1
|
Alimohammadi M, Rahimzadeh P, Khorrami R, Bonyadi M, Daneshi S, Nabavi N, Raesi R, Farani MR, Dehkhoda F, Taheriazam A, Hashemi M. A comprehensive review of the PTEN/PI3K/Akt axis in multiple myeloma: From molecular interactions to potential therapeutic targets. Pathol Res Pract 2024; 260:155401. [PMID: 38936094 DOI: 10.1016/j.prp.2024.155401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/02/2024] [Accepted: 06/09/2024] [Indexed: 06/29/2024]
Abstract
Phosphatase and tensin homolog (PTEN), phosphatidylinositol 3-kinase (PI3K), and protein kinase B (Akt) signaling pathways contribute to the development of several cancers, including multiple myeloma (MM). PTEN is a tumor suppressor that influences the PI3K/Akt/mTOR pathway, which in turn impacts vital cellular processes like growth, survival, and treatment resistance. The current study aims to present the role of PTEN and PI3K/Akt/mTOR signaling in the development of MM and its response to treatment. In addition, the molecular interactions in MM that underpin the PI3K/Akt/mTOR pathway and address potential implications for the development of successful treatment plans are also discussed in detail. We investigate their relationship to both upstream and downstream regulators, highlighting new developments in combined therapies that target the PTEN/PI3K/Akt axis to overcome drug resistance, including the use of PI3K and mitogen-activated protein kinase (MAPK) inhibitors. We also emphasize that PTEN/PI3K/Akt pathway elements may be used in MM diagnosis, prognosis, and therapeutic targets.
Collapse
Affiliation(s)
- Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran.
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Islamic Republic of Iran
| | - Mojtaba Bonyadi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Islamic Republic of Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Islamic Republic of Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia V8V 1P7, Canada
| | - Rasoul Raesi
- Department of Health Services Management, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran; Department of Nursing, Torbat Jam Faculty of Medical Sciences, Torbat Jam, Iran
| | - Marzieh Ramezani Farani
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Incheon 22212, Republic of Korea
| | - Farshid Dehkhoda
- Department of Orthopedics, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran.
| |
Collapse
|
2
|
Singh S, Saxena S, Sharma H, Paudel KR, Chakraborty A, MacLoughlin R, Oliver BG, Gupta G, Negi P, Singh SK, Dua K. Emerging role of tumor suppressing microRNAs as therapeutics in managing non-small cell lung cancer. Pathol Res Pract 2024; 256:155222. [PMID: 38452582 DOI: 10.1016/j.prp.2024.155222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024]
Abstract
Lung cancer (LC) is the second leading cause of death across the globe after breast cancer. There are two types of LC viz. small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). NSCLC accounts for approximately 85% of all LC cases. NSCLC affects smokers and people who do not smoke and mainly arises in bronchi and peripheral lungs tissue. LC is often characterized by the alterations of key genes such as EGFR, Wnt/β-catenin signaling, ALK, MET, K-Ras and p53 and downstream signaling pathways associated with tumor growth, differentiation, and survival. Numerous miRNAs have been discovered as a result of advances in biotechnology to treat LC. Various miRNAs those have been identified to treat LC include mir-Let7, mir-34a, mir-134, mir-16-1, mir-320a, mir-148a, mir-125a-5p, mir-497, mir-29, mir-133a, and mir-29a-3p. These miRNAs target various signaling pathways that are involved in pathogenesis of LC. However, due to rapid RNAse degradation, quick clearance, and heat instability, associated with necked miRNA leads to less effective therapeutic effect against LC. Therefore, to overcome these challenges nanocarrier loaded with miRNAs have been reported. They have been found promising because they have the capacity to target the tumor as well as they can penetrate the tumors deep due to nanometer size. Some of the clinical trials have been performed using miR-34a and let-7 for the treatment of LC. In the present manuscript we highlight the role miRNAs as well as their nanoparticle in tumor suppression.
Collapse
Affiliation(s)
- Shubham Singh
- Department of Biotechnology, School of Bioengineering and Biosciences, Faculty of Technology and Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Sangeeta Saxena
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Himani Sharma
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and the University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, New South Wales, Australia
| | - Amlan Chakraborty
- Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PL, UK; Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, VIC 3800, Australia
| | - Ronan MacLoughlin
- Aerogen, IDA Business Park, Dangan, Galway H91 HE94, Ireland; School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland; School of Pharmacy & Pharmaceutical Sciences, Trinity College, Dublin D02 PN40, Ireland
| | - Brian G Oliver
- Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia; School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173212, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo, NSW 2007, Australia.
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology, Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
3
|
Elkady MA, Yehia AM, Elsakka EGE, Abulsoud AI, Abdelmaksoud NM, Elshafei A, Elkhawaga SY, Ismail A, Mokhtar MM, El-Mahdy HA, Hegazy M, Elballal MS, Mohammed OA, El-Husseiny HM, Midan HM, El-Dakroury WA, Zewail MB, Abdel Mageed SS, Doghish AS. miRNAs driving diagnosis, progression, and drug resistance in multiple myeloma. Pathol Res Pract 2023; 248:154704. [PMID: 37499518 DOI: 10.1016/j.prp.2023.154704] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
Multiple myeloma (MM) is a tumor of transformed plasma cells. It's the second most common hematologic cancer after non-Hodgkin lymphoma. MM is a complex disease with many different risk factors, including ethnicity, race, and epigenetics. The microRNAs (miRNAs) are a critical epigenetic factor in multiple myeloma, influencing key aspects such as pathogenesis, prognosis, and resistance to treatment. They have the potential to assist in disease diagnosis and modulate the resistance behavior of MM towards therapeutic regimens. These characteristics could be attributed to the modulatory effects of miRNAs on some vital pathways such as NF-KB, PI3k/AKT, and P53. This review discusses the role of miRNAs in MM with a focus on their role in disease progression, diagnosis, and therapeutic resistance.
Collapse
Affiliation(s)
- Mohamed A Elkady
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Amr Mohamed Yehia
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Ahmed Elshafei
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Samy Y Elkhawaga
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Mahmoud Mohamed Mokhtar
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Maghawry Hegazy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Osama A Mohammed
- Department of Clinical Pharmacology, Faculty of Medicine, Bisha University, Bisha 61922, Saudi Arabia; Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Hussein M El-Husseiny
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt; Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Moataz B Zewail
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
4
|
Traber GM, Yu AM. RNAi-Based Therapeutics and Novel RNA Bioengineering Technologies. J Pharmacol Exp Ther 2023; 384:133-154. [PMID: 35680378 PMCID: PMC9827509 DOI: 10.1124/jpet.122.001234] [Citation(s) in RCA: 134] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 01/26/2023] Open
Abstract
RNA interference (RNAi) provides researchers with a versatile means to modulate target gene expression. The major forms of RNAi molecules, genome-derived microRNAs (miRNAs) and exogenous small interfering RNAs (siRNAs), converge into RNA-induced silencing complexes to achieve posttranscriptional gene regulation. RNAi has proven to be an adaptable and powerful therapeutic strategy where advancements in chemistry and pharmaceutics continue to bring RNAi-based drugs into the clinic. With four siRNA medications already approved by the US Food and Drug Administration (FDA), several RNAi-based therapeutics continue to advance to clinical trials with functions that closely resemble their endogenous counterparts. Although intended to enhance stability and improve efficacy, chemical modifications may increase risk of off-target effects by altering RNA structure, folding, and biologic activity away from their natural equivalents. Novel technologies in development today seek to use intact cells to yield true biologic RNAi agents that better represent the structures, stabilities, activities, and safety profiles of natural RNA molecules. In this review, we provide an examination of the mechanisms of action of endogenous miRNAs and exogenous siRNAs, the physiologic and pharmacokinetic barriers to therapeutic RNA delivery, and a summary of the chemical modifications and delivery platforms in use. We overview the pharmacology of the four FDA-approved siRNA medications (patisiran, givosiran, lumasiran, and inclisiran) as well as five siRNAs and several miRNA-based therapeutics currently in clinical trials. Furthermore, we discuss the direct expression and stable carrier-based, in vivo production of novel biologic RNAi agents for research and development. SIGNIFICANCE STATEMENT: In our review, we summarize the major concepts of RNA interference (RNAi), molecular mechanisms, and current state and challenges of RNAi drug development. We focus our discussion on the pharmacology of US Food and Drug Administration-approved RNAi medications and those siRNAs and miRNA-based therapeutics that entered the clinical investigations. Novel approaches to producing new true biological RNAi molecules for research and development are highlighted.
