1
|
Tatovic D, Marwaha A, Taylor P, Hanna SJ, Carter K, Cheung WY, Luzio S, Dunseath G, Hutchings HA, Holland G, Hiles S, Fegan G, Williams E, Yang JHM, Domingo-Vila C, Pollock E, Wadud M, Ward-Hartstonge K, Marques-Jones S, Bowen-Morris J, Stenson R, Levings MK, Gregory JW, Tree TIM, Dayan C. Ustekinumab for type 1 diabetes in adolescents: a multicenter, double-blind, randomized phase 2 trial. Nat Med 2024; 30:2657-2666. [PMID: 39079992 PMCID: PMC11405276 DOI: 10.1038/s41591-024-03115-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/05/2024] [Indexed: 09/18/2024]
Abstract
Immunotherapy targeting the autoimmune process in type 1 diabetes (T1D) can delay the loss of β-cells but needs to have minimal adverse effects to be an adjunct to insulin in the management of T1D. Ustekinumab binds to the shared p40 subunit of interleukin (IL)-12 and IL-23, targeting development of T helper 1 cells and T helper 17 cells (TH1 and TH17 cells) implicated in the pathogenesis of T1D. We conducted a double-blind, randomized controlled trial of ustekinumab in 72 adolescents aged 12-18 years with recent-onset T1D. Treatment was well tolerated with no increase in adverse events. At 12 months, β-cell function, measured by stimulated C-peptide, was 49% higher in the intervention group (P = 0.02), meeting the prespecified primary outcome. Preservation of C-peptide correlated with the reduction of T helper cells co-secreting IL-17A and interferon-γ (TH17.1 cells, P = 0.04) and, in particular, with the reduction in a subset of TH17.1 cells co-expressing IL-2 and granulocyte-macrophage colony-stimulating factor (IL-2+ GM-CSF+ TH17.1 cells, P = 0.04). A significant fall in β-cell-targeted (proinsulin-specific) IL-17A-secreting T cells was also seen (P = 0.0003). Although exploratory, our data suggest a role for an activated subset of TH17.1 cells in T1D that can be targeted with minimal adverse effects to reduce C-peptide loss, which requires confirmation in a larger study. (International Standard Randomised Controlled Trial Number Registry: ISRCTN 14274380).
Collapse
Affiliation(s)
- Danijela Tatovic
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK.
| | | | - Peter Taylor
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Stephanie J Hanna
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Kym Carter
- Diabetes Research Unit Cymru, Institute for Life Sciences, Swansea University, Swansea, UK
| | - W Y Cheung
- Diabetes Research Unit Cymru, Institute for Life Sciences, Swansea University, Swansea, UK
| | - Steve Luzio
- Diabetes Research Unit Cymru, Institute for Life Sciences, Swansea University, Swansea, UK
| | - Gareth Dunseath
- Diabetes Research Unit Cymru, Institute for Life Sciences, Swansea University, Swansea, UK
| | | | - Gail Holland
- Swansea Trials Unit, Swansea University Medical School, Swansea, UK
| | - Steve Hiles
- Swansea Trials Unit, Swansea University Medical School, Swansea, UK
| | - Greg Fegan
- Swansea Trials Unit, Swansea University Medical School, Swansea, UK
| | - Evangelia Williams
- Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, Guy's Hospital, London, UK
| | - Jennie H M Yang
- Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, Guy's Hospital, London, UK
| | - Clara Domingo-Vila
- Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, Guy's Hospital, London, UK
| | - Emily Pollock
- Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, Guy's Hospital, London, UK
| | - Muntaha Wadud
- Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, Guy's Hospital, London, UK
| | - Kirsten Ward-Hartstonge
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Jane Bowen-Morris
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Rachel Stenson
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Megan K Levings
