1
|
Rosas PC, Solaro RJ. p21-Activated Kinase 1 (Pak1) as an Element in Functional and Dysfunctional Interplay Among the Myocardium, Adipose Tissue, and Pancreatic Beta Cells. Compr Physiol 2025; 15:e70006. [PMID: 40065530 PMCID: PMC11894248 DOI: 10.1002/cph4.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/22/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025]
Abstract
This review focuses on p21-activated kinase 1 (Pak1), a multifunctional, highly conserved enzyme that regulates multiple downstream effectors present in many tissues. Upstream signaling via Ras-related small G-proteins, Cdc42/Rac1 promotes the activity of Pak1. Our hypothesis is that this signaling cascade is an important element in communication among the myocardium, adipose tissue, and pancreatic β-cells. Evidence indicates that a shared property of these tissues is that structure/function stability requires homeostatic Pak1 activity. Increases or decreases in Pak1 activity may promote dysfunction or increase susceptibility to stressors. Evidence that increased levels of Pak1 activity may be protective provides support for efforts to develop therapeutic approaches activating Pak1 with potential use in prevalent disorders associated with obesity, diabetes, and myocardial dysfunction. On the other hand, since increased Pak1 activity is associated with cancer progression, there has been a significant effort to develop Pak1 inhibitors. These opposing therapeutic approaches highlight the need for a deep understanding of Pak1 signaling in relation to the development of effective and selective therapies with minimal or absent off-target effects.
Collapse
Affiliation(s)
- Paola C. Rosas
- Department of Pharmacy Practice, College of PharmacyUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - R. John Solaro
- Department of Physiology and Biophysics, College of MedicineUniversity of Illinois at ChicagoChicagoIllinoisUSA
| |
Collapse
|
2
|
Bischof L, Schweitzer F, Heinisch JJ. Functional Conservation of the Small GTPase Rho5/Rac1-A Tale of Yeast and Men. Cells 2024; 13:472. [PMID: 38534316 PMCID: PMC10969153 DOI: 10.3390/cells13060472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/02/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
Small GTPases are molecular switches that participate in many essential cellular processes. Amongst them, human Rac1 was first described for its role in regulating actin cytoskeleton dynamics and cell migration, with a close relation to carcinogenesis. More recently, the role of Rac1 in regulating the production of reactive oxygen species (ROS), both as a subunit of NADPH oxidase complexes and through its association with mitochondrial functions, has drawn attention. Malfunctions in this context affect cellular plasticity and apoptosis, related to neurodegenerative diseases and diabetes. Some of these features of Rac1 are conserved in its yeast homologue Rho5. Here, we review the structural and functional similarities and differences between these two evolutionary distant proteins and propose yeast as a useful model and a device for high-throughput screens for specific drugs.
Collapse
Affiliation(s)
| | | | - Jürgen J. Heinisch
- AG Genetik, Fachbereich Biologie/Chemie, University of Osnabrück, Barbarastrasse 11, D-49076 Osnabrück, Germany; (L.B.); (F.S.)
| |
Collapse
|
3
|
Liu T, Wang Y, Gui J, Fu Y, Ye C, Hong X, Chen L, Li Y, Zhang X, Hong W. Transcriptome analysis of the impact of diabetes as a comorbidity on tuberculosis. Medicine (Baltimore) 2022; 101:e31652. [PMID: 36596076 PMCID: PMC9803411 DOI: 10.1097/md.0000000000031652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Diabetes mellitus patients with pulmonary tuberculosis (DMTB) comorbidity has been recognized as a major obstacle towards achieving the World Health Organization goal of reducing the tuberculosis incidence rate by 90% in 2035. Host immune responses affected by diabetes can lead to increased susceptibility, severity and poor treatment outcomes in DMTB patients, and the underlying mechanisms have not yet been fully elucidated. This study aimed to identify key immunological and cellular components that contribute to increased morbidity and mortality in DMTB cases. METHODS We performed RNA-Seq of total RNA isolated from peripheral blood mononuclear cells from 3 TB, 3 diabetes mellitus, and 3 DMTB patients and healthy controls, and analyzed differential expression, pathway enrichment and clustering of differentially-expressed genes (DEGs) to identify biological pathways altered specifically in DMTB patients. RESULTS Bioinformatic analysis of DEGs suggested that enhanced inflammatory responses, small GTPases, the protein kinase C signaling pathway, hemostasis and the cell cycle pathway are likely implicated in the pathogenesis of the DMTB comorbidity. CONCLUSION The DMTB comorbidity is associated with an altered transcriptome and changes in various biological pathways. Our study provides new insights on the pathological mechanism that may aid the development of host-directed therapies for this increasingly prevalent disease in high TB burden countries.
Collapse
Affiliation(s)
- Tao Liu
- Shenzhen Center for Chronic Disease Control and Prevention, Shenzhen, China
| | - Yaguo Wang
- Key Laboratory of RNA Biology and National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Guangdong TB Healthcare Co., Ltd., Foshan, China
| | - Jing Gui
- Shenzhen Center for Chronic Disease Control and Prevention, Shenzhen, China
| | - Yu Fu
- Shenzhen Center for Chronic Disease Control and Prevention, Shenzhen, China
| | - Chunli Ye
- Shenzhen Center for Chronic Disease Control and Prevention, Shenzhen, China
| | - Xiangya Hong
- Shenzhen Center for Chronic Disease Control and Prevention, Shenzhen, China
| | - Ling Chen
- Shenzhen Center for Chronic Disease Control and Prevention, Shenzhen, China
| | - Yuhua Li
- Shenzhen Center for Chronic Disease Control and Prevention, Shenzhen, China
| | - Xilin Zhang
- The Fourth People's Hospital of Foshan City-Foshan Tuberculosis Prevention and Control Institute, Foshan, China
| | - Wenxu Hong
- Shenzhen Center for Chronic Disease Control and Prevention, Shenzhen, China
- * Correspondence: Wenxu Hong, Shenzhen Center for Chronic Disease Control and Prevention, No. 2021 Buxin Road, Luohu District, Shenzhen 518020, China (e-mail: )
| |
Collapse
|
4
|
Kowluru A, Gleason NF. Underappreciated roles for Rho GDP dissociation inhibitors (RhoGDIs) in cell function: Lessons learned from the pancreatic islet β-cell. Biochem Pharmacol 2022; 197:114886. [PMID: 34968495 PMCID: PMC8858860 DOI: 10.1016/j.bcp.2021.114886] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 11/02/2022]
Abstract
Rho subfamily of G proteins (e.g., Rac1) have been implicated in glucose-stimulated insulin secretion from the pancreatic β-cell. Interestingly, metabolic stress (e.g., chronic exposure to high glucose) results in sustained activation of Rac1 leading to increased oxidative stress, impaired insulin secretion and β-cell dysfunction. Activation-deactivation of Rho G proteins is mediated by three classes of regulatory proteins, namely the guanine nucleotide exchange factors (GEFs), which facilitate the conversion of inactive G proteins to their active conformations; the GTPase-activating proteins (GAPs), which convert the active G proteins to their inactive forms); and the GDP-dissociation inhibitors (GDIs), which prevent the dissociation of GDP from G proteins. Contrary to a large number of GEFs (82 members) and GAPs (69 members), only three members of RhoGDIs (RhoGDIα, RhoGDIβ and RhoGDIγ) are expressed in mammalian cells.Even though relatively smaller in number, the GDIs appear to play essential roles in G protein function (e.g., subcellular targeting) for effector activation and cell regulation. Emerging evidence also suggests that the GDIs are functionally regulated via post-translational modification (e.g., phosphorylation) and by lipid second messengers, lipid kinases and lipid phosphatases. We highlight the underappreciated regulatory roles of RhoGDI-Rho G protein signalome in islet β-cell function in health and metabolic stress. Potential knowledge gaps in the field, and directions for future research for the identification of novel therapeutic targets to loss of functional β-cell mass under the duress of metabolic stress are highlighted.
