correct genetic etiology can radically alter treatment approaches. In this review, we focus on forms of monogenic diabetes, mitochondrial diabetes, and syndromic diabetes.
Collapse
Affiliation(s)
- Roseanne O Yeung
- Division of Endocrinology and Metabolism, University of Alberta, 9114- Clinical Sciences Building, 11350-83 Avenue, Edmonton, AB, T6G 2G3, Canada.
| | - Fady Hannah-Shmouni
- Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Karen Niederhoffer
- Department of Medical Genetics, University of Alberta, 8-53 Medical Sciences Building, Edmonton, AB, T6G 2H7, Canada
| | - Mark A Walker
- Institute of Cellular Medicine (Diabetes), The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
23
|
Letourneau LR, Greeley SAW. Congenital forms of diabetes: the beta-cell and beyond. Curr Opin Genet Dev 2018; 50:25-34. [PMID: 29454299 DOI: 10.1016/j.gde.2018.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/23/2018] [Accepted: 01/25/2018] [Indexed: 12/11/2022]
Abstract
The majority of patients diagnosed with diabetes less than 6 months of age, and many cases diagnosed between 6 and 12 months of age, have a gene mutation that causes permanent or transient hyperglycemia. Recent research advances have allowed for the discovery of new causes of congenital diabetes, including genes involved in pancreatic development (GATA4, NKX2-2, MNX1) and monogenic causes of autoimmune dysregulation (STAT3, LRBA). Ongoing follow-up of patients with KCNJ11 and ABCC8 mutations has supported the safety and efficacy of sulfonylureas, as well as the use of insulin pumps and continuous glucose monitors in infants with insulin-requiring forms of monogenic diabetes. Future studies are needed to improve clinical care and outcomes for these patients and their families.
Collapse
Affiliation(s)
- Lisa R Letourneau
- Department of Medicine, Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, University of Chicago Medicine, 5841 S. Maryland Ave. MC 1027, Chicago, IL 60637, USA
| | - Siri Atma W Greeley
- Department of Medicine, Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, University of Chicago Medicine, 5841 S. Maryland Ave. MC 1027, Chicago, IL 60637, USA; Department of Pediatrics, Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, University of Chicago Medicine, 5841 S. Maryland Ave. MC 1027, Chicago, IL 60637, USA.
| |
Collapse
|
24
|
Bowman P, Flanagan SE, Hattersley AT. Future Roadmaps for Precision Medicine Applied to Diabetes: Rising to the Challenge of Heterogeneity. J Diabetes Res 2018; 2018:3061620. [PMID: 30599002 PMCID: PMC6288579 DOI: 10.1155/2018/3061620] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 10/11/2018] [Indexed: 12/17/2022] Open
Abstract
Precision medicine, the concept that specific treatments can be targeted to groups of individuals with specific genetic, cellular, or molecular features, is a key aspect of modern healthcare, and its use is rapidly expanding. In diabetes, the application of precision medicine has been demonstrated in monogenic disease, where sulphonylureas are used to treat patients with neonatal diabetes due to mutations in ATP-dependent potassium (KATP) channel genes. However, diabetes is highly heterogeneous, both between and within polygenic and monogenic subtypes. Making the correct diagnosis and using the correct treatment from diagnosis can be challenging for clinicians, but it is crucial to prevent long-term morbidity and mortality. To facilitate precision medicine in diabetes, research is needed to develop a better understanding of disease heterogeneity and its impact on potential treatments for specific subtypes. Animal models have been used in diabetes research, but they are not translatable to humans in the majority of cases. Advances in molecular genetics and functional laboratory techniques and availability and sharing of large population data provide exciting opportunities for human studies. This review will map the key elements of future diabetes research in humans and its potential for clinical translation to promote precision medicine in all diabetes subtypes.
Collapse
Affiliation(s)
- P. Bowman
- University of Exeter Medical School, Exeter, UK
- Exeter NIHR Clinical Research Facility, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | | | - A. T. Hattersley
- University of Exeter Medical School, Exeter, UK
- Exeter NIHR Clinical Research Facility, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| |
Collapse
|
25
|
Bowman P, Hattersley AT, Knight BA, Broadbridge E, Pettit L, Reville M, Flanagan SE, Shepherd MH, Ford TJ, Tonks J. Neuropsychological impairments in children with KCNJ11 neonatal diabetes. Diabet Med 2017; 34:1171-1173. [PMID: 28477417 DOI: 10.1111/dme.13375] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- P Bowman
- University of Exeter Medical School, NIHR Clinical Research Facility, Exeter, UK
- Department of Diabetes and Endocrinology, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - A T Hattersley
- University of Exeter Medical School, NIHR Clinical Research Facility, Exeter, UK
- Department of Diabetes and Endocrinology, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - B A Knight
- University of Exeter Medical School, NIHR Clinical Research Facility, Exeter, UK
- Department of Diabetes and Endocrinology, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - E Broadbridge
- Department of Clinical Psychology, Dame Hannah Rogers Trust, Newton Abbot, UK
| | - L Pettit
- Department of Clinical Psychology, Dame Hannah Rogers Trust, Newton Abbot, UK
| | - M Reville
- Department of Clinical Psychology, Dame Hannah Rogers Trust, Newton Abbot, UK
| | - S E Flanagan
- University of Exeter Medical School, Institute of Biomedical and Clinical Science, Exeter, UK
| | - M H Shepherd
- University of Exeter Medical School, NIHR Clinical Research Facility, Exeter, UK
- Department of Diabetes and Endocrinology, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - T J Ford
- University of Exeter Medical School, Institute of Health Research, Exeter, UK
| | - J Tonks
- Department of Clinical Psychology, Dame Hannah Rogers Trust, Newton Abbot, UK
| |
Collapse
|
26
|
Holt RIG. Diabetes and childhood. Diabet Med 2016; 33:1311. [PMID: 27634433 DOI: 10.1111/dme.13204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- R I G Holt
- Diabetic Medicine, University of Southampton
| |
Collapse
|