Collapse
Affiliation(s)
- Gavin M Traber
- Department of Biochemistry and Molecular Medicine, University of California (UC) Davis School of Medicine, Sacramento, California
| | - Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine, University of California (UC) Davis School of Medicine, Sacramento, California
| |
Collapse
|
5
|
Chen D, Yang X, Liu M, Zhang Z, Xing E. Roles of miRNA dysregulation in the pathogenesis of multiple myeloma. Cancer Gene Ther 2021; 28:1256-1268. [PMID: 33402729 PMCID: PMC8636266 DOI: 10.1038/s41417-020-00291-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/03/2020] [Accepted: 12/11/2020] [Indexed: 01/29/2023]
Abstract
Multiple myeloma (MM) is a malignant disease of plasma cells with complex pathology, causing significant morbidity due to its end-organ destruction. The outcomes of patients with myeloma have significantly improved in the past couple of decades with the introduction of novel agents, such as proteasome inhibitors, immunomodulators, and monoclonal antibodies. However, MM remains incurable and presents considerable individual heterogeneity. MicroRNAs (miRNAs) are short, endogenous noncoding RNAs of 19-22 nucleotides that regulate gene expression at the posttranscriptional level. Numerous studies have shown that miRNA deregulation is closely related to MM pathology, including tumor initiation, progression, metastasis, prognosis, and drug response, which make the complicated miRNA network an attractive and marvelous area of investigation for novel anti-MM therapeutic approaches. Herein, we mainly summarized the current knowledge on the roles of miRNAs, which are of great significance in regulating pathological factors involved in MM progressions, such as bone marrow microenvironment, methylation, immune regulation, genomic instability, and drug resistance. Meanwhile, their potential as novel prognostic biomarkers and therapeutic targets was also discussed.
Collapse
Affiliation(s)
- Dan Chen
- Department of Central Laboratory, The Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
| | - Xinhong Yang
- Department of Hematology, The Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
| | - Min Liu
- Department of Hematology, The Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
| | - Zhihua Zhang
- Department of Hematology, The Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China.
| | - Enhong Xing
- Department of Central Laboratory, The Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China.
| |
Collapse
|
6
|
Schavgoulidze A, Cazaubiel T, Perrot A, Avet-Loiseau H, Corre J. Multiple Myeloma: Heterogeneous in Every Way. Cancers (Basel) 2021; 13:cancers13061285. [PMID: 33805803 PMCID: PMC7998947 DOI: 10.3390/cancers13061285] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 01/23/2023] Open
Abstract
Simple Summary With the development of modern therapies in multiple myeloma, prognosis stratification is becoming an indispensable tool for the choice of treatment between patients. Many factors influence the prognosis in multiple myeloma; scores, mainly based on biochemical parameters and cytogenetics, have been proposed to discriminate patients. However, these scores are not perfect and fail to predict some patients’ outcomes. In this review, we describe current evaluated factors and their limitations. In the second part, we address factors with an impact on treatment escape and prognosis, but which are not available routinely yet. Abstract Multiple myeloma (MM) is a hematological malignancy characterized by the accumulation of tumor plasma cells (PCs) in the bone marrow (BM). Despite considerable advances in terms of treatment, patients’ prognosis is still very heterogeneous. Cytogenetics and minimal residual disease both have a major impact on prognosis. However, they do not explain all the heterogeneity seen in the outcomes. Their limitations are the result of the emergence of minor subclones missed at diagnosis, detected by sensible methods such as single-cell analysis, but also the non-exploration in the routine practice of the spatial heterogeneity between different clones according to the focal lesions. Moreover, biochemical parameters and cytogenetics do not reflect the whole complexity of MM. Gene expression is influenced by a tight collaboration between cytogenetic events and epigenetic regulation. The microenvironment also has an important impact on the development and the progression of the disease. Some of these determinants have been described as independent prognostic factors and could be used to more accurately predict patient prognosis and response to treatment.
Collapse
Affiliation(s)
- Anaïs Schavgoulidze
- Centre de Recherche en Cancérologie de Toulouse, Institut National de la Santé et de la Recherche, Médicale U1037, 31059 Toulouse, France; (A.S.); (A.P.); (H.A.-L.)
| | | | - Aurore Perrot
- Centre de Recherche en Cancérologie de Toulouse, Institut National de la Santé et de la Recherche, Médicale U1037, 31059 Toulouse, France; (A.S.); (A.P.); (H.A.-L.)
- Hematology Department, Institut Universitaire du Cancer de Toulouse-Oncopole, University Hospital, 31059 Toulouse, France
| | - Hervé Avet-Loiseau
- Centre de Recherche en Cancérologie de Toulouse, Institut National de la Santé et de la Recherche, Médicale U1037, 31059 Toulouse, France; (A.S.); (A.P.); (H.A.-L.)
- Unit for Genomics in Myeloma, Institut Universitaire du Cancer de Toulouse-Oncopole, University Hospital, 31059 Toulouse, France
| | - Jill Corre
- Centre de Recherche en Cancérologie de Toulouse, Institut National de la Santé et de la Recherche, Médicale U1037, 31059 Toulouse, France; (A.S.); (A.P.); (H.A.-L.)
- Unit for Genomics in Myeloma, Institut Universitaire du Cancer de Toulouse-Oncopole, University Hospital, 31059 Toulouse, France
- Correspondence:
| |
Collapse
|
7
|
Pinto V, Bergantim R, Caires HR, Seca H, Guimarães JE, Vasconcelos MH. Multiple Myeloma: Available Therapies and Causes of Drug Resistance. Cancers (Basel) 2020; 12:E407. [PMID: 32050631 PMCID: PMC7072128 DOI: 10.3390/cancers12020407] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 02/03/2020] [Accepted: 02/06/2020] [Indexed: 12/18/2022] Open
Abstract
Multiple myeloma (MM) is the second most common blood cancer. Treatments for MM include corticosteroids, alkylating agents, anthracyclines, proteasome inhibitors, immunomodulatory drugs, histone deacetylase inhibitors and monoclonal antibodies. Survival outcomes have improved substantially due to the introduction of many of these drugs allied with their rational use. Nonetheless, MM patients successively relapse after one or more treatment regimens or become refractory, mostly due to drug resistance. This review focuses on the main drugs used in MM treatment and on causes of drug resistance, including cytogenetic, genetic and epigenetic alterations, abnormal drug transport and metabolism, dysregulation of apoptosis, autophagy activation and other intracellular signaling pathways, the presence of cancer stem cells, and the tumor microenvironment. Furthermore, we highlight the areas that need to be further clarified in an attempt to identify novel therapeutic targets to counteract drug resistance in MM patients.
Collapse
Affiliation(s)
- Vanessa Pinto
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (V.P.); (R.B.); (H.R.C.); (H.S.); (J.E.G.)
- Cancer Drug Resistance Group, IPATIMUP–Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
- FCTUC–Faculty of Science and Technology of the University of Coimbra, 3030-790 Coimbra, Portugal
| | - Rui Bergantim
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (V.P.); (R.B.); (H.R.C.); (H.S.); (J.E.G.)
- Cancer Drug Resistance Group, IPATIMUP–Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
- Clinical Hematology, Hospital São João, 4200-319 Porto, Portugal
- Clinical Hematology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Hugo R. Caires
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (V.P.); (R.B.); (H.R.C.); (H.S.); (J.E.G.)
- Cancer Drug Resistance Group, IPATIMUP–Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
| | - Hugo Seca
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (V.P.); (R.B.); (H.R.C.); (H.S.); (J.E.G.)
- Cancer Drug Resistance Group, IPATIMUP–Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
| | - José E. Guimarães
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (V.P.); (R.B.); (H.R.C.); (H.S.); (J.E.G.)
- Cancer Drug Resistance Group, IPATIMUP–Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
- Clinical Hematology, Hospital São João, 4200-319 Porto, Portugal
- Clinical Hematology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - M. Helena Vasconcelos
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (V.P.); (R.B.); (H.R.C.); (H.S.); (J.E.G.)
