1
|
Tokunaga M, Tetsumoto S, Maruoka H, Miyazaki A, Yoshikawa S, Maeda T. Extensive but Steroid-sensitive Pulmonary Infiltration by Natural Killer-large Granular Lymphocytic Leukemia. Intern Med 2025:4714-24. [PMID: 39814385 DOI: 10.2169/internalmedicine.4714-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2025] Open
Abstract
A 51-year-old woman with persistent proliferation of natural killer (NK) cells in her peripheral blood was diagnosed with NK-large granular lymphocytic leukemia (NK-LGLL). During follow-up, computed tomography revealed multiple infiltrative pulmonary lesions. A flow cytometric analysis of bronchoalveolar lavage fluid showed infiltration of NK cells, resulting in a diagnosis of pulmonary infiltration by NK-LGLL. A histological examination of thoracoscopic lung biopsy specimens supported this diagnosis. She was started on 1 mg/kg prednisolone, which resulted in a durable reduction in these lesions. This is the first report of a NK-LGLL patient with pulmonary infiltration who received medication. Furthermore, treatment with prednisolone alone was successful.
Collapse
Affiliation(s)
| | - Satoshi Tetsumoto
- Department of Respiratory Medicine and Clinical Immunology, Suita Municipal Hospital, Japan
| | - Hayato Maruoka
- Department of Clinical Laboratory, Kobe City Medical Center General Hospital, Japan
| | - Akito Miyazaki
- Department of Respiratory Medicine and Clinical Immunology, Suita Municipal Hospital, Japan
| | | | - Tetsuo Maeda
- Department of Hematology, Suita Municipal Hospital, Japan
| |
Collapse
|
2
|
Liu DL, Wang YJ, Qian SY, Ma SS, Ding MJ, Dong M, Zhang JM, Zhang MZ, Chen QJ, Zhang XD. Clinical features and prognosis of chronic natural killer cell lymphoproliferative disorders. Hematology 2024; 29:2307817. [PMID: 38319083 DOI: 10.1080/16078454.2024.2307817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 01/15/2024] [Indexed: 02/07/2024] Open
Abstract
OBJECTIVE To analyze the current treatment status and prognostic regression of the chronic NK cell lymphoproliferative disorder (CLPD-NK). METHODS We retrospectively analyzed the clinical features, treatment and prognosis of 18 patients with CLPD-NK who were treated at our Hospital between September 2016 and September 2022. RESULTS Eighteen patients were included: three patients were treated with chemotherapy, five patients underwent immune-related therapy, one patient was treated with glucocorticoids alone, five patients were administered granulocyte colony-stimulating factor, blood transfusion therapy, or anti-infection therapy, followed by observation and follow-up, and four patients were observed without treatment. Fifteen patients survived, including two patients who achieved complete remission (CR) and seven patients who achieved partial remission (PR), of whom one patient progressed to Aggressive NK-cell leukemia (ANKL) and sustained remission after multiple lines of treatment; three patients were not reviewed, of which one patient was still in active disease, three patients developed hemophagocytic syndrome during treatment and eventually died, one of them had positive Epstein-Barr virus (EBV) expression. The 5-years overall survival rate was 83%. CONCLUSION Most patients with CLPD-NK have inert progression and a good prognosis, whereas some patients have a poor prognosis after progressing to ANKL and combined with hemophagocytic syndrome. Abnormal NK cells invading the center suggest a high possibility of ANKL development, and immunosuppressants and hormones are effective treatments for this disease.
Collapse
Affiliation(s)
- Dong-Lin Liu
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yan-Jie Wang
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Si-Yu Qian
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Shan-Shan Ma
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Meng-Jie Ding
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Meng Dong
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Jie-Ming Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Ming-Zhi Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Qing-Jiang Chen
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Xu-Dong Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| |
Collapse
|
3
|
Wang Q, Huang T, Wei X. Impact of prior cancer history on the prognosis of extranodal NK/T-cell lymphoma. PLoS One 2024; 19:e0311094. [PMID: 39413080 PMCID: PMC11482683 DOI: 10.1371/journal.pone.0311094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 09/12/2024] [Indexed: 10/18/2024] Open
Abstract
Our goal was to assess the impact of prior cancer history on the prognosis of extranodal NK/T-cell lymphoma (ENKTCL). We searched the SEER database to retrospectively enroll patients with ENKTCL. The effects of cancer history on overall survival (OS) and disease-specific survival (DSS) were analyzed using the Cox model. A total of 691 patients were included, of whom 54 (7.8%) had prior histories of cancer. The most common solid malignancy was bone/soft tissue sarcoma. Most secondary ENKTCL cases occurred within 5-9 years following the first cancer diagnosis. Radiotherapy and chemotherapy had been administered to 45 and 40 patients, respectively, to treat their previous malignancies. Prior cancer history had little impact on DSS; however, the presence of prior solid cancer history, latency period of 10+ years, and prior administration of radiotherapy or chemotherapy significantly decreased OS. Prior cancer history had no effect on DSS, but survival compromised OS under specific circumstances.