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - John W Gregory
- Division of Population Medicine, Cardiff University School of Medicine, Cardiff, UK
| | - Timothy I M Tree
- Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, Guy's Hospital, London, UK
| | - Colin Dayan
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| |
Collapse
|
2
|
Armenteros JJA, Brorsson C, Johansen CH, Banasik K, Mazzoni G, Moulder R, Hirvonen K, Suomi T, Rasool O, Bruggraber SFA, Marcovecchio ML, Hendricks E, Al-Sari N, Mattila I, Legido-Quigley C, Suvitaival T, Chmura PJ, Knip M, Schulte AM, Lee JH, Sebastiani G, Grieco GE, Elo LL, Kaur S, Pociot F, Dotta F, Tree T, Lahesmaa R, Overbergh L, Mathieu C, Peakman M, Brunak S. Multi-omics analysis reveals drivers of loss of β-cell function after newly diagnosed autoimmune type 1 diabetes: An INNODIA multicenter study. Diabetes Metab Res Rev 2024; 40:e3833. [PMID: 38961656 DOI: 10.1002/dmrr.3833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 07/05/2024]
Abstract
AIMS Heterogeneity in the rate of β-cell loss in newly diagnosed type 1 diabetes patients is poorly understood and creates a barrier to designing and interpreting disease-modifying clinical trials. Integrative analyses of baseline multi-omics data obtained after the diagnosis of type 1 diabetes may provide mechanistic insight into the diverse rates of disease progression after type 1 diabetes diagnosis. METHODS We collected samples in a pan-European consortium that enabled the concerted analysis of five different omics modalities in data from 97 newly diagnosed patients. In this study, we used Multi-Omics Factor Analysis to identify molecular signatures correlating with post-diagnosis decline in β-cell mass measured as fasting C-peptide. RESULTS Two molecular signatures were significantly correlated with fasting C-peptide levels. One signature showed a correlation to neutrophil degranulation, cytokine signalling, lymphoid and non-lymphoid cell interactions and G-protein coupled receptor signalling events that were inversely associated with a rapid decline in β-cell function. The second signature was related to translation and viral infection was inversely associated with change in β-cell function. In addition, the immunomics data revealed a Natural Killer cell signature associated with rapid β-cell decline. CONCLUSIONS Features that differ between individuals with slow and rapid decline in β-cell mass could be valuable in staging and prediction of the rate of disease progression and thus enable smarter (shorter and smaller) trial designs for disease modifying therapies as well as offering biomarkers of therapeutic effect.
Collapse
Affiliation(s)
- Jose Juan Almagro Armenteros
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Caroline Brorsson
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian Holm Johansen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Karina Banasik
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gianluca Mazzoni
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Robert Moulder
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Karoliina Hirvonen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Tomi Suomi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Omid Rasool
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | | | | | - Emile Hendricks
- Department of Paediatrics, University of Cambridge, Cambridge, England
| | - Naba Al-Sari
- Steno Diabetes Center Copenhagen, Systems Medicine, Herlev, Denmark
| | - Ismo Mattila
- Steno Diabetes Center Copenhagen, Systems Medicine, Herlev, Denmark
| | | | - Tommi Suvitaival
- Steno Diabetes Center Copenhagen, Systems Medicine, Herlev, Denmark
| | - Piotr J Chmura
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikael Knip