- Cancer Drug Resistance Group, IPATIMUP–Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
- Department of Biological Sciences, FFUP-Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
8
|
EZH2 Overexpression in Multiple Myeloma: Prognostic Value, Correlation With Clinical Characteristics, and Possible Mechanisms. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2019; 19:744-750. [DOI: 10.1016/j.clml.2019.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/18/2019] [Accepted: 08/22/2019] [Indexed: 12/11/2022]
|
9
|
Abdi J, Rastgoo N, Chen Y, Chen GA, Chang H. Ectopic expression of BIRC5-targeting miR-101-3p overcomes bone marrow stroma-mediated drug resistance in multiple myeloma cells. BMC Cancer 2019; 19:975. [PMID: 31638931 PMCID: PMC6805455 DOI: 10.1186/s12885-019-6151-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 09/11/2019] [Indexed: 12/27/2022] Open
Abstract
Background Multiple myeloma (MM) cells gain protection against drugs through interaction with bone marrow stromal cells (BMSCs). This form of resistance largely accounts for resistance to therapy in MM patients which warrants further exploration to identify more potential therapeutic targets. Methods We performed miRNA/mRNA qPCR arrays and western blotting to analyze transcriptional and translational changes in MM cells co-cultured with BMSCs. Drug cytotoxicity and apoptosis in MMGFP-BMSC co-cultures were measured using fluorescence plate reader and flowcytometry, respectively. miRNA was overexpressed in MM cell lines using Lentiviral transduction, miRNA-3’UTR binding was examined using luciferase assay. Results We found that BMSCs downregulated miR-101-3p and upregulated survivin (BIRC5) in MM cells. Survivin was downregulated by miR-101-3p overexpression and found to be a direct target of miR-101-3p using 3’UTR luciferase assay. Overexpression of survivin increased viability of MM cells in the presence of anti-myeloma drugs, and miR-101-3p inhibition by anti-miR against miR-101-3p upregulated survivin. Furthermore, overexpression of miR-101-3p or silencing of survivin triggered apoptosis in MM cells and sensitized them to anti-myeloma drugs in the presence of BMSCs overcoming the stroma-induced drug resistance. Conclusions Our study demonstrates that BMSC-induced resistance to drugs is associated with survivin upregulation which is a direct target of miR-101-3p. This study also identifies miR-101-3p-survivin interaction as a druggable target involved in stroma-mediated drug resistance in MM and suggests it for developing more efficient therapeutic strategies.
Collapse
Affiliation(s)
- Jahangir Abdi
- Dept. of Laboratory Hematology, Laboratory Medicine Program, Toronto General Hospital, University Health Network, 200 Elizabeth Street, 11E-413, Toronto, Ontario, M5G 2C4, Canada
| | - Nasrin Rastgoo
- Dept. of Laboratory Hematology, Laboratory Medicine Program, Toronto General Hospital, University Health Network, 200 Elizabeth Street, 11E-413, Toronto, Ontario, M5G 2C4, Canada
| | - Yan Chen
- Dept. of Laboratory Hematology, Laboratory Medicine Program, Toronto General Hospital, University Health Network, 200 Elizabeth Street, 11E-413, Toronto, Ontario, M5G 2C4, Canada
| | - Guo An Chen
- Department of Hematology/Oncology, First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Hong Chang
- Dept. of Laboratory Hematology, Laboratory Medicine Program, Toronto General Hospital, University Health Network, 200 Elizabeth Street, 11E-413, Toronto, Ontario, M5G 2C4, Canada. .,Dept. of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Canada.
| |
Collapse
|
10
|
Busch M, Klein S, Große-Kreul J, Scheiner O, Metz K, Stephan H, Dünker N. p53, miR-34a and EMP1-Newly Identified Targets of TFF3 Signaling in Y79 Retinoblastoma Cells. Int J Mol Sci 2019; 20:ijms20174129. [PMID: 31450568 PMCID: PMC6747266 DOI: 10.3390/ijms20174129] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 12/22/2022] Open
Abstract
Trefoil factor family peptide 3 (TFF3) is supposed to have tumor suppressive functions in retinoblastoma (RB), but the functional pathway is not completely understood. In the study presented, we investigated the downstream pathway of TFF3 signaling in Y79 RB cells. Results from pG13-luciferase reporter assays and western blot analyses indicate induced p53 activity with an upregulation of miR-34a after TFF3 overexpression. Expression levels of the predicted miR-34a target epithelial membrane protein 1 (EMP1) are reduced after TFF3 overexpression. As revealed by WST-1 assay, BrdU, and DAPI cell counts viability and proliferation of Y79 cells significantly decrease following EMP1 knockdown, while apoptosis levels significantly increase. Opposite effects on Y79 cells’ growth could be shown after EMP1 overexpression. Caspase assays showed that EMP1 induced apoptosis after overexpression is at least partially caspase-3/7 dependent. Colony formation and soft agarose assays, testing for anchorage independent growth, revealed that EMP1 overexpressing Y79 cells have a significantly higher ability to form colonies. In in ovo chicken chorioallantoic membrane (CAM) assays inoculated EMP1 overexpressing Y79 cells form significantly larger CAM tumors. Moreover, miR-34a overexpression increases sensitivity of Y79 cells towards RB chemotherapeutics, however, without involvement of EMP1. In summary, the TFF3 signaling pathway in Y79 RB cells involves the activation of p53 with downstream induction of miR-34a and subsequent inhibition of EMP1.
Collapse
Affiliation(s)
- Maike Busch
- Institute of Anatomy II, Department of Neuroanatomy, Medical Faculty, University of Duisburg-Essen, 45122 Essen, Germany.
| | - Stefan Klein
- Institute of Anatomy II, Department of Neuroanatomy, Medical Faculty, University of Duisburg-Essen, 45122 Essen, Germany
| | - Jan Große-Kreul
- Institute of Anatomy II, Department of Neuroanatomy, Medical Faculty, University of Duisburg-Essen, 45122 Essen, Germany
| | - Oliver Scheiner
- Institute of Anatomy II, Department of Neuroanatomy, Medical Faculty, University of Duisburg-Essen, 45122 Essen, Germany
| | - Klaus Metz
- Institute of Pathology, Medical Faculty, University of Duisburg-Essen, 45122 Essen, Germany
| | - Harald Stephan
- Division of Haematology and Oncology, Children's Hospital, University of Duisburg-Essen, 45122 Essen, Germany
| | - Nicole Dünker
- Institute of Anatomy II, Department of Neuroanatomy, Medical Faculty, University of Duisburg-Essen, 45122 Essen, Germany
| |
Collapse
|
11
|
Yuan J, Su Z, Gu W, Shen X, Zhao Q, Shi L, Jin C, Wang X, Cong H, Ju S. MiR-19b and miR-20a suppress apoptosis, promote proliferation and induce tumorigenicity of multiple myeloma cells by targeting PTEN. Cancer Biomark 2019; 24:279-289. [PMID: 30883341 DOI: 10.3233/cbm-182182] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Multiple myeloma (MM) is a common hematological malignancy that is often associated with osteolytic lesions, anemia and renal impairment. Deregulation of miRNA has been implicated in the pathogenesis of MM. It was found in our study that miR-19b and miR-20a as members of crucial oncogene miR-17-92 cluster were differentially expressed between patients with MM and normal controls by genechip microarray, and this result was further confirmed in sera of patients with MM by qRT-PCR. The functional effect of miR-19b/20a was analyzed and results showed that miR-19b/20a promoted cell proliferation and migration, inhibited cell apoptosis and altered cell cycle in MM cells. PTEN protein expression was reduced after transfection of miR-19b/20a, suggesting that PTEN was a direct target of miR-19b/20a. In addition, over-expression of miR-19b/20a reversed the anti-proliferation and pro-apoptosis effect of PTEN in MM cells. Finally, our in vivo experiment demonstrated that lentivirus-mediated delivery of miR-20a promoted tumor growth in murine xenograft model of MM, which provide evidence that miR-20a inhibitor exerts therapeutic activity in preclinical models and supports a framework for the development of miR-19b/20a-based treatment strategies for MM patients.
Collapse
Affiliation(s)
- Jie Yuan
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | | | - Wenchao Gu
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xianjuan Shen
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | | | | | - Chunjing Jin
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xudong Wang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Hui Cong
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
12
|
Xiao X, Gu Y, Wang G, Chen S. c-Myc, RMRP, and miR-34a-5p form a positive-feedback loop to regulate cell proliferation and apoptosis in multiple myeloma. Int J Biol Macromol 2019; 122:526-537. [DOI: 10.1016/j.ijbiomac.2018.10.207] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 12/20/2022]
|
13
|
|
14
|
Yin X, Huang S, Zhu R, Fan F, Sun C, Hu Y. Identification of long non-coding RNA competing interactions and biological pathways associated with prognosis in pediatric and adolescent cytogenetically normal acute myeloid leukemia. Cancer Cell Int 2018; 18:122. [PMID: 30181715 PMCID: PMC6114287 DOI: 10.1186/s12935-018-0621-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/16/2018] [Indexed: 12/17/2022] Open
Abstract
Background LncRNAs can regulate miRNAs and mRNAs by sequestering and binding them. Indeed, many researchers have reported lncRNA mediated-competing endogenous RNAs (ceRNAs) could regulate the progression of solid tumors. However, the roles of ceRNA in acute myeloid leukemia (AML), especially in pediatric and adolescent AML, were not completely expounded. Materials and methods 27 cytogenetically normal acute myeloid leukemia (CN-AML) patients under 18 years old with corresponding clinical data were selected from the cancer genome atlas (TCGA), which was a large sample sequencing database of RNA sequencing. We constructed a survival specific ceRNA network, and investigated its associations with patients' clinical information by analyzing the data from TCGA. Results We identified survival specific lncRNAs, miRNAs and mRNAs, and constructed a survival specific ceRNA network of CN-AML patients and a weighted correlation network. Furthermore, we identified 4 biological pathways associated with OS and selected the most enriched pathway 'Transcriptional misregulation in cancer' to verify that it could accurately predict younger CN-AML patients' prognosis to guide treatment. Conclusions We successfully constructed a survival specific ceRNA network which could provide a new approach to lncRNA research in younger CN-AML. Importantly, we constructed a weighted correlation network to overcome the difficulty in biological interpretation of individual genes.