Collapse
Affiliation(s)
- Qian Wang
- Department of Hematology and Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan Province, PR China
| | - Tao Huang
- Department of Breast, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan Province, PR China
| | - Xudong Wei
- Department of Hematology and Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan Province, PR China
| |
Collapse
|
4
|
Klein K, Kollmann S, Hiesinger A, List J, Kendler J, Klampfl T, Rhandawa M, Trifinopoulos J, Maurer B, Grausenburger R, Betram CA, Moriggl R, Rülicke T, Mullighan CG, Witalisz-Siepracka A, Walter W, Hoermann G, Sexl V, Gotthardt D. A lineage-specific STAT5BN642H mouse model to study NK-cell leukemia. Blood 2024; 143:2474-2489. [PMID: 38498036 PMCID: PMC11208297 DOI: 10.1182/blood.2023022655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/15/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024] Open
Abstract
ABSTRACT Patients with T- and natural killer (NK)-cell neoplasms frequently have somatic STAT5B gain-of-function mutations. The most frequent STAT5B mutation is STAT5BN642H, which is known to drive murine T-cell leukemia, although its role in NK-cell malignancies is unclear. Introduction of the STAT5BN642H mutation into human NK-cell lines enhances their potential to induce leukemia in mice. We have generated a mouse model that enables tissue-specific expression of STAT5BN642H and have selectively expressed the mutated STAT5B in hematopoietic cells (N642Hvav/+) or exclusively in NK cells (N642HNK/NK). All N642Hvav/+ mice rapidly develop an aggressive T/NKT-cell leukemia, whereas N642HNK/NK mice display an indolent NK-large granular lymphocytic leukemia (NK-LGLL) that progresses to an aggressive leukemia with age. Samples from patients with NK-cell leukemia have a distinctive transcriptional signature driven by mutant STAT5B, which overlaps with that of murine leukemic N642HNK/NK NK cells. To our knowledge, we have generated the first reliable STAT5BN642H-driven preclinical mouse model that displays an indolent NK-LGLL progressing to aggressive NK-cell leukemia. This novel in vivo tool will enable us to explore the transition from an indolent to an aggressive disease and will thus permit the study of prevention and treatment options for NK-cell malignancies.
Collapse
Affiliation(s)
- Klara Klein
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Sebastian Kollmann
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Angela Hiesinger
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Julia List
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jonatan Kendler
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Thorsten Klampfl
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Mehak Rhandawa
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jana Trifinopoulos
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Barbara Maurer
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Reinhard Grausenburger
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Christof A. Betram
- Department for Biological Sciences and Pathobiology, Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Richard Moriggl
- Department for Biological Sciences and Pathobiology, Animal Breeding and Genetics, Unit for Functional Cancer Genomics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Thomas Rülicke
- Department for Biological Sciences and Pathobiology and Ludwig Boltzmann Institute for Hematology and Oncology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Charles G. Mullighan
- Department of Pathology, Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN
| | - Agnieszka Witalisz-Siepracka
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
- Division Pharmacology, Department of Pharmacology, Physiology, and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | | | | | - Veronika Sexl
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
- University of Innsbruck, Innsbruck, Austria
| | - Dagmar Gotthardt
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
5
|
Semenzato G, Calabretto G, Barilà G, Gasparini VR, Teramo A, Zambello R. Not all LGL leukemias are created equal. Blood Rev 2023; 60:101058. [PMID: 36870881 DOI: 10.1016/j.blre.2023.101058] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023]
Abstract
Large Granular Lymphocyte (LGL) Leukemia is a rare, heterogeneous even more that once thought, chronic lymphoproliferative disorder characterized by the clonal expansion of T- or NK-LGLs that requires appropriate immunophenotypic and molecular characterization. As in many other hematological conditions, genomic features are taking research efforts one step further and are also becoming instrumental in refining discrete subsets of LGL disorders. In particular, STAT3 and STAT5B mutations may be harbored in leukemic cells and their presence has been linked to diagnosis of LGL disorders. On clinical grounds, a correlation has been established in CD8+ T-LGLL patients between STAT3 mutations and clinical features, in particular neutropenia that favors the onset of severe infections. Revisiting biological aspects, clinical features as well as current and predictable emerging treatments of these disorders, we will herein discuss why appropriate dissection of different disease variants is needed to better manage patients with LGL disorders.