Collapse
Affiliation(s)
- Anjaneyulu Kowluru
- Biomedical Research Service, John D. Dingell VA Medical Center and Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA.
| | | |
Collapse
|
5
|
Fu J, Liu B, Zhang H, Fu F, Yang X, Fan L, Zheng M, Zhang S. The role of cell division control protein 42 in tumor and non-tumor diseases: A systematic review. J Cancer 2022; 13:800-814. [PMID: 35154449 PMCID: PMC8824883 DOI: 10.7150/jca.65415] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/13/2021] [Indexed: 11/23/2022] Open
Abstract
Rho-GTPases control a variety of cellular functions mainly by regulating microtubule and actin dynamics, affecting the cytoskeleton, and are important regulators of the structural plasticity of dendrites and spines. Members of the Rho-GTPase family include Ras-related C3 botulinum toxin substrate 1 (Rac1), RhoA (Ras homologous), and cell division control protein 42 (Cdc42). Cdc42 is involved in the regulation of a variety of tumor and non-tumor diseases through a cascade of multiple signaling pathways. Active Cdc42 can regulate intercellular adhesion, cytoskeleton formation, and cell cycle, thus affecting cell proliferation, transformation, and dynamic balance as well as migration and invasion of tumor cells by regulating the expression of effector proteins. Here we discuss the role of Cdc42 in promoting metastasis, invasion, epithelial-mesenchymal transformation and angiogenesis in malignant tumors. The significant role of Cdc42 in non-tumor diseases is also discussed. Since Cdc42 plays a central role in the development of various diseases, small molecule inhibitors targeting Cdc42 have important clinical significance in the prevention and treatment of these diseases.
Collapse
Affiliation(s)
- Junjie Fu
- Graduate School, Tianjin Medical University, Tianjin, 300070, P.R. China
- Department of Pathology, Tianjin Union Medical Center, Tianjin, P.R. China
| | - Bo Liu
- Medical Affairs Office, Tianjin Union Medical Center, Tianjin, P.R. China
| | - Hao Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
- Department of Pathology, Tianjin Union Medical Center, Tianjin, P.R. China
| | - Fangmei Fu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
- Department of Pathology, Tianjin Union Medical Center, Tianjin, P.R. China
| | - Xiaohui Yang
- Nankai University School of Medicine, Nankai University, Tianjin, P.R.China
- Department of Pathology, Tianjin Union Medical Center, Tianjin, P.R. China
| | - Linlin Fan
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
- Department of Pathology, Tianjin Union Medical Center, Tianjin, P.R. China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Tianjin, P.R. China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, P.R. China
| |
Collapse
|
6
|
Gao Y, Chen S, Gu WY, Fang C, Huang YT, Gao Y, Lu Y, Su J, Wu M, Zhang J, Xu M, Zhang ZL. Genome-wide association study reveals novel loci for adult type 1 diabetes in a 5-year nested case-control study. World J Diabetes 2021; 12:2073-2086. [PMID: 35047121 PMCID: PMC8696645 DOI: 10.4239/wjd.v12.i12.2073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/03/2021] [Accepted: 11/03/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is a severe and prevalent metabolic disease. Due to its high heredity, an increasing number of genome-wide association studies have been performed, most of which were from hospital-based case-control studies with a relatively small sample size. The association of single nucleotide polymorphisms (SNPs) and T1D has been less studied and is less understood in natural cohorts.
AIM To investigate the significant variants of T1D, which could be potential biomarkers for T1D prediction or even therapy.
METHODS A genome-wide association study (GWAS) of adult T1D was performed in a nested case-control study (785 cases vs 804 controls) from a larger 5-year cohort study in Suzhou, China. Potential harmful or protective SNPs were evaluated for T1D. Subsequent expression and splicing quantitative trait loci (eQTL and sQTL) analyses were carried out to identify target genes modulated by these SNPs.
RESULTS A harmful SNP for T1D, rs3117017 [odds ratio (OR) = 3.202, 95% confidence interval (CI): 2.296-4.466, P = 9.33 × 10-4] and three protective SNPs rs55846421 (0.113, 0.081-0.156, 1.76 × 10-9), rs75836320 (0.283, 0.205-0.392, 1.07 × 10-4), rs362071 (0.568, 0.495-0.651, 1.66 × 10-4) were identified. Twenty-two genes were further identified as potential candidates for T1D onset.
CONCLUSION We identified a potential genetic basis of T1D, both protective and harmful, using a GWAS in a larger nested case-control study of a Chinese population.
Collapse
Affiliation(s)
- Yan Gao
- Department of Occupational and Environmental Health, School of Public Health, Medical College of Soochow University, Suzhou 215123, Jiangsu Province, China
- Institute of Suzhou Biobank, Suzhou Center for Disease Prevention and Control, Suzhou 215004, Jiangsu Province, China
| | - Shi Chen
- Department of Public Health Sciences, University of North Carolina Charlotte, NC 28223, United States
- School of Data Science, University of North Carolina Charlotte, NC 28223, United States
| | - Wen-Yong Gu
- Department of Ultrasound, The Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu Province, China
| | - Chen Fang
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu Province, China
- Department of Clinical Nutrition, The Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu Province, China
| | - Yi-Ting Huang
- Clinical Nutrition Department, The Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu Province, China
| | - Yue Gao
- Department of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, Jiangsu Province, China
- Public Health Research Institute of Jiangsu Province, Nanjing 210009, Jiangsu Province, China
| | - Yan Lu
- Institute of Suzhou Biobank, Suzhou Center for Disease Prevention and Control, Suzhou 215004, Jiangsu Province, China
| | - Jian Su
- Department of Chronic Disease Prevention and Control, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, Jiangsu Province, China
| | - Ming Wu
- Department of Chronic Disease Prevention and Control, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, Jiangsu Province, China
| | - Jun Zhang
- Institute of Suzhou Biobank, Suzhou Center for Disease Prevention and Control, Suzhou 215004, Jiangsu Province, China
| | - Ming Xu
- Department of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, Jiangsu Province, China
- Public Health Research Institute of Jiangsu Province, Nanjing 210009, Jiangsu Province, China
| | - Zeng-Li Zhang
- Department of Occupational and Environmental Health, School of Public Health, Medical College of Soochow University, Suzhou 215123, Jiangsu Province, China
| |
Collapse
|
7
|
Martinez-Arroyo O, Selma-Soriano E, Ortega A, Cortes R, Redon J. Small Rab GTPases in Intracellular Vesicle Trafficking: The Case of Rab3A/Raphillin-3A Complex in the Kidney. Int J Mol Sci 2021; 22:7679. [PMID: 34299299 PMCID: PMC8303874 DOI: 10.3390/ijms22147679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
Small Rab GTPases, the largest group of small monomeric GTPases, regulate vesicle trafficking in cells, which are integral to many cellular processes. Their role in neurological diseases, such as cancer and inflammation have been extensively studied, but their implication in kidney disease has not been researched in depth. Rab3a and its effector Rabphillin-3A (Rph3A) expression have been demonstrated to be present in the podocytes of normal kidneys of mice rats and humans, around vesicles contained in the foot processes, and they are overexpressed in diseases with proteinuria. In addition, the Rab3A knockout mice model induced profound cytoskeletal changes in podocytes of high glucose fed animals. Likewise, RphA interference in the Drosophila model produced structural and functional damage in nephrocytes with reduction in filtration capacities and nephrocyte number. Changes in the structure of cardiac fiber in the same RphA-interference model, open the question if Rab3A dysfunction would produce simultaneous damage in the heart and kidney cells, an attractive field that will require attention in the future.