Collapse
Affiliation(s)
- Xuejiao Yin
- 1Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Sui Huang
- 1Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Ruiqi Zhu
- 1Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Fengjuan Fan
- 1Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Chunyan Sun
- 1Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China.,2Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Yu Hu
- 1Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China.,2Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan, 430022 China
| |
Collapse
|
15
|
Microenvironment drug resistance in multiple myeloma: emerging new players. Oncotarget 2018; 7:60698-60711. [PMID: 27474171 PMCID: PMC5312413 DOI: 10.18632/oncotarget.10849] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/11/2016] [Indexed: 12/31/2022] Open
Abstract
Multiple myeloma (MM) drug resistance (DR) is a multistep transformation process based on a powerful interplay between bone marrow stromal cells and MM cells that allows the latter to escape anti-myeloma therapies. Here we present an overview of the role of the bone marrow microenvironment in both soluble factors-mediated drug resistance (SFM-DR) and cell adhesion-mediated drug resistance (CAM-DR), focusing on the role of new players, namely miRNAs, exosomes and cancer-associated fibroblasts.
Collapse
|
16
|
Wang Z, Wang W, Huang K, Wang Y, Li J, Yang X. MicroRNA-34a inhibits cells proliferation and invasion by downregulating Notch1 in endometrial cancer. Oncotarget 2017; 8:111258-111270. [PMID: 29340051 PMCID: PMC5762319 DOI: 10.18632/oncotarget.22770] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 09/20/2017] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs composed of 18-25 nucleotides that regulate the expression of approximately 30% of human protein coding genes. Dysregulation of miRNAs plays a pivotal role in the initiation and progression of malignancies. Our study has shown that microRNA-34a (miR-34a) was upregulated in human endometrial cancer stem cells (ECSCs). However, it is unknown how miR-34a regulates endometrial cancer itself. Here, we report that miR-34a directly and functionally targeted Notch1. MiR-34a inhibited the proliferation, migration, invasion, EMT-associated phenotypes by downregulating Notch1 in endometrial cancer cells. Overexpression of miR-34a also suppressed tumor growth in nude mice. Importantly, further results suggested miR-34a was significantly downregulated in endometrial cancer tissues and negatively correlated with Notch1 expression. There was a significant association between decreased miR-34a expression and worse patient prognosis. Taken together, our results suggest that miR-34a plays tumor-suppressive roles in endometrial cancer through downregulating Notch1. Thus miR-34a could be a potential therapeutic target for prevention and treatment of endometrial cancer.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China.,Department of Gynecology and Obstetrics, Northwest Women's and Children's Hospital, Xi'an 710003, P. R. China
| | - Wei Wang
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Kangrong Huang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Yueling Wang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Jing Li
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Xinyuan Yang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| |
Collapse
|
17
|
Rastgoo N, Abdi J, Hou J, Chang H. Role of epigenetics-microRNA axis in drug resistance of multiple myeloma. J Hematol Oncol 2017; 10:121. [PMID: 28623912 PMCID: PMC5474298 DOI: 10.1186/s13045-017-0492-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/06/2017] [Indexed: 01/18/2023] Open
Abstract
Despite administration of novel therapies, multiple myeloma (MM) remains incurable with resistance to drugs leading to relapse in most patients. Thus, it is critical to understand the detailed mechanisms underlying the drug resistance of MM and develop more effective therapeutic strategies. Genetic abnormalities are well known to play a central role in MM pathogenesis and therapy resistance; however, epigenetic aberrations mainly affecting the patterns of DNA methylation/histone modifications of genes (especially tumor suppressors) and miRNAs have also been shown to be involved. Importantly, while epigenetic silencing of miRNAs in MM is well documented, some epigenetic markers are known to be direct targets of miRNAs particularly the recently described "epimiRNAs". Drugs targeting epigenetic modifiers (e.g., HDACs, EZH2) can sensitize MM-resistant cells to anti-myeloma drugs and reversibility of epigenetic changes makes these drugs promising therapeutic agents. Therefore, combination of miRNA mimics with inhibitors of epigenetic modifiers would be a more potent therapeutic strategy in MM patients in relapse or refractory to treatments. In this review, we will discuss the findings of recent investigations on epigenetics/miRNA regulatory axis in development of drug resistance in MM and highlight possible approaches for therapeutic applications of such interaction.
Collapse
Affiliation(s)
- Nasrin Rastgoo
- Division of Molecular and Cellular Biology, Toronto General Research Institute, Toronto, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Canada
| | - Jahangir Abdi
- Division of Molecular and Cellular Biology, Toronto General Research Institute, Toronto, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Canada
| | - Jian Hou
- Department of Hematology, Shanghai Chang Zheng Hospital, Shanghai, China
| | - Hong Chang
- Division of Molecular and Cellular Biology, Toronto General Research Institute, Toronto, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Canada
- Department of Hematology, Shanghai Chang Zheng Hospital, Shanghai, China
- Department of Laboratory Hematology and Medical Oncology, University Health Network, 200 Elizabeth Street, 11E-413, Toronto, ON M5G 2C4 Canada
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Multiple myeloma remains an incurable disease, largely due to the tumor-supportive role of the bone marrow microenvironment. Bone marrow adipose tissue (BMAT) is one component of the fertile microenvironment which is believed to contribute to myeloma progression and drug resistance, as well as participate in a vicious cycle of osteolysis and tumor growth. RECENT FINDINGS MicroRNAs (miRNAs) have recently emerged as instrumental regulators of cellular processes that enable the development and dissemination of cancer. This review highlights the intersection between two emerging research fields and pursues the scientific and clinical implications of miRNA transfer between BMAT and myeloma cells. This review provides a concise and provocative summary of the evidence to support exosome-mediated transfer of tumor-supportive miRNAs. The work may prompt researchers to better elucidate the mechanisms by which this novel means of genetic communication between tumor cells and their environment could someday yield targeted therapeutics.
Collapse
Affiliation(s)
- Luna Soley
- Maine Medical Center Research Institute, Scarborough, ME, 04074, USA
| | - Carolyne Falank
- Maine Medical Center Research Institute, Scarborough, ME, 04074, USA
| | - Michaela R Reagan
- Maine Medical Center Research Institute, Scarborough, ME, 04074, USA.
- University of Maine, Orono, ME, 04469, USA.
- Sackler School of Graduate Biomedical Sciences and School of Medicine, Tufts University, Boston, MA, 02111, USA.
| |
Collapse
|
19
|
Gao H, Wang H, Yang W. Identification of key genes and construction of microRNA–mRNA regulatory networks in multiple myeloma by integrated multiple GEO datasets using bioinformatics analysis. Int J Hematol 2017; 106:99-107. [DOI: 10.1007/s12185-017-2216-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 12/18/2022]
|
20
|
Wu L, Bai X, Xie Y, Yang Z, Yang X, Lin J, Zhu C, Wang A, Zhang H, Miao R, Wu Y, Robson SC, Zhao Y, Sang X, Zhao H. MetastamiRs: A promising choice for antihepatocellular carcinoma nucleic acid drug development. Hepatol Res 2017; 47:80-94. [PMID: 27138942 DOI: 10.1111/hepr.12737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/18/2016] [Accepted: 04/29/2016] [Indexed: 12/23/2022]
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer mortality worldwide, which can be explained at least in part by its propensity towards metastasis and the limited efficacy of adjuvant therapy. MetastamiRs are miRNAs that promote or suppress migration and metastasis of cancer cells, and their functional status is significantly correlated with HCC prognosis. Unlike targeted therapy, metastamiRs have the potential to target multiple genes and signaling pathways and dramatically suppress cancer metastasis. In this review, we discuss the regulatory role of metastamiRs in the HCC invasion-metastasis cascade. Moreover, Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis has shown that many extensively studied metastamiRs target several critical signaling pathways and these have remarkable therapeutic potential in HCC. The information reviewed here may assist in further anti-HCC miRNA drug screening and development.