Collapse
Affiliation(s)
- Gianpietro Semenzato
- University of Padova, Department of Medicine, Hematology Unit, Italy; Veneto Institute of Molecular Medicine, Padova, Italy.
| | - Giulia Calabretto
- University of Padova, Department of Medicine, Hematology Unit, Italy; Veneto Institute of Molecular Medicine, Padova, Italy
| | - Gregorio Barilà
- University of Padova, Department of Medicine, Hematology Unit, Italy; Veneto Institute of Molecular Medicine, Padova, Italy
| | - Vanessa Rebecca Gasparini
- University of Padova, Department of Medicine, Hematology Unit, Italy; Veneto Institute of Molecular Medicine, Padova, Italy
| | - Antonella Teramo
- University of Padova, Department of Medicine, Hematology Unit, Italy; Veneto Institute of Molecular Medicine, Padova, Italy.
| | - Renato Zambello
- University of Padova, Department of Medicine, Hematology Unit, Italy; Veneto Institute of Molecular Medicine, Padova, Italy.
| |
Collapse
|
6
|
The Pathologic and Genetic Characteristics of Extranodal NK/T-Cell Lymphoma. Life (Basel) 2022; 12:life12010073. [PMID: 35054466 PMCID: PMC8781285 DOI: 10.3390/life12010073] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 12/14/2022] Open
Abstract
Extranodal NK/T-cell lymphoma is a neoplasm of NK cells or cytotoxic T cells presenting in extranodal sites, most often in the nasal cavity. The typical immunophenotypes are cCD3+, sCD3-, CD4-, CD5-, CD8-, CD16-, and CD56+ with the expression of cytotoxic molecules. Tumor subsets express NK cell receptors, CD95/CD95L, CD30, MYC, and PDL1. Virtually all the tumor cells harbor the EBV genome, which plays a key role in lymphomagenesis as an epigenetic driver. EBV-encoded oncoproteins modulate the host-cell epigenetic machinery, reprogramming the viral and host epigenomes using host epigenetic modifiers. NGS analysis revealed the mutational landscape of ENKTL, predominantly involving the JAK-STAT pathway, epigenetic modifications, the RNA helicase family, the RAS/MAP kinase pathway, and tumor suppressors, which indicate an important role of these pathways and this group of genes in the lymphomagenesis of ENKTL. Recently, three molecular subtypes were proposed, the tumor-suppressor/immune-modulator (TSIM), MGA-BRDT (MB), and HDAC9-EP300-ARID1A (HEA) subtypes, and they are well-correlated with the cell of origin, EBV pattern, genomic alterations, and clinical outcomes. A future investigation into the function and interaction of discovered genes would be very helpful for better understanding the molecular pathogenesis of ENKTL and establishing better treatment strategies.
Collapse
|
7
|
Olson TL, Cheon H, Xing JC, Olson KC, Paila U, Hamele CE, Neelamraju Y, Shemo BC, Schmachtenberg M, Sundararaman SK, Toro MF, Keller CA, Farber EA, Onengut-Gumuscu S, Garrett-Bakelman FE, Hardison RC, Feith DJ, Ratan A, Loughran TP. Frequent somatic TET2 mutations in chronic NK-LGL leukemia with distinct patterns of cytopenias. Blood 2021; 138:662-673. [PMID: 33786584 PMCID: PMC8394905 DOI: 10.1182/blood.2020005831] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 03/30/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic natural killer large granular lymphocyte (NK-LGL) leukemia, also referred to as chronic lymphoproliferative disorder of NK cells, is a rare disorder defined by prolonged expansion of clonal NK cells. Similar prevalence of STAT3 mutations in chronic T-LGL and NK-LGL leukemia is suggestive of common pathogenesis. We undertook whole-genome sequencing to identify mutations unique to NK-LGL leukemia. The results were analyzed to develop a resequencing panel that was applied to 58 patients. Phosphatidylinositol 3-kinase pathway gene mutations (PIK3CD/PIK3AP1) and TNFAIP3 mutations were seen in 5% and 10% of patients, respectively. TET2 was exceptional in that mutations were present in 16 (28%) of 58 patient samples, with evidence that TET2 mutations can be dominant and exclusive to the NK compartment. Reduced-representation bisulfite sequencing revealed that methylation patterns were significantly altered in TET2 mutant samples. The promoter of TET2 and that of PTPRD, a negative regulator of STAT3, were found to be methylated in additional cohort samples, largely confined to the TET2 mutant group. Mutations in STAT3 were observed in 19 (33%) of 58 patient samples, 7 of which had concurrent TET2 mutations. Thrombocytopenia and resistance to immunosuppressive agents were uniquely observed in those patients with only TET2 mutation (Games-Howell post hoc test, P = .0074; Fisher's exact test, P = .00466). Patients with STAT3 mutation, inclusive of those with TET2 comutation, had lower hematocrit, hemoglobin, and absolute neutrophil count compared with STAT3 wild-type patients (Welch's t test, P ≤ .015). We present the discovery of TET2 mutations in chronic NK-LGL leukemia and evidence that it identifies a unique molecular subtype.