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Pediatric Research Center, New Children's Hospital, Helsinki University Hospital, Helsinki, Finland
| | | | - Jeong Heon Lee
- Immunology & Inflammation Research Therapeutic Area, Sanofi, Massachusetts, USA
| | - Guido Sebastiani
- Department of Medicine, Surgery and Neuroscience, Università degli Studi di Siena, Siena, Italy
- Fondazione Umberto di Mario, ONLUS - Toscana Life Sciences, Siena, Italy
| | - Giuseppina Emanuela Grieco
- Department of Medicine, Surgery and Neuroscience, Università degli Studi di Siena, Siena, Italy
- Fondazione Umberto di Mario, ONLUS - Toscana Life Sciences, Siena, Italy
| | - Laura L Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Simranjeet Kaur
- Steno Diabetes Center Copenhagen, Herlev University Hospital, Herlev, Denmark
| | - Flemming Pociot
- Steno Diabetes Center Copenhagen, Herlev University Hospital, Herlev, Denmark
| | - Francesco Dotta
- Department of Medicine, Surgery and Neuroscience, Università degli Studi di Siena, Siena, Italy
- Tuscany Centre for Precision Medicine (CReMeP), Siena, Italy
| | - Tim Tree
- Department of Immunobiology, King's College, London, UK
| | - Riitta Lahesmaa
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Lut Overbergh
- Department of Chronic Diseases and Metabolism, Endocrinology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Chantal Mathieu
- Department of Chronic Diseases and Metabolism, Endocrinology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Mark Peakman
- Immunology & Inflammation Research Therapeutic Area, Sanofi, Massachusetts, USA
- Department of Immunobiology, King's College, London, UK
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Schirru E, Rossino R, Diana D, Jores RD, Baldera D, Muntoni S, Spiga C, Ripoli C, Ricciardi MR, Cucca F, Congia M. HLA Genotyping in Children With Celiac Disease Allows to Establish the Risk of Developing Type 1 Diabetes. Clin Transl Gastroenterol 2024; 15:e00710. [PMID: 38713138 PMCID: PMC11272246 DOI: 10.14309/ctg.0000000000000710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/19/2024] [Indexed: 05/08/2024] Open
Abstract
INTRODUCTION Celiac disease (CD) and type 1 diabetes (T1D) often co-occur and share genetic components in the human leukocyte antigen (HLA) class II region. We aimed to study the usefulness of HLA genotyping in predicting the risk of developing T1D in patients with CD and the temporal relationship between these diseases. METHODS A cohort of 1,886 Sardinian patients, including 822 with CD, 1,064 with T1D, and 627 controls, underwent HLA class II typing. Seventy-six of 822 patients with CD were also affected by T1D (CD-T1D), and their HLA genotypes were analyzed for specific HLA associations with CD, T1D, and controls. RESULTS High-risk HLA-DQ genotypes, including HLA-DQ2.5/DQ8, -DQ2.5/DQ2.5, and -DQ2.5/DQ2.3, were strongly associated with CD-T1D with frequencies of 34.5%, 15.9%, and 18.8%, respectively. Conversely, certain HLA genotypes associated with CD seemed to confer protection against T1D development. Therefore, HLA genotyping allows for the identification of those patients with CD who might develop T1D. The frequency of patients with CD preceding T1D is higher in younger children than older ones, with implications for the early childhood approach to diabetes prevention. DISCUSSION CD is a condition for future T1D development, and specific HLA genotypes can predict this risk. Early screening for celiac autoimmunity and subsequent HLA typing in CD children could help identify those at high risk of T1D, allowing for proactive interventions and immunotherapies to preserve β-cell function. These findings may support the re-evaluation of HLA typing in children with CD.