Collapse
Affiliation(s)
- Liangcai Wu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| | - Xue Bai
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Xie
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhen Yang
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai, China
| | - Xiaobo Yang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianzhen Lin
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chengpei Zhu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Anqiang Wang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haohai Zhang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ruoyu Miao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Liver Center and The Transplant Institute, Departments of Medicine and Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Brookline, Massachusetts, USA
| | - Yan Wu
- Liver Center and The Transplant Institute, Departments of Medicine and Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Brookline, Massachusetts, USA
| | - Simon C Robson
- Liver Center and The Transplant Institute, Departments of Medicine and Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Brookline, Massachusetts, USA
| | - Yi Zhao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| | - Xinting Sang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haitao Zhao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Center of Translational Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
21
|
Saha MN, Abdi J, Yang Y, Chang H. MiRNA-29a as a tumor suppressor mediates PRIMA-1Met-induced anti-myeloma activity by targeting c-Myc. Oncotarget 2016; 7:7149-60. [PMID: 26771839 PMCID: PMC4872775 DOI: 10.18632/oncotarget.6880] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 01/03/2016] [Indexed: 01/01/2023] Open
Abstract
The proto-oncogene c-Myc plays substantial role in multiple myeloma (MM) pathogenesis and is considered a potential drug target. Here we provide evidence of a novel mechanism for PRIMA-1Met, a small molecule with anti-tumor activity in phase I/II clinical trial, showing that PRIMA-1Met induces apoptosis in MM cells by suppressing c-Myc and upregulating miRNA-29a. Our study further demonstrates that miRNA-29a functions as a tumor suppressor which targets c-Myc. The baseline expression of miR-29a was significantly lower in MM cell lines and MM patient samples compared to normal hematopoietic cells. In addition, ectopic expression of miRNA-29a or exposure to PRIMA-1Met reduced cell proliferation and induced apoptosis in MM cells. On the other hand, overexpression of c-Myc at least partially reverted the inhibitory effects of PRIMA-1Met or miRNA-29a overexpression suggesting the miRNA-29a/c-Myc axis mediates anti-myeloma effects of PRIMA-1Met. Importantly, intratumor delivery of miRNA-29a mimics induced regression of tumors in mouse xenograft model of MM and this effect synergized with PRIMA-1Met. Our study indicates that miRNA-29a is a tumor suppressor that plays an important role during PRIMA-1Met-induced apoptotic signaling by targeting c-Myc and provides the basis for novel therapeutic strategies using miRNA-29a mimics combined with PRIMA-1Met in MM.
Collapse
Affiliation(s)
- Manujendra N Saha
- Division of Molecular and Cellular Biology, Toronto General Research Institute, Toronto, Ontario, Canada.,Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Current address: Department of Surgery, London Health Sciences Center, London, Ontario, Canada
| | - Jahangir Abdi
- Division of Molecular and Cellular Biology, Toronto General Research Institute, Toronto, Ontario, Canada.,Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Yijun Yang
- Division of Molecular and Cellular Biology, Toronto General Research Institute, Toronto, Ontario, Canada.,Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Department of Applied Chemistry, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P. R. China
| | - Hong Chang
- Division of Molecular and Cellular Biology, Toronto General Research Institute, Toronto, Ontario, Canada.,Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Hematology and Medical Oncology, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
22
|
Xu Y, Chen B, George SK, Liu B. Downregulation of MicroRNA-152 contributes to high expression of DKK1 in multiple myeloma. RNA Biol 2016; 12:1314-22. [PMID: 26400224 DOI: 10.1080/15476286.2015.1094600] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Multiple myeloma (MM) induced bone lesion is one of the most crippling characteristics, and the MM secreted Dickkopf-1 (DKK1) has been reported to play important role in this pathologic process. However, the underlying regulation mechanisms involved in DKK1 expression are still unclear. In this study, we validated the expression patterns of microRNA (miR) 15a, 34a, 152, and 223 in MM cells and identified that miR-152 was significantly downregulated in the MM group compared with the non-MM group, and that miR-152 level was negatively correlated with the expression of DKK1 in the MM cells. Mechanistic studies showed that manipulating miR-152 artificially in MM cells led to changes in DKK-1 expression, and miR-152 blocked DKK1 transcriptional activity by binding to the 3'UTR of DKK1 mRNA. Importantly, we revealed that MM cells stably expressing miR-152 improved the chemotherapy sensitivity, and counteracted the bone disruption in an intrabone-MM mouse model. Our study contributes better understanding of the regulation mechanism of DKK-1 in MM, and opens up the potential for developing newer therapeutic strategies in the MM treatment.
Collapse
Affiliation(s)
- Yinyin Xu
- a Department of Clinical Laboratory ; Affiliated Yongchuan Hospital of Chongqing Medical University ; Chongqing , PR China.,d These authors contributed equally to this study
| | - Bingda Chen
- b Department of Neurology ; People's Hospital of Bishan District ; Bishan , Chongqing , PR China.,d These authors contributed equally to this study
| | - Suraj K George
- c Department of Hematopathology ; The University of Texas MD Anderson Cancer Center ; Houston , TX USA
| | - Beizhong Liu
- a Department of Clinical Laboratory ; Affiliated Yongchuan Hospital of Chongqing Medical University ; Chongqing , PR China
| |
Collapse
|
23
|
Identification of Long Non-Coding RNAs Deregulated in Multiple Myeloma Cells Resistant to Proteasome Inhibitors. Genes (Basel) 2016; 7:genes7100084. [PMID: 27782060 PMCID: PMC5083923 DOI: 10.3390/genes7100084] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/27/2016] [Indexed: 12/31/2022] Open
Abstract
While the clinical benefit of proteasome inhibitors (PIs) for multiple myeloma (MM) treatment remains unchallenged, dose-limiting toxicities and the inevitable emergence of drug resistance limit their long-term utility. Disease eradication is compromised by drug resistance that is either present de novo or therapy-induced, which accounts for the majority of tumor relapses and MM-related deaths. Non-coding RNAs (ncRNAs) are a broad class of RNA molecules, including long non-coding RNAs (lncRNAs), that do not encode proteins but play a major role in regulating the fundamental cellular processes that control cancer initiation, metastasis, and therapeutic resistance. While lncRNAs have recently attracted significant attention as therapeutic targets to potentially improve cancer treatment, identification of lncRNAs that are deregulated in cells resistant to PIs has not been previously addressed. We have modeled drug resistance by generating three MM cell lines with acquired resistance to either bortezomib, carfilzomib, or ixazomib. Genome-wide profiling identified lncRNAs that were significantly deregulated in all three PI-resistant cell lines relative to the drug-sensitive parental cell line. Strikingly, certain lncRNAs deregulated in the three PI-resistant cell lines were also deregulated in MM plasma cells isolated from newly diagnosed patients compared to healthy plasma cells. Taken together, these preliminary studies strongly suggest that lncRNAs represent potential therapeutic targets to prevent or overcome drug resistance. More investigations are ongoing to expand these initial studies in a greater number of MM patients to better define lncRNAs signatures that contribute to PI resistance in MM.
Collapse
|
24
|
Tandon N, Ramakrishnan V, Kumar SK. Clinical use and applications of histone deacetylase inhibitors in multiple myeloma. Clin Pharmacol 2016; 8:35-44. [PMID: 27226735 PMCID: PMC4866749 DOI: 10.2147/cpaa.s94021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The incorporation of various novel therapies has resulted in a significant survival benefit in newly diagnosed and relapsed patients with multiple myeloma (MM) over the past decade. Despite these advances, resistance to therapy leads to eventual relapse and fatal outcomes in the vast majority of patients. Hence, there is an unmet need for new safe and efficacious therapies for continued improvement in outcomes. Given the role of epigenetic aberrations in the pathogenesis and progression of MM and the success of histone deacetylase inhibitors (HDACi) in other malignancies, many HDACi have been tried in MM. Various preclinical studies helped us to understand the antimyeloma activity of different HDACi in MM as a single agent or in combination with conventional, novel, and immune therapies. The early clinical trials of HDACi depicted only modest single-agent activity, but recent studies have revealed encouraging clinical response rates in combination with other antimyeloma agents, especially proteasome inhibitors. This led to the approval of the combination of panobinostat and bortezomib for the treatment of relapsed/refractory MM patients with two prior lines of treatment by the US Food and Drug Administration. However, it remains yet to be defined how we can incorporate HDACi in the current therapeutic paradigms for MM that will help to achieve longer disease control and significant survival benefits. In addition, isoform-selective and/or class-selective HDAC inhibition to reduce unfavorable side effects needs further evaluation.