Collapse
Affiliation(s)
- Thomas L Olson
- University of Virginia Cancer Center, Charlottesville, VA
- Division of Hematology/Oncology, Department of Medicine, and
| | - HeeJin Cheon
- University of Virginia Cancer Center, Charlottesville, VA
- Division of Hematology/Oncology, Department of Medicine, and
- Medical Scientist Training Program, University of Virginia School of Medicine, Charlottesville, VA
| | - Jeffrey C Xing
- University of Virginia Cancer Center, Charlottesville, VA
- Division of Hematology/Oncology, Department of Medicine, and
- Medical Scientist Training Program, University of Virginia School of Medicine, Charlottesville, VA
| | - Kristine C Olson
- University of Virginia Cancer Center, Charlottesville, VA
- Division of Hematology/Oncology, Department of Medicine, and
| | - Umadevi Paila
- Center for Public Health Genomics, University of Virginia, Charlottesville; VA
| | - Cait E Hamele
- University of Virginia Cancer Center, Charlottesville, VA
- Division of Hematology/Oncology, Department of Medicine, and
| | - Yaseswini Neelamraju
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA
| | - Bryna C Shemo
- University of Virginia Cancer Center, Charlottesville, VA
- Division of Hematology/Oncology, Department of Medicine, and
| | - Matt Schmachtenberg
- University of Virginia Cancer Center, Charlottesville, VA
- Division of Hematology/Oncology, Department of Medicine, and
| | - Shriram K Sundararaman
- University of Virginia Cancer Center, Charlottesville, VA
- Division of Hematology/Oncology, Department of Medicine, and
| | - Mariella F Toro
- University of Virginia Cancer Center, Charlottesville, VA
- Division of Hematology/Oncology, Department of Medicine, and
| | - Cheryl A Keller
- Department of Biochemistry and Molecular Biology, Center for Computational Biology & Bioinformatics, The Pennsylvania State University, State College, PA; and
| | - Emily A Farber
- Center for Public Health Genomics, University of Virginia, Charlottesville; VA
| | | | - Francine E Garrett-Bakelman
- University of Virginia Cancer Center, Charlottesville, VA
- Division of Hematology/Oncology, Department of Medicine, and
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, Center for Computational Biology & Bioinformatics, The Pennsylvania State University, State College, PA; and
| | - David J Feith
- University of Virginia Cancer Center, Charlottesville, VA
- Division of Hematology/Oncology, Department of Medicine, and
| | - Aakrosh Ratan
- Center for Public Health Genomics, University of Virginia, Charlottesville; VA
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA
| | - Thomas P Loughran
- University of Virginia Cancer Center, Charlottesville, VA
- Division of Hematology/Oncology, Department of Medicine, and
| |
Collapse
|
8
|
Fang H, Wang W, Kadia TM, El Hussein S, Wang SA, Khoury JD. CD94 expression patterns in reactive and neoplastic T-cell and NK-cell proliferations. Leuk Res 2021; 108:106614. [PMID: 33990003 DOI: 10.1016/j.leukres.2021.106614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/24/2021] [Accepted: 05/07/2021] [Indexed: 11/24/2022]
Abstract
Lymphomas and leukemias of T-cell and NK-cell lineages are highly heterogeneous disorders and lack effective therapeutic strategies. Targeted therapies including anti-CD94 agents are currently under clinical investigation, but studies of CD94 expression on mature T/NK-cell neoplasms are limited. In this study, we investigated the landscape of CD94 protein expression in 15 patients with reactive T/NK-cell proliferations and 124 patients with various T/NK cell neoplasms. CD94 expression was detected at a high level in reactive NK-cells, with a lower level of expression in a subset of reactive CD8 + T-cells; reactive CD4 + T-cells were negative for CD94 expression. All NK-cell neoplasms surveyed had high-level CD94 expression, which was significantly higher than that in T cell neoplasms (p = 0.0174). In neoplastic T-cell proliferations, CD94 expression was positive in all 10 hepatosplenic T-cell lymphoma cases tested, with a high mean fluorescence intensity. Fifty-six percent of T-cell large granular lymphocytic leukemia cases were positive for CD94 expression in a subset of neoplastic cells. All T-cell prolymphocytic leukemia and 97 % of peripheral T-cell lymphoma cases showed no CD94 expression. Our findings demonstrate a broad range of CD94 expression among T/NK-cell neoplasms, in some at levels that suggest therapeutic vulnerability to CD94-targeted therapies.