Collapse
Affiliation(s)
- Olga Martinez-Arroyo
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (O.M.-A.); (R.C.)
| | - Estela Selma-Soriano
- Physiopathology of Cellular and Organic Oxidative Stress Group, University of Valencia, 46100 Valencia, Spain;
| | - Ana Ortega
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (O.M.-A.); (R.C.)
| | - Raquel Cortes
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (O.M.-A.); (R.C.)
| | - Josep Redon
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (O.M.-A.); (R.C.)
- CIBERObn, Carlos III Institute, 28029 Madrid, Spain
| |
Collapse
|
8
|
Gamage S, Hali M, Kowluru A. CARD9 mediates glucose-stimulated insulin secretion in pancreatic beta cells. Biochem Pharmacol 2021; 192:114670. [PMID: 34233162 DOI: 10.1016/j.bcp.2021.114670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 11/15/2022]
Abstract
Caspase recruitment domain containing protein 9 (CARD9) plays key regulatory role(s) in innate and adaptive immune responses. Recent evidence implicates CARD9 in the onset of metabolic diseases including insulin resistance. However, potential contributory roles of CARD9 in glucose-stimulated insulin secretion (GSIS) remain unknown. Herein, we report that CARD9 is expressed in human islets, rat islets, mouse islets and clonal INS-1 832/13 cells. Subcellularly, CARD9 is predominantly cytosolic (~75%) in INS-1 832/13 cells. siRNA-mediated depletion of CARD9 expression significantly (~50%) suppressed GSIS in INS-1 832/13 cells. Interestingly, glucose-induced activation of Rac1, a small G-protein, which is a requisite for GSIS to occur, is unaffected in CARD9-si transfected cells, suggesting that CARD9-mediates GSIS in a Rac1-independent fashion. Furthermore, insulin secretion promoted by KCl or mastoparan (a global G protein activator), remained resistant to CARD9 depletion in INS-1 832/13 cells. In addition, pharmacological inhibition (BRD5529) of interaction between CARD9 and TRIM62, its ubiquitin ligase, exerted no significant effects on GSIS. Lastly, depletion of CARD9 prevented glucose-induced p38, not ERK1/2 phosphorylation in beta cells. Based on these observations, we propose that CARD9 might regulate GSIS via a Rac1-independent and p38-dependent signaling module.
Collapse
Affiliation(s)
- Suhadinie Gamage
- Biomedical Research Service, John D. Dingell VA Medical Center, and Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, United States
| | - Mirabela Hali
- Biomedical Research Service, John D. Dingell VA Medical Center, and Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, United States
| | - Anjaneyulu Kowluru
- Biomedical Research Service, John D. Dingell VA Medical Center, and Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, United States.
| |
Collapse
|
9
|
Chundru SA, Harajli A, Hali M, Gleason N, Gamage S, Kowluru A. RhoG-Rac1 Signaling Pathway Mediates Metabolic Dysfunction of the Pancreatic Beta-Cells Under Chronic Hyperglycemic Conditions. Cell Physiol Biochem 2021; 55:180-192. [PMID: 33851799 PMCID: PMC11724327 DOI: 10.33594/000000354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2021] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND/AIMS Published evidence suggests regulatory roles for small G proteins (Cdc42 and Rac1) in glucose-stimulated insulin secretion (GSIS) from pancreatic beta-cells. More recent evidence suggests novel roles for these G proteins, specifically Rac1, in the induction of metabolic dysfunction of the islet beta-cell under the duress of a variety of stress conditions. However, potential upstream regulators of sustained activation of Rac1 have not been identified in the beta-cell. Recent studies in other cell types have identified RhoG, a small G protein, as an upstream regulator of Rac1 under specific experimental conditions. Herein, we examined putative roles for RhoG in islet beta-cell dysregulation induced by glucotoxic conditions. METHODS Expression of RhoG or GDIγ was suppressed by siRNA transfection using the DharmaFect1 reagent. Subcellular fractions were isolated using NE-PER Nuclear and Cytoplasmic Extraction Reagent kit. The degree of activation of Rac1 was assessed using a pull-down assay kit. Extent of cell death was quantified using a Cell Death Detection ELISAplus kit. RESULTS RhoG is expressed in human islets, rat islets, and clonal INS-1 832/13 cells. siRNA-RhoG markedly attenuated sustained activation of Rac1 and caspase-3 in INS-1 832/13 cells exposed to hyperglycemic conditions (20 mM; 24 hours). In a manner akin to Rac1, which has been shown to translocate to the nuclear fraction to induce beta-cell dysfunction under metabolic stress, a significant increase in the association of RhoG with the nuclear fraction was observed in beta-cells under the duress of metabolic stress. Interestingly, GDIγ, a known regulator of RhoG, remained associated with non-nuclear fraction under conditions RhoG and Rac1 translocated to the membrane. Lastly, siRNA-RhoG modestly attenuated pancreatic beta-cell demise induced by high glucose exposure conditions, but such an effect was not statistically significant. CONCLUSION Based on these data we conclude that RhoG-Rac1 signaling module plays critical regulatory roles in promoting mitochondrial dysfunction (caspase-3 activation) of the islet beta cell under metabolic stress.
Collapse
Affiliation(s)
- Sri Aneesha Chundru
- Biomedical Research Service, John D. Dingell VA Medical Center, Detroit, MI, USA
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Ali Harajli
- Biomedical Research Service, John D. Dingell VA Medical Center, Detroit, MI, USA
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Mirabela Hali
- Biomedical Research Service, John D. Dingell VA Medical Center, Detroit, MI, USA
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Noah Gleason
- Biomedical Research Service, John D. Dingell VA Medical Center, Detroit, MI, USA
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Suhadinie Gamage
- Biomedical Research Service, John D. Dingell VA Medical Center, Detroit, MI, USA
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Anjaneyulu Kowluru
- Biomedical Research Service, John D. Dingell VA Medical Center, Detroit, MI, USA,
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| |
Collapse
|
10
|
Thamilselvan V, Kowluru A. Paradoxical regulation of glucose-induced Rac1 activation and insulin secretion by RhoGDIβ in pancreatic β-cells. Small GTPases 2021; 12:114-121. [PMID: 31267831 PMCID: PMC7849774 DOI: 10.1080/21541248.2019.1635403] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/11/2019] [Accepted: 06/20/2019] [Indexed: 12/14/2022] Open
Abstract
Small GTPases (e.g., Rac1) play key roles in glucose-stimulated insulin secretion (GSIS) in the β-cell. We investigated regulation by RhoGDIβ of glucose-induced activation of Rac1 and insulin secretion. RhoGDIβ is expressed in INS-1 832/13 cells, rodent and human islets. siRNA-mediated knockdown of RhoGDIβ in INS-1 832/13 cells significantly attenuated glucose-induced Rac1 activation without affecting its translocation and membrane association. Further, suppression of RhoGDIβ expression exerted minimal effects on GSIS at the height of inhibition of Rac1 activation, suggesting divergent effects of RhoGDIβ on Rac1 activation and insulin secretion in the glucose-stimulated β-cell. We provide the first evidence for the expression of RhoGDIβ in rodent and human β-cells, and its differential regulatory roles of this protein in G protein activation and GSIS. Abbreviations: Arf6: ADP ribosylation factor; Cdc42: Cell Division Cycle; GAP: GTPase-activating protein; GDI: GDP dissociation inhibitor; GDIα: GDP dissociation inhibitorα; GDIβ: GDP dissociation inhibitorβ; GEF: Guanine nucleotide exchange factor; GSIS: Glucose-stimulated insulin secretion; Rac1: Ras-Related C3 Botulinum Toxin Substrate 1.