Collapse
Affiliation(s)
- Enrico Schirru
- Centro Servizi di Ateneo per gli Stabulari (CeSaSt), University of Cagliari, Monserrato, Italy
| | - Rossano Rossino
- Department of Pediatrics, Clinic of Pediatric and Rare Diseases, Microcitemico Pediatric Hospital, A.Cao, ASL8, Cagliari, Italy
- Department of Medical Science and Public Health, University of Cagliari, Monserrato, Italy
| | - Daniela Diana
- Department Outpatient Clinic, ASL8 Outpatient Clinic Quartu Sant’Elena, Cagliari, Italy
| | - Rita D. Jores
- Department Outpatient Clinic, ASL8 Outpatient Clinic Quartu Sant’Elena, Cagliari, Italy
| | - Davide Baldera
- Centro Servizi di Ateneo per gli Stabulari (CeSaSt), University of Cagliari, Monserrato, Italy
| | - Sandro Muntoni
- Department of Biomedical Science, University of Cagliari, Monserrato, Italy
| | - Claudia Spiga
- Department of Pediatric, Diabetologic Unit, Microcitemico Pediatric Hospital, A.Cao, ASL8, Cagliari, Italy
| | - Carlo Ripoli
- Department of Pediatric, Diabetologic Unit, Microcitemico Pediatric Hospital, A.Cao, ASL8, Cagliari, Italy
| | - Maria R. Ricciardi
- Department of Pediatric, Diabetologic Unit, Microcitemico Pediatric Hospital, A.Cao, ASL8, Cagliari, Italy
| | - Francesco Cucca
- Department of Biomedical Science, University of Sassari, Sassari, Italy
| | - Mauro Congia
- Department of Pediatrics, Clinic of Pediatric and Rare Diseases, Microcitemico Pediatric Hospital, A.Cao, ASL8, Cagliari, Italy
| |
Collapse
|
4
|
Siddiqui K, Nawaz SS. Exploration of Immune Targets for Type 1 Diabetes and Latent Autoimmune Disease Immunotherapy. Immunotargets Ther 2023; 12:91-103. [PMID: 37795196 PMCID: PMC10546931 DOI: 10.2147/itt.s417917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/09/2023] [Indexed: 10/06/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease that destroys pancreatic beta cells, which produce insulin in the islets of Langerhans. The risk of developing T1D is influenced by environmental factors, genetics, and autoantibodies. Latent autoimmune diabetes in adults (LADA) is a type of T1D that is genetically and phenotypically distinct from classic T1D. This review summarizes the accumulated information on the risk factors for T1D and LADA, and immunotherapy trials that offer insights into potential future combined therapeutic interventions for both T1D and LADA to slow the rate of islet cell loss and preserve beta cell function. Future research should also focus on improving intervention doses, conducting more thorough examinations of intervention responders, and/or combining minimally effective single-target immunotherapies to slow the rate of islet cell loss and preserve beta cell function.
Collapse
Affiliation(s)
- Khalid Siddiqui
- Strategic Center for Diabetes Research, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Shaik Sarfaraz Nawaz
- Strategic Center for Diabetes Research, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Tatovic D, Narendran P, Dayan CM. A perspective on treating type 1 diabetes mellitus before insulin is needed. Nat Rev Endocrinol 2023; 19:361-370. [PMID: 36914759 DOI: 10.1038/s41574-023-00816-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/16/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is a progressive autoimmune disease that starts long before a clinical diagnosis is made. The American Diabetes Association recognizes three stages: stage 1 (normoglycaemic and positive for autoantibodies to β-cell antigens); stage 2 (asymptomatic with dysglycaemia); and stage 3, which is defined by glucose levels consistent with the definition of diabetes mellitus. This Perspective focuses on the management of the proportion of individuals with early stage 3 T1DM who do not immediately require insulin; a stage we propose should be termed stage 3a. To date, this period of non-insulin-dependent T1DM has been largely unrecognized. Importantly, it represents a window of opportunity for intervention, as remaining at this stage might delay the need for insulin by months or years. Extending the insulin-free period and/or avoiding unnecessary insulin therapy are important goals, as there is no risk of hypoglycaemia during this period and the adherence burden on patients of glycaemic monitoring and daily adjustments for diet and exercise is substantially reduced. Recognizing the pressing need for guidance on adequate management of children and adults with stage 3a T1DM, we present our perspective on the subject, which needs to be tested in formal and adequately powered clinical trials.
Collapse
Affiliation(s)
- Danijela Tatovic
- Diabetes Research Group, Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Parth Narendran
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Colin M Dayan
- Diabetes Research Group, Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK.
| |
Collapse
|
6
|
Oliver N. Variance of concern. Diabet Med 2022; 39:e14782. [PMID: 35015313 DOI: 10.1111/dme.14782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|