Collapse
Affiliation(s)
- Hong Fang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wei Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tapan M Kadia
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Siba El Hussein
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sa A Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joseph D Khoury
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
9
|
Zhang J, Wang P, Yan X. Pulmonary infiltration as the initial manifestation of chronic lymphoproliferative disorder of natural killer cells: a case report and literature review. BMC Pulm Med 2021; 21:94. [PMID: 33740949 PMCID: PMC7977295 DOI: 10.1186/s12890-021-01457-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 03/04/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chronic lymphoproliferative disorder of natural killer cells (CLPD-NK) is an extremely rare haematological disease. To the best of our knowledge, pulmonary infiltration in CLPD-NK has not been reported before. Our case study aimed to present the clinical characteristics, chest computed tomography (CT) findings, and flow cytometry immunophenotyping (FCI) results of an unusual case of migratory pulmonary infiltration in a patient with CLPD-NK. CASE PRESENTATION A 51-year-old female patient was admitted to our hospital on October 8, 2019. Eight months before this visit, she had been diagnosed with pneumonia in a community hospital with 1 month of low-grade fever and had recovered after oral antibiotic administration. During follow-up, the patient presented with persistent peripheral blood (PB) lymphocytosis and ground-glass opacities on lung CT scans without any symptoms and signs or any evidence of infectious, allergic or autoimmunity pulmonary diseases. Abnormal NK cells were identified in the PB, bone marrow and bronchoalveolar lavage fluid (BALF) using FCI in our hospital. Eventually, the patient was diagnosed with pulmonary infiltration of CLPD-NK. The patient had an indolent clinical course without symptoms, hepatosplenomegaly or palpable lymphadenopathy and did not receive any therapy. The patient has remained in a good performance status 13 months after the diagnosis. CONCLUSIONS Our study described a unique case of pulmonary infiltration in a patient with CLPD-NK. The present case highlights the importance of FCI of the BALF in patients with lymphocytosis and pulmonary shadows to avoid misdiagnosis.
Collapse
Affiliation(s)
- Jinjing Zhang
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Pingping Wang
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Xiaojing Yan
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
10
|
Muñoz-García N, Jara-Acevedo M, Caldas C, Bárcena P, López A, Puig N, Alcoceba M, Fernández P, Villamor N, Flores-Montero JA, Gómez K, Lemes MA, Hernández JC, Álvarez-Twose I, Guerra JL, González M, Orfao A, Almeida J. STAT3 and STAT5B Mutations in T/NK-Cell Chronic Lymphoproliferative Disorders of Large Granular Lymphocytes (LGL): Association with Disease Features. Cancers (Basel) 2020; 12:cancers12123508. [PMID: 33255665 PMCID: PMC7760806 DOI: 10.3390/cancers12123508] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/16/2020] [Accepted: 11/22/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary STAT3 and STAT5B mutations have been identified in a subset of T and NK large granular lymphocytic leukemia (T/NK-LGLL). The aim of our study was to evaluate the frequency and type of these mutations in all different subtypes of T/NK-LGL expansions (n = 100 patients), as well as to analyze its association with biological and clinical features of the disease. We show for the first time that STAT3/5B mutations were present in all different T/NK-cell LGLL categories here studied; further, STAT3 mutations were associated with overall reduced counts of almost all normal residual populations of immune cells in blood, together with a shorter time-to-therapy vs. wild type T/NK-LGLL. These findings contribute to support the utility of the STAT3 mutation analysis for diagnostic and prognostic purposes in LGLL. Abstract STAT3 and STAT5B (STAT3/STAT5B) mutations are the most common mutations in T-cell large granular lymphocytic leukemia (T-LGLL) and chronic lymphoproliferative disorders of NK cells (CLPD-NK), but their clinical impact remains unknown. We investigated the frequency and type of STAT3/STAT5B mutations in FACS-sorted populations of expanded T/NK-LGL from 100 (82 clonal; 6 oligoclonal; 12 polyclonal) patients, and its relationship with disease features. Seventeen non-LGL T-CLPD patients and 628 age-matched healthy donors were analyzed as controls. STAT3 (n = 30) and STAT5B (n = 1) mutations were detected in 28/82 clonal T/NK-LGLL patients (34%), while absent (0/18, 0%) among oligoclonal/polyclonal LGL-lymphocytosis. Mutations were found across all diagnostic subgroups: TCD8+-LGLL, 36%; CLPD-NK, 38%; TCD4+-LGLL, 7%; Tαβ+DP-LGLL, 100%; Tαβ+DN-LGLL, 50%; Tγδ+-LGLL, 44%. STAT3-mutated T-LGLL/CLPD-NK showed overall reduced (p < 0.05) blood counts of most normal leukocyte subsets, with a higher rate (vs. nonmutated LGLL) of neutropenia (p = 0.04), severe neutropenia (p = 0.02), and cases requiring treatment (p = 0.0001), together with a shorter time-to-therapy (p = 0.0001), particularly in non-Y640F STAT3-mutated patients. These findings confirm and extend on previous observations about the high prevalence of STAT3 mutations across different subtypes of LGLL, and its association with a more marked decrease of all major blood-cell subsets and a shortened time-to-therapy.