Collapse
Affiliation(s)
- Vijayalakshmi Thamilselvan
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, USA
| | - Anjaneyulu Kowluru
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, USA
- Center for Translational Research in Diabetes, Biomedical Research Service, John D. Dingell VA Medical Center, Detroit, MI, USA
| |
Collapse
|
11
|
Oxidative Stress in Cytokine-Induced Dysfunction of the Pancreatic Beta Cell: Known Knowns and Known Unknowns. Metabolites 2020; 10:metabo10120480. [PMID: 33255484 PMCID: PMC7759861 DOI: 10.3390/metabo10120480] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 12/12/2022] Open
Abstract
Compelling evidence from earlier studies suggests that the pancreatic beta cell is inherently weak in its antioxidant defense mechanisms to face the burden of protecting itself against the increased intracellular oxidative stress following exposure to proinflammatory cytokines. Recent evidence implicates novel roles for nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (Noxs) as contributors to the excessive intracellular oxidative stress and damage under metabolic stress conditions. This review highlights the existing evidence on the regulatory roles of at least three forms of Noxs, namely Nox1, Nox2, and Nox4, in the cascade of events leading to islet beta cell dysfunction, specifically under the duress of chronic exposure to cytokines. Potential crosstalk between key signaling pathways (e.g., inducible nitric oxide synthase [iNOS] and Noxs) in the generation and propagation of reactive molecules and metabolites leading to mitochondrial damage and cell apoptosis is discussed. Available data accrued in investigations involving small-molecule inhibitors and antioxidant protein expression methods as tools toward the prevention of cytokine-induced oxidative damage are reviewed. Lastly, current knowledge gaps in this field, and possible avenues for future research are highlighted.
Collapse
|
12
|
Yue Y, Zhang C, Zhao X, Liu S, Lv X, Zhang S, Yang J, Chen L, Duan H, Zhang Y, Yao Z, Niu W. Tiam1 mediates Rac1 activation and contraction-induced glucose uptake in skeletal muscle cells. FASEB J 2020; 35:e21210. [PMID: 33225507 DOI: 10.1096/fj.202001312r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/26/2020] [Accepted: 11/04/2020] [Indexed: 12/31/2022]
Abstract
Contraction-stimulated glucose uptake in skeletal muscle requires Rac1, but the molecular mechanism of its activation is not fully understood. Treadmill running was applied to induce C57BL/6 mouse hind limb skeletal muscle contraction in vivo and electrical pulse stimulation contracted C2C12 myotube cultures in vitro. The protein levels or activities of AMPK or the Rac1-specific GEF, Tiam1, were manipulated by activators, inhibitors, siRNA-mediated knockdown, and adenovirus-mediated expression. Activated Rac1 was detected by a pull-down assay and immunoblotting. Glucose uptake was measured using the 2-NBD-glucose fluorescent analog. Electrical pulse stimulated contraction or treadmill exercise upregulated the expression of Tiam1 in skeletal muscle in an AMPK-dependent manner. Axin1 siRNA-mediated knockdown diminished AMPK activation and upregulation of Tiam1 protein expression by contraction. Tiam1 siRNA-mediated knockdown diminished contraction-induced Rac1 activation, GLUT4 translocation, and glucose uptake. Contraction increased Tiam1 gene expression and serine phosphorylation of Tiam1 protein via AMPK. These findings suggest Tiam1 is part of an AMPK-Tiam1-Rac1 signaling pathway that mediates contraction-stimulated glucose uptake in skeletal muscle cells and tissue.
Collapse
Affiliation(s)
- Yingying Yue
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China.,NHC Key Laboratory of Hormones and Development, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China.,Department of Pharmacy, General Hospital, Tianjin Medical University, Tianjin, China
| | - Chang Zhang
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China.,NHC Key Laboratory of Hormones and Development, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China.,Department of Pharmacy, General Hospital, Tianjin Medical University, Tianjin, China
| | - Xiaoyun Zhao
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China.,NHC Key Laboratory of Hormones and Development, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China.,Department of Pharmacy, General Hospital, Tianjin Medical University, Tianjin, China
| | - Sasa Liu
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China.,NHC Key Laboratory of Hormones and Development, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China.,Department of Pharmacy, General Hospital, Tianjin Medical University, Tianjin, China
| | - Xiaoting Lv
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China.,NHC Key Laboratory of Hormones and Development, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China.,Department of Pharmacy, General Hospital, Tianjin Medical University, Tianjin, China.,Clinical Laboratory, Cangzhou People's Hospital, Cangzhou, China
| | - Shitian Zhang
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China.,NHC Key Laboratory of Hormones and Development, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China.,Department of Pharmacy, General Hospital, Tianjin Medical University, Tianjin, China
| | - Jianming Yang
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China.,NHC Key Laboratory of Hormones and Development, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China.,Department of Pharmacy, General Hospital, Tianjin Medical University, Tianjin, China
| | - Liming Chen
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China.,NHC Key Laboratory of Hormones and Development, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China.,Department of Pharmacy, General Hospital, Tianjin Medical University, Tianjin, China
| | - Hongquan Duan
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China.,NHC Key Laboratory of Hormones and Development, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China.,Department of Pharmacy, General Hospital, Tianjin Medical University, Tianjin, China
| | - Youyi Zhang
- Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
| | - Zhi Yao
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China.,NHC Key Laboratory of Hormones and Development, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China.,Department of Pharmacy, General Hospital, Tianjin Medical University, Tianjin, China
| | - Wenyan Niu
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China.,NHC Key Laboratory of Hormones and Development, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China.,Department of Pharmacy, General Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
13
|
Gene Expression Profiling of Type 2 Diabetes Mellitus by Bioinformatics Analysis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2020; 2020:9602016. [PMID: 33149760 PMCID: PMC7603564 DOI: 10.1155/2020/9602016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/22/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023]
Abstract
Objective The aim of this study was to identify the candidate genes in type 2 diabetes mellitus (T2DM) and explore their potential mechanisms. Methods The gene expression profile GSE26168 was downloaded from the Gene Expression Omnibus (GEO) database. The online tool GEO2R was used to obtain differentially expressed genes (DEGs). Gene Ontology (GO) term enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed by using Metascape for annotation, visualization, and comprehensive discovery. The protein-protein interaction (PPI) network of DEGs was constructed by using Cytoscape software to find the candidate genes and key pathways. Results A total of 981 DEGs were found in T2DM, including 301 upregulated genes and 680 downregulated genes. GO analyses from Metascape revealed that DEGs were significantly enriched in cell differentiation, cell adhesion, intracellular signal transduction, and regulation of protein kinase activity. KEGG pathway analysis revealed that DEGs were mainly enriched in the cAMP signaling pathway, Rap1 signaling pathway, regulation of lipolysis in adipocytes, PI3K-Akt signaling pathway, MAPK signaling pathway, and so on. On the basis of the PPI network of the DEGs, the following 6 candidate genes were identified: PIK3R1, RAC1, GNG3, GNAI1, CDC42, and ITGB1. Conclusion Our data provide a comprehensive bioinformatics analysis of genes, functions, and pathways, which may be related to the pathogenesis of T2DM.