Collapse
Affiliation(s)
- Nidhi Tandon
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | - Shaji K Kumar
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
25
|
Guo L, Zhang Y, Zhang L, Huang F, Li J, Wang S. MicroRNAs, TGF-β signaling, and the inflammatory microenvironment in cancer. Tumour Biol 2016; 37:115-25. [PMID: 26563372 PMCID: PMC4841843 DOI: 10.1007/s13277-015-4374-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/03/2015] [Indexed: 12/19/2022] Open
Abstract
Inflammatory cells and mediators form a major part of the tumor microenvironment and play important roles in the regulation of cancer initiation, tumor cell proliferation, and metastasis. MicroRNAs (miRNAs) play important roles in several physiological and pathological processes, including the regulation of the inflammatory microenvironment in cancer. Transforming growth factor-β (TGF-β) is an inflammation-related cytokine that functions in both tumor suppression and promotion; however, its underlying molecular mechanisms remain unclear. Recent evidence indicates an association between miRNAs and TGF-β signaling, providing new insight into the nature of the inflammatory microenvironment in cancer. The present review is an overview of the interaction between miRNAs and inflammatory cytokines, with emphasis on the cross talk between TGF-β signaling and miRNAs and their influence on cancer cell behavior. The emerging roles of miRNAs in cancer-related inflammation and the potential to target miRNA signaling pathways for cancer therapy are also discussed.
Collapse
Affiliation(s)
- Lingling Guo
- Department of Pathology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Yongsheng Zhang
- Department of Pathology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Lifeng Zhang
- Department of Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Fengbo Huang
- Department of Pathology, The Second Affiliated Hospital of Zhejiang University, Hangzhou, 310009, China
| | - Jinfan Li
- Department of Pathology, The Second Affiliated Hospital of Zhejiang University, Hangzhou, 310009, China
| | - Shouli Wang
- Department of Pathology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China.
- Institute of Radiology and Oncology, Soochow University, Suzhou, 215006, China.
| |
Collapse
|
26
|
Mimura N, Hideshima T, Anderson KC. Novel therapeutic strategies for multiple myeloma. Exp Hematol 2015; 43:732-41. [PMID: 26118499 DOI: 10.1016/j.exphem.2015.04.010] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 04/15/2015] [Indexed: 12/23/2022]
Abstract
Multiple myeloma (MM) is a plasma-cell malignancy which remains incurable despite the recent emergence of multiple novel agents. Importantly, recent genetic and molecular analyses have revealed the complexity and heterogeneity of this disease, highlighting the need for therapeutic strategies to eliminate all clones. Moreover, the bone marrow microenvironment, including stromal cells and immune cells, plays a central role in MM pathogenesis, promoting tumor cell growth, survival, and drug resistance. New classes of agents including proteasome inhibitors, immunomodulatory drugs, monoclonal antibodies, and histone deacetylase inhibitors have shown remarkable efficacy; however, novel therapeutic approaches are still urgently needed to further improve patient outcomes. In this review, we discuss the recent advances and future strategies to ultimately develop MM therapies with curative potential.
Collapse
Affiliation(s)
- Naoya Mimura
- Department of Transfusion Medicine and Cell Therapy, Chiba University Hospital, Chiba, Japan.
| | - Teru Hideshima
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Kenneth C Anderson
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
27
|
Mahdipour M, van Tol HTA, Stout TAE, Roelen BAJ. Validating reference microRNAs for normalizing qRT-PCR data in bovine oocytes and preimplantation embryos. BMC DEVELOPMENTAL BIOLOGY 2015; 15:25. [PMID: 26062615 PMCID: PMC4464232 DOI: 10.1186/s12861-015-0075-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 06/03/2015] [Indexed: 01/09/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) are small noncoding RNAs that act as post-transcriptional regulators of gene targets. Accurate quantification of miRNA expression using validated internal controls should aid in the understanding of their role in epigenetic modification of genome function. To date, most studies that have examined miRNA expression levels have used the global mean expression of all expressed genes or the expression of reference mRNAs or nuclear RNAs for normalization. RESULTS We analyzed the suitability of a number of miRNAs as potential expression normalizers in bovine oocytes and early embryos, and porcine oocytes. The stages examined were bovine oocytes at the germinal vesicle (GV) and metaphase II stages, bovine zygotes, 2, 4 and 8 cell embryos, morulae and blastocysts, as well as porcine cumulus oocyte complexes, GV, metaphase I and II oocytes. qRT-PCR was performed to quantify expression of miR-93, miR-103, miR-26a, miR-191, miR-23b, Let-7a and U6 for bovine samples and miR-21, miR-26a, miR-93, miR-103, miR-148a, miR-182 and miR-191 for porcine oocytes. The average starting material for each sample was determined using specific standard curves for each primer set. Subsequently, geNorm and BestKeeper software were used to identify a set of stably expressed miRNAs. Stepwise removal to determine the optimum number of reference miRNAs identified miR-93 and miR-103 as the most stably expressed in bovine samples and miR-26a, miR-191 and miR-93 in porcine samples. CONCLUSIONS The combination of miR-93 and miR-103 is optimal for normalizing miRNA expression for qPCR experiments on bovine oocytes and preimplantation embryos; the preferred combination for porcine oocytes is miR-26a, miR-191 and miR-93.
Collapse
Affiliation(s)
- Mahdi Mahdipour
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584, CM, Utrecht, The Netherlands.
| | - Helena T A van Tol
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584, CM, Utrecht, The Netherlands.
| | - Tom A E Stout
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584, CM, Utrecht, The Netherlands.
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584, CM, Utrecht, The Netherlands.
| | - Bernard A J Roelen
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584, CM, Utrecht, The Netherlands.
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584, CM, Utrecht, The Netherlands.
| |
Collapse
|
28
|
Peng J, Thakur A, Zhang S, Dong Y, Wang X, Yuan R, Zhang K, Guo X. Expressions of miR-181a and miR-20a in RPMI8226 cell line and their potential as biomarkers for multiple myeloma. Tumour Biol 2015; 36:8545-52. [DOI: 10.1007/s13277-015-3600-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 05/20/2015] [Indexed: 12/26/2022] Open
|
29
|
Talley PJ, Chantry AD, Buckle CH. Genetics in myeloma: genetic technologies and their application to screening approaches in myeloma. Br Med Bull 2015; 113:15-30. [PMID: 25662536 DOI: 10.1093/bmb/ldu041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Despite advances in the treatment of multiple myeloma (MM), it remains an incurable malignant disease. Myeloma genetics is intrinsically complex, but it offers an opportunity to categorize the disease and apply a personalized medicine approach. AREAS OF AGREEMENT Research into the genetics of myeloma is moving at a fast pace and is highlighting areas and patient cohorts likely to benefit from specific treatment. Targeting residual disease is likely to be crucial to improved clinical outcome. AREAS OF CONTROVERSY Patients in clinical trials are more likely to receive genetic diagnosis than non-trial patients, for whom access is ad hoc and dependent upon regional commissioning arrangements. AREAS TIMELY FOR DEVELOPING RESEARCH Relating genetics to potential treatment pathways will become crucial for improved myeloma outcomes. Universal access to standardized genetic testing will facilitate modern personalized treatments.
Collapse
Affiliation(s)
- Polly J Talley
- Sheffield Diagnostic Genetics Service, Sheffield Children's NHS Foundation Trust, Western Bank, Sheffield S10 2TH, UK
| | - Andrew D Chantry
- Sheffield Myeloma Research Team (SMaRT), Department of Oncology, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| | - Clive H Buckle
- Sheffield Myeloma Research Team (SMaRT), Department of Oncology, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| |
Collapse
|
30
|
Marques SC, Laursen MB, Bødker JS, Kjeldsen MK, Falgreen S, Schmitz A, Bøgsted M, Johnsen HE, Dybkaer K. MicroRNAs in B-cells: from normal differentiation to treatment of malignancies. Oncotarget 2015; 6:7-25. [PMID: 25622103 PMCID: PMC4381575 DOI: 10.18632/oncotarget.3057] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 12/09/2014] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that play important post-transcriptional regulatory roles in a wide range of biological processes. They are fundamental to the normal development of cells, and evidence suggests that the deregulation of specific miRNAs is involved in malignant transformation due to their function as oncogenes or tumor suppressors. We know that miRNAs are involved in the development of normal B-cells and that different B-cell subsets express specific miRNA profiles according to their degree of differentiation. B-cell-derived malignancies contain transcription signatures reminiscent of their cell of origin. Therefore, we believe that normal and malignant B-cells share features of regulatory networks controlling differentiation and the ability to respond to treatment. The involvement of miRNAs in these processes makes them good biomarker candidates. B-cell malignancies are highly prevalent, and the poor overall survival of patients with these malignancies demands an improvement in stratification according to prognosis and therapy response, wherein we believe miRNAs may be of great importance. We have critically reviewed the literature, and here we sum up the findings of miRNA studies in hematological cancers, from the development and progression of the disease to the response to treatment, with a particular emphasis on B-cell malignancies.