Collapse
Affiliation(s)
- Noemí Muñoz-García
- Translational and Clinical Research Program, Centro de Investigación del Cáncer and IBMCC (CSIC—University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (N.M.-G.); (M.J.-A.); (C.C.); (P.B.); (A.L.); (J.A.F.-M.); (A.O.)
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (N.P.); (M.A.); (N.V.); (I.Á.-T.); (M.G.)
| | - María Jara-Acevedo
- Translational and Clinical Research Program, Centro de Investigación del Cáncer and IBMCC (CSIC—University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (N.M.-G.); (M.J.-A.); (C.C.); (P.B.); (A.L.); (J.A.F.-M.); (A.O.)
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (N.P.); (M.A.); (N.V.); (I.Á.-T.); (M.G.)
| | - Carolina Caldas
- Translational and Clinical Research Program, Centro de Investigación del Cáncer and IBMCC (CSIC—University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (N.M.-G.); (M.J.-A.); (C.C.); (P.B.); (A.L.); (J.A.F.-M.); (A.O.)
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (N.P.); (M.A.); (N.V.); (I.Á.-T.); (M.G.)
| | - Paloma Bárcena
- Translational and Clinical Research Program, Centro de Investigación del Cáncer and IBMCC (CSIC—University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (N.M.-G.); (M.J.-A.); (C.C.); (P.B.); (A.L.); (J.A.F.-M.); (A.O.)
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (N.P.); (M.A.); (N.V.); (I.Á.-T.); (M.G.)
| | - Antonio López
- Translational and Clinical Research Program, Centro de Investigación del Cáncer and IBMCC (CSIC—University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (N.M.-G.); (M.J.-A.); (C.C.); (P.B.); (A.L.); (J.A.F.-M.); (A.O.)
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (N.P.); (M.A.); (N.V.); (I.Á.-T.); (M.G.)
| | - Noemí Puig
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (N.P.); (M.A.); (N.V.); (I.Á.-T.); (M.G.)
- Hematology Service, University Hospital of Salamanca, Translational and Clinical Research Program, Centro de Investigación del Cáncer/IBMCC and IBSAL, 37007 Salamanca, Spain
| | - Miguel Alcoceba
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (N.P.); (M.A.); (N.V.); (I.Á.-T.); (M.G.)
- Hematology Service, University Hospital of Salamanca, Translational and Clinical Research Program, Centro de Investigación del Cáncer/IBMCC and IBSAL, 37007 Salamanca, Spain
| | - Paula Fernández
- Institut für Labormedizin, Kantonsspital, 5001 Aarau, Switzerland;
| | - Neus Villamor
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (N.P.); (M.A.); (N.V.); (I.Á.-T.); (M.G.)
- Department of Pathology, Hematopathology Unit, Hospital Clínic, IDIBAPS, 08036 Barcelona, Spain
| | - Juan A. Flores-Montero
- Translational and Clinical Research Program, Centro de Investigación del Cáncer and IBMCC (CSIC—University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (N.M.-G.); (M.J.-A.); (C.C.); (P.B.); (A.L.); (J.A.F.-M.); (A.O.)
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (N.P.); (M.A.); (N.V.); (I.Á.-T.); (M.G.)
| | - Karoll Gómez
- Hematology Service, Juan Ramón Jiménez Hospital, 21005 Huelva, Spain;
| | - María Angelina Lemes
- Hematology Service, Dr. Negrín Hospital, 35010 Las Palmas de Gran Canaria, Spain;
| | | | - Iván Álvarez-Twose
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (N.P.); (M.A.); (N.V.); (I.Á.-T.); (M.G.)
- Instituto de Estudios de Mastocitosis de Castilla La Mancha (CLMast), Virgen del Valle Hospital, 45071 Toledo, Spain
| | - Jose Luis Guerra
- Hematology Service, Virgen de la Luz Hospital, 16002 Cuenca, Spain;
| | - Marcos González
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (N.P.); (M.A.); (N.V.); (I.Á.-T.); (M.G.)
- Hematology Service, University Hospital of Salamanca, Translational and Clinical Research Program, Centro de Investigación del Cáncer/IBMCC and IBSAL, 37007 Salamanca, Spain
- Department of Nursery and Physiotherapy, University of Salamanca, 37007 Salamanca, Spain
| | - Alberto Orfao
- Translational and Clinical Research Program, Centro de Investigación del Cáncer and IBMCC (CSIC—University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (N.M.-G.); (M.J.-A.); (C.C.); (P.B.); (A.L.); (J.A.F.-M.); (A.O.)
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (N.P.); (M.A.); (N.V.); (I.Á.-T.); (M.G.)
| | - Julia Almeida
- Translational and Clinical Research Program, Centro de Investigación del Cáncer and IBMCC (CSIC—University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (N.M.-G.); (M.J.-A.); (C.C.); (P.B.); (A.L.); (J.A.F.-M.); (A.O.)
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (N.P.); (M.A.); (N.V.); (I.Á.-T.); (M.G.)