Collapse
|
14
|
Kowluru A. Roles of GTP and Rho GTPases in pancreatic islet beta cell function and dysfunction. Small GTPases 2020; 12:323-335. [PMID: 32867592 DOI: 10.1080/21541248.2020.1815508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A growing body of evidence implicates requisite roles for GTP and its binding proteins (Rho GTPases) in the cascade of events leading to physiological insulin secretion from the islet beta cell. Interestingly, chronic exposure of these cells to hyperglycaemic conditions appears to result in sustained activation of specific Rho GTPases (e.g. Rac1) leading to significant alterations in cellular functions including defects in mitochondrial function and nuclear collapse culminating in beta cell demise. One of the objectives of this review is to highlight our current understanding of the regulatory roles of GTP and Rho GTPases in normal islet function (e.g. proliferation and insulin secretion) as well potential defects in these signalling molecules and metabolic pathways that could contribute islet beta cell dysfunction and loss of functional beta cell mass leading to the onset of diabetes. Potential knowledge gaps in this field and possible avenues for future research are also highlighted. ABBREVIATIONS ARNO: ADP-ribosylation factor nucleotide binding site opener; CML: carboxyl methylation; Epac: exchange protein directly activated by cAMP; ER stress: endoplasmic reticulum stress; FTase: farnesyltransferase; GAP: GTPase activating protein; GDI: GDP dissociation inhibitor; GEF: guanine nucleotide exchange factor; GGTase: geranylgeranyltransferase; GGpp: geranylgeranylpyrophosphate; GGPPS: geranylgeranyl pyrophosphate synthase; GSIS: glucose-stimulated insulin secretion; HGPRTase: hypoxanthine-guanine phosphoribosyltransferase; IMPDH: inosine monophosphate dehydrogenase; α-KIC: α-ketoisocaproic acid; MPA: mycophenolic acid; MVA: mevalonic acid; NDPK: nucleoside diphosphate kinase; NMPK: nucleoside monophosphate kinase; Nox2: phagocyte-like NADPH oxidase; PAK-I: p21-activated kinase-I; β-PIX: β-Pak-interacting exchange factor; PRMT: protein arginine methyltransferase; Rac1: ras-related C3 botulinum toxin substrate 1; Tiam1: T-cell lymphoma invasion and metastasis-inducing protein 1; Trx-1: thioredoxin-1; Vav2: vav guanine nucleotide exchange factor 2.
Collapse
Affiliation(s)
- Anjaneyulu Kowluru
- Biomedical Research Service, John D. Dingell VA Medical Center and Department of Pharmaceutical Sciences and Medicine, Wayne State University, Detroit, MI, USA
| |
Collapse
|
15
|
Kowluru A. Potential roles of PP2A-Rac1 signaling axis in pancreatic β-cell dysfunction under metabolic stress: Progress and promise. Biochem Pharmacol 2020; 180:114138. [PMID: 32634437 DOI: 10.1016/j.bcp.2020.114138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/16/2022]
Abstract
Recent estimates by the International Diabetes Federation suggest that the incidence of diabetes soared to an all-time high of 463 million in 2019, and the federation predicts that by 2045 the number of individuals afflicted with this disease will increase to 700 million. Therefore, efforts to understand the pathophysiology of diabetes are critical for moving toward the development of novel therapeutic strategies for this disease. Several contributors (oxidative stress, endoplasmic reticulum stress and others) have been proposed for the onset of metabolic dysfunction and demise of the islet β-cell leading to the pathogenesis of diabetes. Existing experimental evidence revealed sustained activation of PP2A and Rac1 in pancreatic β-cells exposed to metabolic stress (diabetogenic) conditions. Evidence in a variety of cell types implicates modulatory roles for specific signaling proteins (α4, SET, nm23-H1, Pak1) in the functional regulation of PP2A and Rac1. In this Commentary, I overviewed potential cross-talk between PP2A and Rac1 signaling modules in the onset of metabolic dysregulation of the islet β-cell leading to impaired glucose-stimulated insulin secretion (GSIS), loss of β-cell mass and the onset of diabetes. Potential knowledge gaps and future directions in this fertile area of islet biology are also highlighted. It is hoped that this Commentary will provide a basis for future studies toward a better understanding of roles of PP2A-Rac1 signaling module in pancreatic β-cell dysfunction, and identification of therapeutic targets for the treatment of islet β-cell dysfunction in diabetes.
Collapse
Affiliation(s)
- Anjaneyulu Kowluru
- Biomedical Laboratory Research Service, John D. Dingell VA Medical Center and Departments of Pharmaceutical Sciences and Internal Medicine, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
16
|
Altered Transcription Factor Binding and Gene Bivalency in Islets of Intrauterine Growth Retarded Rats. Cells 2020; 9:cells9061435. [PMID: 32527043 PMCID: PMC7348746 DOI: 10.3390/cells9061435] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/30/2020] [Accepted: 06/04/2020] [Indexed: 12/16/2022] Open
Abstract
Intrauterine growth retardation (IUGR), which induces epigenetic modifications and permanent changes in gene expression, has been associated with the development of type 2 diabetes. Using a rat model of IUGR, we performed ChIP-Seq to identify and map genome-wide histone modifications and gene dysregulation in islets from 2- and 10-week rats. IUGR induced significant changes in the enrichment of H3K4me3, H3K27me3, and H3K27Ac marks in both 2-wk and 10-wk islets, which were correlated with expression changes of multiple genes critical for islet function in IUGR islets. ChIP-Seq analysis showed that IUGR-induced histone mark changes were enriched at critical transcription factor binding motifs, such as C/EBPs, Ets1, Bcl6, Thrb, Ebf1, Sox9, and Mitf. These transcription factors were also identified as top upstream regulators in our previously published transcriptome study. In addition, our ChIP-seq data revealed more than 1000 potential bivalent genes as identified by enrichment of both H3K4me3 and H3K27me3. The poised state of many potential bivalent genes was altered by IUGR, particularly Acod1, Fgf21, Serpina11, Cdh16, Lrrc27, and Lrrc66, key islet genes. Collectively, our findings suggest alterations of histone modification in key transcription factors and genes that may contribute to long-term gene dysregulation and an abnormal islet phenotype in IUGR rats.
Collapse
|
17
|
Abstract
Glucose-induced (physiological) insulin secretion from the islet β-cell involves interplay between cationic (i.e., changes in intracellular calcium) and metabolic (i.e., generation of hydrophobic and hydrophilic second messengers) events. A large body of evidence affirms support for novel regulation, by G proteins, of specific intracellular signaling events, including actin cytoskeletal remodeling, transport of insulin-containing granules to the plasma membrane for fusion, and secretion of insulin into the circulation. This article highlights the following aspects of GPCR-G protein biology of the islet. First, it overviews our current understanding of the identity of a wide variety of G protein regulators and their modulatory roles in GPCR-G protein-effector coupling, which is requisite for optimal β-cell function under physiological conditions. Second, it describes evidence in support of novel, noncanonical, GPCR-independent mechanisms of activation of G proteins in the islet. Third, it highlights the evidence indicating that abnormalities in G protein function lead to islet β-cell dysregulation and demise under the duress of metabolic stress and diabetes. Fourth, it summarizes observations of potential beneficial effects of GPCR agonists in preventing/halting metabolic defects in the islet β-cell under various pathological conditions (e.g., metabolic stress and inflammation). Lastly, it identifies knowledge gaps and potential avenues for future research in this evolving field of translational islet biology. Published 2020. Compr Physiol 10:453-490, 2020.