Collapse
Affiliation(s)
- Sara Correia Marques
- Department of Haematology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aarhus University, Denmark
| | - Maria Bach Laursen
- Department of Haematology, Aalborg University Hospital, Aalborg, Denmark
| | - Julie Støve Bødker
- Department of Haematology, Aalborg University Hospital, Aalborg, Denmark
| | | | - Steffen Falgreen
- Department of Haematology, Aalborg University Hospital, Aalborg, Denmark
| | - Alexander Schmitz
- Department of Haematology, Aalborg University Hospital, Aalborg, Denmark
| | - Martin Bøgsted
- Department of Haematology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Denmark
| | - Hans Erik Johnsen
- Department of Haematology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, Denmark
| | - Karen Dybkaer
- Department of Haematology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Denmark
| |
Collapse
|
31
|
Abdi J, Chen G, Chang H. Drug resistance in multiple myeloma: latest findings and new concepts on molecular mechanisms. Oncotarget 2014; 4:2186-207. [PMID: 24327604 PMCID: PMC3926819 DOI: 10.18632/oncotarget.1497] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In the era of new and mostly effective therapeutic protocols, multiple myeloma still tends to be a hard-to-treat hematologic cancer. This hallmark of the disease is in fact a sequel to drug resistant phenotypes persisting initially or emerging in the course of treatment. Furthermore, the heterogeneous nature of multiple myeloma makes treating patients with the same drug challenging because finding a drugable oncogenic process common to all patients is not yet feasible, while our current knowledge of genetic/epigenetic basis of multiple myeloma pathogenesis is outstanding. Nonetheless, bone marrow microenvironment components are well known as playing critical roles in myeloma tumor cell survival and environment-mediated drug resistance happening most possibly in all myeloma patients. Generally speaking, however; real mechanisms underlying drug resistance in multiple myeloma are not completely understood. The present review will discuss the latest findings and concepts in this regard. It reviews the association of important chromosomal translocations, oncogenes (e.g. TP53) mutations and deranged signaling pathways (e.g. NFκB) with drug response in clinical and experimental investigations. It will also highlight how bone marrow microenvironment signals (Wnt, Notch) and myeloma cancer stem cells could contribute to drug resistance in multiple myeloma.
Collapse
Affiliation(s)
- Jahangir Abdi
- Dept. of Laboratory Medicine & Pathobiology, University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
32
|
Cancer and bone: A complex complex. Arch Biochem Biophys 2014; 561:159-66. [DOI: 10.1016/j.abb.2014.07.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 07/03/2014] [Accepted: 07/08/2014] [Indexed: 12/13/2022]
|
33
|
Misso G, Di Martino MT, De Rosa G, Farooqi AA, Lombardi A, Campani V, Zarone MR, Gullà A, Tagliaferri P, Tassone P, Caraglia M. Mir-34: a new weapon against cancer? MOLECULAR THERAPY-NUCLEIC ACIDS 2014; 3:e194. [PMID: 25247240 PMCID: PMC4222652 DOI: 10.1038/mtna.2014.47] [Citation(s) in RCA: 390] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 08/11/2014] [Indexed: 02/07/2023]
Abstract
The microRNA(miRNA)-34a is a key regulator of tumor suppression. It controls the
expression of a plethora of target proteins involved in cell cycle, differentiation
and apoptosis, and antagonizes processes that are necessary for basic cancer cell
viability as well as cancer stemness, metastasis, and chemoresistance. In this
review, we focus on the molecular mechanisms of miR-34a-mediated tumor suppression,
giving emphasis on the main miR-34a targets, as well as on the principal regulators
involved in the modulation of this miRNA. Moreover, we shed light on the miR-34a role
in modulating responsiveness to chemotherapy and on the phytonutrients-mediated
regulation of miR-34a expression and activity in cancer cells. Given the broad
anti-oncogenic activity of miR-34a, we also discuss the substantial benefits of a new
therapeutic concept based on nanotechnology delivery of miRNA mimics. In fact, the
replacement of oncosuppressor miRNAs provides an effective strategy against tumor
heterogeneity and the selective RNA-based delivery systems seems to be an excellent
platform for a safe and effective targeting of the tumor.
Collapse
Affiliation(s)
- Gabriella Misso
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Maria Teresa Di Martino
- Department of Experimental and Clinical Medicine, Magna Graecia University and Medical OncologyUnit, T. Campanella Cancer Center, Salvatore Venuta University Campus, Catanzaro, Italy
| | - Giuseppe De Rosa
- Department of Pharmacy, University "Federico II" of Naples, Naples, Italy
| | - Ammad Ahmad Farooqi
- Laboratory for Translational Oncology and Personalized Medicine, Rashid Latif Medical College, Lahore, Pakistan
| | - Angela Lombardi
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Virginia Campani
- Department of Pharmacy, University "Federico II" of Naples, Naples, Italy
| | - Mayra Rachele Zarone
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Annamaria Gullà
- Department of Experimental and Clinical Medicine, Magna Graecia University and Medical OncologyUnit, T. Campanella Cancer Center, Salvatore Venuta University Campus, Catanzaro, Italy
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, Magna Graecia University and Medical OncologyUnit, T. Campanella Cancer Center, Salvatore Venuta University Campus, Catanzaro, Italy
| | - Pierfrancesco Tassone
- 1] Department of Experimental and Clinical Medicine, Magna Graecia University and Medical OncologyUnit, T. Campanella Cancer Center, Salvatore Venuta University Campus, Catanzaro, Italy [2] Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, USA
| | - Michele Caraglia
- 1] Department of Experimental and Clinical Medicine, Magna Graecia University and Medical OncologyUnit, T. Campanella Cancer Center, Salvatore Venuta University Campus, Catanzaro, Italy [2] Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
34
|
Hao M, Zang M, Wendlandt E, Xu Y, An G, Gong D, Li F, Qi F, Zhang Y, Yang Y, Zhan F, Qiu L. Low serum miR-19a expression as a novel poor prognostic indicator in multiple myeloma. Int J Cancer 2014; 136:1835-44. [PMID: 25220540 DOI: 10.1002/ijc.29199] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 07/18/2014] [Accepted: 08/15/2014] [Indexed: 01/03/2023]
Abstract
Multiple myeloma (MM) is the second most common hematologic malignancy characterized by the clonal expansion of plasma cells. Despite continuing advances, novel biomarkers are needed for diagnosis and prognosis of MM. In our study, we characterized the diagnostic and prognostic potential of circulating microRNAs (miRNAs) in MM. Serum miRNA levels were analyzed in 108 newly diagnosed symptomatic MM patients and 56 healthy donors (HDs). Our analysis identified 95 dysregulated miRNAs in newly diagnosed MM patients. Of the 95 dysregulated miRNAs, dysregulation of miR-19a, miR-92a, miR-214-3p, miR-135b-5p, miR-4254, miR-3658 and miR-33b was confirmed by quantitative reverse transcription PCR (RT-qPCR). Receiver operating characteristic analysis revealed that a combination of miR-19a and miR-4254 can distinguish MM from HD with a sensitivity of 91.7% and specificity of 90.5%. Decreased expression of miR-19a was positively correlated with international staging system advancement, del(13q14) and 1q21 amplification. Furthermore, downregulation of miR-19a resulted in significantly decreased progression-free survival (PFS) and overall survival (OS). Our analysis indicated that the poor prognostic correlation of miR-19a expression was independent of genetic abnormalities in MM. Multivariate analysis revealed that miR-19a was a significant predictor of shortened PFS and OS. Interestingly, although miR-19a levels portend a poor prognosis, patients with low miR-19a levels had an improved response to bortezomib compared to those with high miR-19a profile. Patients with downregulated miR-19a experienced a significantly extended survival upon bortezomib-based therapy. These data demonstrate that the expression patterns of serum microRNAs are altered in MM, and miR-19a levels are a valuable prognostic marker to identify high-risk MM.
Collapse
Affiliation(s)
- Mu Hao
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Zhao JJ, Carrasco RD. Crosstalk between microRNA30a/b/c/d/e-5p and the canonical Wnt pathway: implications for multiple myeloma therapy. Cancer Res 2014; 74:5351-8. [PMID: 25228654 DOI: 10.1158/0008-5472.can-14-0994] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dysregulation of transcription via the Wnt/β-catenin signaling pathway underlies the pathogenesis of a wide variety of frequent human cancers. These include epithelial carcinomas such as colorectal cancer and hematologic malignancies such as multiple myeloma. Thus, the Wnt/β-catenin in pathway potentially offers an attractive target for cancer therapy. This approach, however, has thus far proved challenging because the pathway plays a number of critical roles in physiologic homeostasis, [corrected] and because drugs that broadly target the pathway have unacceptable side effects. miRNAs function as regulators of gene expression and have also been implicated in the pathogenesis of multiple myeloma and other human cancers, offering the promise of novel therapeutic approaches if they can be applied effectively in vivo. Because BCL9 is a critical transcriptional coactivator of β-catenin that is aberrantly expressed in many human cancers but is of low abundance in normal tissues, [corrected] the Wnt/β-catenin/BCL9 complex has emerged as a promising and most likely relatively safe therapeutic target in cancers with dysregulated Wnt/β-catenin activity. This review discusses recent advances in the biology of Wnt inhibitors and the appealing possibility of a functional link between BCL9 and miRNA30a/b/c/d/e-5p that could be exploited for multiple myeloma therapy.