- Correspondence: ; Tel.: +34-923-294-811 (ext. 5816)
| |
Collapse
|
11
|
Abstract
Aggressive natural killer-cell leukemia (ANKL) is a rare, lethal disease with pathologic features that are underdescribed in the literature, particularly in Western nations. In addition, although data on the molecular pathogenesis of ANKL has been reported, evaluation of such data in a clinicopathologic context remains limited. Patients diagnosed with ANKL were identified retrospectively. Detailed demographic and clinicopathologic data were analyzed. We assessed novel markers by immunohistochemistry and performed targeted next-generation sequencing analysis. The study group included 9 men and 3 women with a median age at diagnosis of 47.5 years (range, 20 to 75 y). Two distinct patterns of bone marrow involvement were identified: interstitial and sinusoidal. The neoplastic cells were positive for CD56 and CD94, and negative for surface CD3, CD5, and CD57 in all cases assessed. They were also positive for CD2 (10/12), c-MYC (6/8), BCL2 (6/8), CD16 (5/7), EBER (9/12), CD7 (6/11), pSTAT3 (3/8), CD8 (2/6), PD-L1 (2/8), CD4 (2/11), CD8 (2/6), and CD158 (1/5). Aberrant p53 expression was identified in most (7/8) cases; p53 was strongly expressed in 4 cases. Conventional cytogenetic analysis showed clonal abnormalities in 5 of 12 cases. TP53 mutations were detected in 3 of 6 cases, whereas ASXL1 and TET2 mutations were each detected in 2 of 6 cases. Patients had very poor outcomes despite intensive chemotherapy, with a median survival of 2 months. ANKL exhibits 2 distinct patterns of tissue involvement. Neoplastic cells in ANKL are commonly positive for c-MYC and EBER, and they have a high frequency of p53 overexpression, frequently with corresponding TP53 mutations.
Collapse
|
12
|
Aggressive NK Cell Leukemia: Current State of the Art. Cancers (Basel) 2020; 12:cancers12102900. [PMID: 33050313 PMCID: PMC7600035 DOI: 10.3390/cancers12102900] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/18/2020] [Accepted: 09/29/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Aggressive natural killer cell leukemia (ANKL) is a rare, lethal disease that presents many diagnostic and therapeutic challenges. Recent studies have shed new light on the salient features of its molecular pathogenesis and provided further insight into the clinicopathologic spectrum of this disease. This review presents a state-of-the-art overview of ANKL, spanning its historical evolution as a distinct entity, pathobiology, and potential therapeutic vulnerabilities. Abstract Aggressive natural killer (NK) cell leukemia (ANKL) is a rare disease with a grave prognosis. Patients commonly present acutely with fever, constitutional symptoms, hepatosplenomegaly, and often disseminated intravascular coagulation or hemophagocytic syndrome. This acute clinical presentation and the variable pathologic and immunophenotypic features of ANKL overlap with other diagnostic entities, making it challenging to establish a timely and accurate diagnosis of ANKL. Since its original recognition in 1986, substantial progress in understanding this disease using traditional pathologic approaches has improved diagnostic accuracy. This progress, in turn, has facilitated the performance of recent high-throughput studies that have yielded insights into pathogenesis. Molecular abnormalities that occur in ANKL can be divided into three major groups: JAK/STAT pathway activation, epigenetic dysregulation, and impairment of TP53 and DNA repair. These high-throughput data also have provided potential therapeutic targets that promise to improve therapy and outcomes for patients with ANKL. In this review, we provide a historical context of the conception and evolution of ANKL as a disease entity, we highlight advances in diagnostic criteria to recognize this disease, and we review recent understanding of pathogenesis as well as biomarker discoveries that are providing groundwork for innovative therapies.