Collapse
Affiliation(s)
- Anjaneyulu Kowluru
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Center for Translational Research in Diabetes, Biomedical Research Service, John D. Dingell VA Medical Center, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
18
|
Yue Y, Zhang C, Zhang X, Zhang S, Liu Q, Hu F, Lv X, Li H, Yang J, Wang X, Chen L, Yao Z, Duan H, Niu W. An AMPK/Axin1-Rac1 signaling pathway mediates contraction-regulated glucose uptake in skeletal muscle cells. Am J Physiol Endocrinol Metab 2020; 318:E330-E342. [PMID: 31846370 DOI: 10.1152/ajpendo.00272.2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Contraction stimulates skeletal muscle glucose uptake predominantly through activation of AMP-activated protein kinase (AMPK) and Rac1. However, the molecular details of how contraction activates these signaling proteins are not clear. Recently, Axin1 has been shown to form a complex with AMPK and liver kinase B1 during glucose starvation-dependent activation of AMPK. Here, we demonstrate that electrical pulse-stimulated (EPS) contraction of C2C12 myotubes or treadmill exercise of C57BL/6 mice enhanced reciprocal coimmunoprecipitation of Axin1 and AMPK from myotube lysates or gastrocnemius muscle tissue. Interestingly, EPS or exercise upregulated total cellular Axin1 levels in an AMPK-dependent manner in C2C12 myotubes and gastrocnemius mouse muscle, respectively. Also, direct activation of AMPK with 5-aminoimidazole-4-carboxamide ribonucleotide treatment of C2C12 myotubes or gastrocnemius muscle elevated Axin1 protein levels. On the other hand, siRNA-mediated Axin1 knockdown lessened activation of AMPK in contracted myotubes. Further, AMPK inhibition with compound C or siRNA-mediated knockdown of AMPK or Axin1 blocked contraction-induced GTP loading of Rac1, p21-activated kinase phosphorylation, and contraction-stimulated glucose uptake. In summary, our results suggest that an AMPK/Axin1-Rac1 signaling pathway mediates contraction-stimulated skeletal muscle glucose uptake.
Collapse
Affiliation(s)
- Yingying Yue
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Tianjin Medical University, Tianjin, China
- NHC Key Laboratory of Hormones and Development, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Chang Zhang
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Tianjin Medical University, Tianjin, China
- NHC Key Laboratory of Hormones and Development, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- School of Pharmacy, Research Center of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Xuejiao Zhang
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Tianjin Medical University, Tianjin, China
- NHC Key Laboratory of Hormones and Development, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Shitian Zhang
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Tianjin Medical University, Tianjin, China
- NHC Key Laboratory of Hormones and Development, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Qian Liu
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Tianjin Medical University, Tianjin, China
- NHC Key Laboratory of Hormones and Development, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Fang Hu
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Tianjin Medical University, Tianjin, China
- NHC Key Laboratory of Hormones and Development, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Xiaoting Lv
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Tianjin Medical University, Tianjin, China
- NHC Key Laboratory of Hormones and Development, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Hanqi Li
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Tianjin Medical University, Tianjin, China
- NHC Key Laboratory of Hormones and Development, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Jianming Yang
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Tianjin Medical University, Tianjin, China
- NHC Key Laboratory of Hormones and Development, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Xinli Wang
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Tianjin Medical University, Tianjin, China
- NHC Key Laboratory of Hormones and Development, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Liming Chen
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Tianjin Medical University, Tianjin, China
- NHC Key Laboratory of Hormones and Development, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Zhi Yao
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Tianjin Medical University, Tianjin, China
- NHC Key Laboratory of Hormones and Development, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Hongquan Duan
- School of Pharmacy, Research Center of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Wenyan Niu
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Tianjin Medical University, Tianjin, China
- NHC Key Laboratory of Hormones and Development, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
19
|
Weighted Gene Coexpression Network Analysis Identified MicroRNA Coexpression Modules and Related Pathways in Type 2 Diabetes Mellitus. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9567641. [PMID: 31915515 PMCID: PMC6935443 DOI: 10.1155/2019/9567641] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/04/2019] [Accepted: 11/11/2019] [Indexed: 12/31/2022]
Abstract
Objective Type 2 diabetes mellitus (T2DM) is a metabolic disease with high incidence, which has seriously affected human life and health. MicroRNA, a short-chain noncoding RNA, plays an important role in T2DM. Identification of meaningful microRNA modules and the role of microRNAs provide a basis for searching potential biomarkers of T2DM. Materials and Methods In this study, three newly diagnosed patients with T2DM and three controls were selected for Whole Peripheral Blood RNA Sequencing to establish a microRNA library. Weighted gene coexpression network analysis (WGCNA) was applied to construct coexpression modules and to detect the trait-related microRNA modules; then, KEGG enrichment analysis was performed to predict the biological function of the interest modules, and candidate hub microRNAs were screened out by the value of module membership (MM) and protein-protein interaction (PPI) network. Result Four microRNA modules (blue, brown, magenta, and turquoise) were highly associated with the T2DM; the number of miRNAs in these modules ranged from 41 to 469. The Fc gamma R-mediated phagocytosis pathway, Rap1 signaling pathway, MAPK signaling pathway, and Lysosome pathway were common pathways in three of the four modules. RPS27A, UBC, and RAC1 were the top three proteins in our study; their corresponding RNAs were miR-1271-5p, miR-130a-3p, miR-130b-3p, and miR-574-3p. Conclusion In summary, this study identified blood miRNAs in human T2DM using RNA sequencing. The findings may be the foundation for understanding the potential role of miRNAs in T2DM.
Collapse
|
20
|
Damacharla D, Thamilselvan V, Zhang X, Mestareehi A, Yi Z, Kowluru A. Quantitative proteomics reveals novel interaction partners of Rac1 in pancreatic β-cells: Evidence for increased interaction with Rac1 under hyperglycemic conditions. Mol Cell Endocrinol 2019; 494:110489. [PMID: 31202817 PMCID: PMC6686664 DOI: 10.1016/j.mce.2019.110489] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/11/2019] [Accepted: 06/11/2019] [Indexed: 11/19/2022]
Abstract
Rac1, a small G protein, regulates physiological insulin secretion from the pancreatic β-cell. Interestingly, Rac1 has also been implicated in the onset of metabolic dysfunction of the β-cell under the duress of hyperglycemia (HG). This study is aimed at the identification of interaction partners of Rac1 in β-cells under basal and HG conditions. Using co-immunoprecipitation and UPLC-ESI-MS/MS, we identified 324 Rac1 interaction partners in INS-1832/13 cells, which represent the largest Rac1 interactome to date. Furthermore, we identified 27 interaction partners that exhibited increased association with Rac1 in β-cells exposed to HG. Western blotting (INS-1832/13 cells, rat islets and human islets) and co-immunoprecipitation (INS-1832/13 cells) further validated the identity of these Rac1 interaction partners including regulators of GPCR-G protein-effector coupling in the islet. These data form the basis for future investigations on contributory roles of these Rac1-specific signaling pathways in islet β-cell function in health and diabetes.