Collapse
Affiliation(s)
- Jian-Jun Zhao
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Ruben D Carrasco
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts. Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts.
| |
Collapse
|
36
|
Feng M, Luo X, Gu C, Fei J. Seed targeting with tiny anti-miR-155 inhibits malignant progression of multiple myeloma cells. J Drug Target 2014; 23:59-66. [PMID: 25185784 DOI: 10.3109/1061186x.2014.951653] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND miR-155 acts as a ubiquitous oncogene in major classes of human cancers and is a potential target for therapeutic intervention. However, the role of miR-155 in multiple myeloma is poorly understood. METHODS To explore the role of miR-155 in multiple myeloma, we assessed the influence of tiny seed-targeting anti-miR-155 (t-anti-miR-155) on multiple myeloma cell line (RPMI-8266) viability and apoptosis in vitro. RESULTS t-anti-miR-155 significantly inhibited multiple myeloma cell proliferation, migration, and colony formation. Additionally, t-anti-miR-155 significantly increased CD19 positive cell numbers, which are novel biomarkers for multiple myeloma and suppressor of cytokine signaling 1(SOCS1) was shown to be a target gene for miR-155 in multiple myeloma. Finally, the miR-155 signaling pathway was investigated by KEGG assay. CONCLUSION miR-155 in RPMI-8266 cells is a critical oncomiR in multiple myeloma and seed-targeting t-anti-miR-155 might be a novel strategy for miR-155-based therapeutics.
Collapse
Affiliation(s)
- Maoxiao Feng
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University , Guangzhou , P.R. China
| | | | | | | |
Collapse
|
37
|
Lin JJ, Mahindra A, Santo L, Amin S, Sohani AR, Raje N. MicroRNA expression patterns in medullary and extramedullary plasmacytoma. Blood Cancer J 2014; 4:e223. [PMID: 24972152 PMCID: PMC4080212 DOI: 10.1038/bcj.2014.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- J J Lin
- Center for Multiple Myeloma, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - A Mahindra
- Center for Multiple Myeloma, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - L Santo
- Center for Multiple Myeloma, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - S Amin
- Center for Multiple Myeloma, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - A R Sohani
- Center for Multiple Myeloma, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - N Raje
- Center for Multiple Myeloma, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
38
|
Dimopoulos K, Gimsing P, Grønbæk K. The role of epigenetics in the biology of multiple myeloma. Blood Cancer J 2014; 4:e207. [PMID: 24786391 PMCID: PMC4042299 DOI: 10.1038/bcj.2014.29] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/12/2014] [Accepted: 03/31/2014] [Indexed: 12/19/2022] Open
Abstract
Several recent studies have highlighted the biological complexity of multiple myeloma (MM) that arises as a result of several disrupted cancer pathways. Apart from the central role of genetic abnormalities, epigenetic aberrations have also been shown to be important players in the development of MM, and a lot of research during the past decades has focused on the ways DNA methylation, histone modifications and noncoding RNAs contribute to the pathobiology of MM. This has led to, apart from better understanding of the disease biology, the development of epigenetic drugs, such as histone deacetylase inhibitors that are already used in clinical trials in MM with promising results. This review will present the role of epigenetic abnormalities in MM and how these can affect specific pathways, and focus on the potential of novel 'epidrugs' as future treatment modalities for MM.
Collapse
Affiliation(s)
- K Dimopoulos
- Department of Hematology, Rigshospitalet, Copenhagen, Denmark
| | - P Gimsing
- Department of Hematology, Rigshospitalet, Copenhagen, Denmark
| | - K Grønbæk
- Department of Hematology, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
39
|
Di Martino MT, Gullà A, Gallo Cantafio ME, Altomare E, Amodio N, Leone E, Morelli E, Lio SG, Caracciolo D, Rossi M, Frandsen NM, Tagliaferri P, Tassone P. In vitro and in vivo activity of a novel locked nucleic acid (LNA)-inhibitor-miR-221 against multiple myeloma cells. PLoS One 2014; 9:e89659. [PMID: 24586944 PMCID: PMC3931823 DOI: 10.1371/journal.pone.0089659] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 01/21/2014] [Indexed: 01/08/2023] Open
Abstract
Background & Aim The miR-221/222 cluster is upregulated in malignant plasma cells from multiple myeloma (MM) patients harboring the t(4;14) translocation. We previously reported that silencing of miR-221/222 by an antisense oligonucleotide induces anti-MM activity and upregulates canonical miR-221/222 targets. The in vivo anti-tumor activity occurred when miR-221/222 inhibitors were delivered directly into MM xenografts. The aim of the present study was to evaluate the anti-MM activity of a novel phosphorothioate modified backbone 13-mer locked nucleic acid (LNA)-Inhibitor-miR-221 (LNA-i-miR-221) specifically designed for systemic delivery. Methods In vitro anti-MM activity of LNA-i-miR-221 was evaluated by cell proliferation and BrdU uptake assays. In vivo studies were performed with non-obese diabetic/severe combined immunodeficient (NOD.SCID) mice bearing t(4;14) MM xenografts, which were intraperitoneally or intravenously treated with naked LNA-i-miR-221. RNA extracts from retrieved tumors were analyzed for miR-221 levels and modulation of canonical targets expression. H&E staining and immunohistochemistry were performed on retrieved tumors and mouse vital organs. Results In vitro, LNA-i-miR-221 exerted strong antagonistic activity against miR-221 and induced upregulation of the endogenous target p27Kip1. It had a marked anti-proliferative effect on t(4;14)-translocated MM cells but not on MM cells not carrying the translocation and not overexpressing miR-221. In vivo, systemic treatment with LNA-i-miR-221 triggered significant anti-tumor activity against t(4;14) MM xenografts; it also induced miR-221 downregulation, upregulated p27Kip1 and reduced Ki-67. No behavioral changes or organ-related toxicity were observed in mice as a consequence of treatments. Conclusions LNA-i-miR-221 is a highly stable, effective agent against t(4;14) MM cells, and is suitable for systemic use. These data provide the rationale for the clinical development of LNA-i-miR-221 for the treatment of MM.
Collapse
Affiliation(s)
- Maria Teresa Di Martino
- Department of Experimental and Clinical Medicine, Magna Graecia University and Medical Oncology Unit, Salvatore Venuta University Campus, Catanzaro, Italy
- T. Campanella Cancer Center, Salvatore Venuta University Campus, Catanzaro, Italy
| | - Annamaria Gullà
- Department of Experimental and Clinical Medicine, Magna Graecia University and Medical Oncology Unit, Salvatore Venuta University Campus, Catanzaro, Italy
| | - Maria Eugenia Gallo Cantafio
- Department of Experimental and Clinical Medicine, Magna Graecia University and Medical Oncology Unit, Salvatore Venuta University Campus, Catanzaro, Italy
| | - Emanuela Altomare
- Department of Experimental and Clinical Medicine, Magna Graecia University and Medical Oncology Unit, Salvatore Venuta University Campus, Catanzaro, Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University and Medical Oncology Unit, Salvatore Venuta University Campus, Catanzaro, Italy
| | - Emanuela Leone
- Department of Experimental and Clinical Medicine, Magna Graecia University and Medical Oncology Unit, Salvatore Venuta University Campus, Catanzaro, Italy
| | - Eugenio Morelli
- Department of Experimental and Clinical Medicine, Magna Graecia University and Medical Oncology Unit, Salvatore Venuta University Campus, Catanzaro, Italy
| | - Santo Giovanni Lio
- Pathology Unit, “Giovanni Paolo II” Hospital, Lamezia Terme, Catanzaro, Italy
| | - Daniele Caracciolo
- Department of Experimental and Clinical Medicine, Magna Graecia University and Medical Oncology Unit, Salvatore Venuta University Campus, Catanzaro, Italy
| | - Marco Rossi
- Department of Experimental and Clinical Medicine, Magna Graecia University and Medical Oncology Unit, Salvatore Venuta University Campus, Catanzaro, Italy
- T. Campanella Cancer Center, Salvatore Venuta University Campus, Catanzaro, Italy
| | | | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, Magna Graecia University and Medical Oncology Unit, Salvatore Venuta University Campus, Catanzaro, Italy
- T. Campanella Cancer Center, Salvatore Venuta University Campus, Catanzaro, Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Graecia University and Medical Oncology Unit, Salvatore Venuta University Campus, Catanzaro, Italy
- T. Campanella Cancer Center, Salvatore Venuta University Campus, Catanzaro, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|