Collapse
Affiliation(s)
- Divyasri Damacharla
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, USA
| | - Vijayalakshmi Thamilselvan
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, USA
| | - Xiangmin Zhang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, USA
| | - Aktham Mestareehi
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, USA
| | - Zhengping Yi
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, USA
| | - Anjaneyulu Kowluru
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, USA; Center for Translational Research in Diabetes, Biomedical Research Service, John D. Dingell VA Medical Center, Detroit, MI, 48201, USA.
| |
Collapse
|
21
|
De Loof A, Schoofs L. Flip-Flopping Retinal in Microbial Rhodopsins as a Template for a Farnesyl/Prenyl Flip-Flop Model in Eukaryote GPCRs. Front Neurosci 2019; 13:465. [PMID: 31133794 PMCID: PMC6515946 DOI: 10.3389/fnins.2019.00465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 04/24/2019] [Indexed: 01/01/2023] Open
Abstract
Thirty years after the first description and modeling of G protein coupled receptors (GPCRs), information about their mode of action is still limited. One of the questions that is hard to answer is: how do the allosteric changes in the GPCR induced by, e.g., ligand binding in the end activate a G protein-dependent intracellular pathway (e.g., via the cAMP or the phosphatidylinositol signal pathways). Another question relates to the role of prenylation of G proteins. Today's "consensus model" states that protein prenylation is required for the assembly of GPCR-G protein complexes. Although it is well-known that protein prenylation is the covalent addition of a farnesyl- or geranylgeranyl moiety to the C terminus of specific proteins, e.g., α or γ G protein, the reason for this strong covalent binding remains enigmatic. The arguments for a fundamental role for prenylation of G proteins other than just being a hydrophobic linker, are gradually accumulating. We uncovered a dilemma that at first glance may be considered physiologically irrelevant, however, it may cause a true change in paradigm. The consensus model suggests that the only functional role of prenylation is to link the G protein to the receptor. Does the isoprenoid nature of the prenyl group and its exact site of attachment somehow matter? Or, are there valid arguments favoring the alternative possibility that a key role of the G protein is to guide the covalently attached prenyl group to - and it hold it in - a very specific location in between specific helices of the receptor? Our model says that the farnesyl/prenyl group - aided by its covalent attachment to a G protein -might function in GPCRs as a horseshoe-shaped flexible (and perhaps flip-flopping) hydrophobic valve for restricting (though not fully inhibiting) the untimely passage of Ca2+, like retinal does for the passage of H+ in microbial rhodopsins that are ancestral to many GPCRs.
Collapse
Affiliation(s)
- Arnold De Loof
- Functional Genomics and Proteomics Group, Department of Biology, Zoological Institute, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
22
|
Hühn J, Musielak M, Schmitz HP, Heinisch JJ. Fungal homologues of human Rac1 as emerging players in signal transduction and morphogenesis. Int Microbiol 2019; 23:43-53. [PMID: 31020478 DOI: 10.1007/s10123-019-00077-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/28/2019] [Accepted: 04/02/2019] [Indexed: 02/06/2023]
Abstract
A wealth of data is accumulating on the physiological functions of human Rac1, a member of the Rho GTPase family of molecular switches and substrate of botulinum toxin, which was first identified as a regulator of cell motility through its effect on the actin cytoskeleton. Later on, it was found to be involved in different diseases like cancers, cardiac function, neuronal disorders, and apoptotic cell death. Despite the presence of Rac1 homologues in most fungi investigated so far, including Rho5 in the genetically tractable model yeast Saccharomyces cerevisiae, knowledge on their physiological functions is still scarce, let alone the details of the molecular mechanisms of their actions and interactions. Nevertheless, all functions proposed for human Rac1 seem to be conserved in one or the other fungus. This includes the regulation of MAPK cascades, polarized growth, and actin dynamics. Moreover, both the production and response to reactive oxygen species, as well as the reaction to nutrient availability, can be affected. We here summarize the studies performed on fungal Rac1 homologues, with a special focus on S. cerevisiae Rho5, which may be of use in drug development in medicine and agriculture.
Collapse
Affiliation(s)
- Julia Hühn
- Department of Biology and Chemistry, Genetics group, University of Osnabrück, Barbarastrasse 11, 49076, Osnabrück, Germany
| | - Marius Musielak
- Department of Biology and Chemistry, Genetics group, University of Osnabrück, Barbarastrasse 11, 49076, Osnabrück, Germany
| | - Hans-Peter Schmitz
- Department of Biology and Chemistry, Genetics group, University of Osnabrück, Barbarastrasse 11, 49076, Osnabrück, Germany
| | - Jürgen J Heinisch
- Department of Biology and Chemistry, Genetics group, University of Osnabrück, Barbarastrasse 11, 49076, Osnabrück, Germany.
| |
Collapse
|
23
|
Huang QY, Lai XN, Qian XL, Lv LC, Li J, Duan J, Xiao XH, Xiong LX. Cdc42: A Novel Regulator of Insulin Secretion and Diabetes-Associated Diseases. Int J Mol Sci 2019; 20:ijms20010179. [PMID: 30621321 PMCID: PMC6337499 DOI: 10.3390/ijms20010179] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 12/26/2018] [Accepted: 12/29/2018] [Indexed: 02/07/2023] Open
Abstract
Cdc42, a member of the Rho GTPases family, is involved in the regulation of several cellular functions including cell cycle progression, survival, transcription, actin cytoskeleton organization and membrane trafficking. Diabetes is a chronic and metabolic disease, characterized as glycometabolism disorder induced by insulin deficiency related to β cell dysfunction and peripheral insulin resistance (IR). Diabetes could cause many complications including diabetic nephropathy (DN), diabetic retinopathy and diabetic foot. Furthermore, hyperglycemia can promote tumor progression and increase the risk of malignant cancers. In this review, we summarized the regulation of Cdc42 in insulin secretion and diabetes-associated diseases. Organized researches indicate that Cdc42 is a crucial member during the progression of diabetes, and Cdc42 not only participates in the process of insulin synthesis but also regulates the insulin granule mobilization and cell membrane exocytosis via activating a series of downstream factors. Besides, several studies have demonstrated Cdc42 as participating in the pathogenesis of IR and DN and even contributing to promote cancer cell proliferation, survival, invasion, migration, and metastasis under hyperglycemia. Through the current review, we hope to cast light on the mechanism of Cdc42 in diabetes and associated diseases and provide new ideas for clinical diagnosis, treatment, and prevention.
Collapse
Affiliation(s)
- Qi-Yuan Huang
- Department of Pathophysiology, Medical College, Nanchang University, Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, 461 Bayi Road, Nanchang 330006, China.
| | - Xing-Ning Lai
- Department of Pathophysiology, Medical College, Nanchang University, Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, 461 Bayi Road, Nanchang 330006, China.
| | - Xian-Ling Qian
- Department of Pathophysiology, Medical College, Nanchang University, Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, 461 Bayi Road, Nanchang 330006, China.
| | - Lin-Chen Lv
- Department of Pathophysiology, Medical College, Nanchang University, Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, 461 Bayi Road, Nanchang 330006, China.
| | - Jun Li
- Department of Pathophysiology, Medical College, Nanchang University, Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, 461 Bayi Road, Nanchang 330006, China.
| | - Jing Duan
- Department of Pathophysiology, Medical College, Nanchang University, Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, 461 Bayi Road, Nanchang 330006, China.
| | - Xing-Hua Xiao
- Department of Pathophysiology, Medical College, Nanchang University, Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, 461 Bayi Road, Nanchang 330006, China.
| | - Li-Xia Xiong
- Department of Pathophysiology, Medical College, Nanchang University, Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, 461 Bayi Road, Nanchang 330006, China.
| |
Collapse
|
24
|
Chakravarthy H, Devanathan V. Molecular Mechanisms Mediating Diabetic Retinal Neurodegeneration: Potential Research Avenues and Therapeutic Targets. J Mol Neurosci 2018; 66:445-461. [PMID: 30293228 DOI: 10.1007/s12031-018-1188-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/25/2018] [Indexed: 12/16/2022]
Abstract
Diabetic retinopathy (DR) is a devastating complication of diabetes with a prevalence rate of 35%, and no effective treatment options. Since the most visible clinical features of DR are microvascular irregularities, therapeutic interventions often attempt to reduce microvascular injury, but only after permanent retinal damage has ensued. However, recent data suggests that diabetes initially affects retinal neurons, leading to neurodegeneration as an early occurrence in DR, before onset of the more noticeable vascular abnormalities. In this review, we delineate the sequence of initiating events leading to retinal degeneration in DR, considering neuronal dysfunction as a primary event. Key molecular mechanisms and potential biomarkers associated with retinal neuronal degeneration in diabetes are discussed. In addition to glial reactivity and inflammation in the diabetic retina, the contribution of neurotrophic factors, cell adhesion molecules, apoptosis markers, and G protein signaling to neurodegenerative pathways warrants further investigation. These studies could complement recent developments in innovative treatment strategies for diabetic retinopathy, such as targeting retinal neuroprotection, promoting neuronal regeneration, and attempts to re-program other retinal cell types into functional neurons. Indeed, several ongoing clinical trials are currently attempting treatment of retinal neurodegeneration by means of such novel therapeutic avenues. The aim of this article is to highlight the crucial role of neurodegeneration in early retinopathy progression, and to review the molecular basis of neuronal dysfunction as a first step toward developing early therapeutic interventions that can prevent permanent retinal damage in diabetes. ClinicalTrials.gov: NCT02471651, NCT01492400.
Collapse
Affiliation(s)
- Harshini Chakravarthy
- Department of Biology, Indian Institute of Science Education and Research (IISER), Transit campus: C/o. Sree Rama Engineering College Campus, Karakambadi Road, Mangalam, Tirupati, 517507, India
| | - Vasudharani Devanathan
- Department of Biology, Indian Institute of Science Education and Research (IISER), Transit campus: C/o. Sree Rama Engineering College Campus, Karakambadi Road, Mangalam, Tirupati, 517507, India.
| |
Collapse
|
25
|
Kowluru A, Kowluru RA. RACking up ceramide-induced islet β-cell dysfunction. Biochem Pharmacol 2018; 154:161-169. [PMID: 29715450 DOI: 10.1016/j.bcp.2018.04.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 04/27/2018] [Indexed: 12/20/2022]
Abstract
The International Diabetes Federation predicts that by 2045 the number of individuals afflicted with diabetes will increase to 629 million. Furthermore, ∼352 million individuals with impaired glucose tolerance are at increased risk for developing diabetes. Several mechanisms have been proposed for the onset of metabolic dysfunction and demise of the islet β-cell leading to the pathogenesis of diabetes. It is widely accepted that the onset of type 2 diabetes is due to an intricate interplay between genetic expression of the disease and a multitude of factors including increased oxidative and endoplasmic reticulum stress consequential to glucolipotoxicity and inflammation. Compelling experimental evidence from in vitro and in vivo studies implicates intracellular generation of ceramide (CER), a biologically-active sphingolipid, as a trigger in the onset of β-cell demise under above pathological conditions. Recent pharmacological and molecular biological evidence affirms regulatory roles for Ras-related C3 botulinum toxin substrate 1 (Rac1), a small G protein, in the islet β-cell function in health and diabetes. In this Commentary, we overviewed the emerging evidence implicating potential cross-talk between Rac1 and ceramide signaling pathways in the onset of metabolic dysregulation of the islet β-cell culminating in impaired physiological insulin secretion, loss of β-cell mass and the onset of diabetes. Further, we propose a model depicting contributory roles of defective protein lipidation (prenylation) pathway in the induction of metabolic defects in the β-cell under metabolic stress conditions. Potential avenues for the identification of novel therapeutic targets for the prevention/treatment of diabetes and its associated complications are highlighted.
Collapse
Affiliation(s)
- Anjaneyulu Kowluru
- Biomedical Research Service, John D. Dingell VA Medical Center, Wayne State University, Detroit, MI 48201, USA; Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA.
| | - Renu A Kowluru
- Department of Ophthalmology and Anatomy and Cell Biology, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
26
|
Khan S, Kowluru A. CD36 mediates lipid accumulation in pancreatic beta cells under the duress of glucolipotoxic conditions: Novel roles of lysine deacetylases. Biochem Biophys Res Commun 2017; 495:2221-2226. [PMID: 29274335 DOI: 10.1016/j.bbrc.2017.12.111] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 12/19/2017] [Indexed: 12/13/2022]
Abstract
The cluster of differentiation 36 (CD36) is implicated in the intake of long-chain fatty acids and fat storage in various cell types including the pancreatic beta cell, thus contributing to the pathogenesis of metabolic stress and diabetes. Recent evidence indicates that CD36 undergoes post-translational modifications such as acetylation-deacetylation. However, putative roles of such modifications in its functional activation and onset of beta cell dysregulation under the duress of glucolipotoxicity (GLT) remain largely unknown. Using pharmacological approaches, we validated, herein, the hypothesis that acetylation-deacetylation signaling steps are involved in CD36-mediated lipid accumulation and downstream apoptotic signaling in pancreatic beta (INS-1832/13) cells under GLT. Exposure of these cells to GLT resulted in significant lipid accumulation without affecting the CD36 expression. Sulfo-n-succinimidyl oleate (SSO), an irreversible inhibitor of CD36, significantly attenuated lipid accumulation under GLT conditions, thus implicating CD36 in this metabolic step. Furthermore, trichostatin A (TSA) or valproic acid (VPA), known inhibitors of lysine deacetylases, markedly suppressed GLT-associated lipid accumulation with no discernible effects on CD36 expression. Lastly, SSO or TSA prevented caspase 3 activation in INS-1832/13 cells exposed to GLT conditions. Based on these findings, we conclude that an acetylation-deacetylation signaling step might regulate CD36 functional activity and subsequent lipid accumulation and caspase 3 activation in pancreatic beta cells exposed to GLT conditions. Identification of specific lysine deacetylases that control CD36 function should provide novel clues for the prevention of beta-cell dysfunction under GLT.
Collapse
Affiliation(s)
- Sabbir Khan
- β-Cell Biochemistry Laboratory, John D. Dingell VA Medical Center, and Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Anjaneyulu Kowluru
- β-Cell Biochemistry Laboratory, John D. Dingell VA Medical Center, and Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, 48201, USA.
| |
Collapse
|
27
|
Kowluru A. Inappropriate movement of Rac1 contributes to glucotoxicity of the islet β-cell. Cell Cycle 2017; 16:1387-1388. [PMID: 28723259 DOI: 10.1080/15384101.2017.1345229] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Anjaneyulu Kowluru
- a β-Cell Biochemistry Laboratory, John D. Dingell VA Medical Center, Department of Pharmaceutical Sciences , Wayne State University , Detroit , MI , USA
| |
Collapse
|