Collapse
|
13
|
Montes-Mojarro IA, Chen BJ, Ramirez-Ibarguen AF, Quezada-Fiallos CM, Pérez-Báez WB, Dueñas D, Casavilca-Zambrano S, Ortiz-Mayor M, Rojas-Bilbao E, García-Rivello H, Metrebian MF, Narbaitz M, Barrionuevo C, Lome-Maldonado C, Bonzheim I, Fend F, Steinhilber J, Quintanilla-Martinez L. Mutational profile and EBV strains of extranodal NK/T-cell lymphoma, nasal type in Latin America. Mod Pathol 2020; 33:781-791. [PMID: 31822801 DOI: 10.1038/s41379-019-0415-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/19/2019] [Accepted: 10/22/2019] [Indexed: 11/09/2022]
Abstract
Extranodal NK/T-cell lymphoma (ENKTL) is an Epstein-Barr virus (EBV) associated lymphoma, prevalent in Asia and Latin America. Studies in Asian cohorts have identified some recurrent gene mutations in ENKTL; however, the mutational landscape of ENKTL in Latin America is unknown. In this study, we investigated the mutational profile and EBV strains of 71 ENKTL cases from Latin America (42 from Mexico, 17 from Peru, and 12 from Argentina) and compared it with Asian cohorts. The mutational analysis was performed by next generation sequencing (NGS) using an Ion AmpliSeq™ custom panel covering for the most frequently mutated genes identified in ENKTL. STAT3 was the most frequent mutated gene (16 cases: 23%), followed by MSN (10 cases; 14%), BCOR (9 cases; 13%), DDX3X (6 cases; 8%), TP53 (6 cases; 8%), MGA (3 cases; 4%), JAK3 (2 cases; 3%), and STAT5B (1 case; 1%). Mutations in STAT3, BCOR, and DDX3X were nearly mutually exclusive, suggesting different molecular pathways involved in the pathogenesis of ENKTL; whereas mutations in MGA, MSN, and TP53 were concomitant with other mutations. Most cases (75%) carried Type A EBV without the 30-bp LMP1 gene deletion. The overall survival was significantly associated with serum LDH level, Eastern Cooperative Oncology Group (ECOG) performance status, International Prognostic Index (IPI) score, and therapy (p < 0.05), but not associated with any mutation, EBV strain or deletion in EBV LMP1 gene. In conclusion, mutational analysis of ENKTL from Latin America reveals frequent gene mutations leading to activation of the JAK-STAT pathway (25%), mostly STAT3. Compared to Asian cohorts, BCOR, DDX3X and TP53 mutations were also identified but with different frequencies. None of these mutations were associated with prognosis.
Collapse
Affiliation(s)
- Ivonne A Montes-Mojarro
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, Tübingen University Hospital, Tübingen, Germany
| | - Bo-Jung Chen
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, Tübingen University Hospital, Tübingen, Germany.,Department of Pathology, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | | | | | - Wendy B Pérez-Báez
- Department of Pathology, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Daniela Dueñas
- Department of Pathology, Instituto Nacional de Enfermedades Neoplásicas, Lima, Peru
| | | | - Marcela Ortiz-Mayor
- Department of Pathology, Hospital Ángel C. Padilla, San Miguel Tucumán, Argentina
| | - Erica Rojas-Bilbao
- Department of Pathology, Instituto de Oncología Ángel H. Roffo, Buenos Aires, Argentina
| | | | - Maria F Metrebian
- Department of Pathology, Instituto de Investigaciones Hematológicas, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Marina Narbaitz
- Department of Pathology, Instituto de Investigaciones Hematológicas, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Carlos Barrionuevo
- Department of Pathology, Instituto Nacional de Enfermedades Neoplásicas, Lima, Peru
| | | | - Irina Bonzheim
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, Tübingen University Hospital, Tübingen, Germany
| | - Falko Fend
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, Tübingen University Hospital, Tübingen, Germany
| | - Julia Steinhilber
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, Tübingen University Hospital, Tübingen, Germany
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, Tübingen University Hospital, Tübingen, Germany.
| |
Collapse
|
14
|
Gasparini VR, Binatti A, Coppe A, Teramo A, Vicenzetto C, Calabretto G, Barilà G, Barizza A, Giussani E, Facco M, Mustjoki S, Semenzato G, Zambello R, Bortoluzzi S. A high definition picture of somatic mutations in chronic lymphoproliferative disorder of natural killer cells. Blood Cancer J 2020; 10:42. [PMID: 32321919 PMCID: PMC7176632 DOI: 10.1038/s41408-020-0309-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/24/2020] [Accepted: 04/03/2020] [Indexed: 12/13/2022] Open
Abstract
The molecular pathogenesis of chronic lymphoproliferative disorder of natural killer (NK) cells (CLPD-NK) is poorly understood. Following the screening of 57 CLPD-NK patients, only five presented STAT3 mutations. WES profiling of 13 cases negative for STAT3/STAT5B mutations uncovered an average of 18 clonal, population rare and deleterious somatic variants per patient. The mutational landscape of CLPD-NK showed that most patients carry a heavy mutational burden, with major and subclonal deleterious mutations co-existing in the leukemic clone. Somatic mutations hit genes wired to cancer proliferation, survival, and migration pathways, in the first place Ras/MAPK, PI3K-AKT, in addition to JAK/STAT (PIK3R1 and PTK2). We confirmed variants with putative driver role of MAP10, MPZL1, RPS6KA1, SETD1B, TAOK2, TMEM127, and TNFRSF1A genes, and of genes linked to viral infections (DDX3X and RSF1) and DNA repair (PAXIP1). A truncating mutation of the epigenetic regulator TET2 and a variant likely abrogating PIK3R1-negative regulatory activity were validated. This study significantly furthered the view of the genes and pathways involved in CLPD-NK, indicated similarities with aggressive diseases of NK cells and detected mutated genes targetable by approved drugs, being a step forward to personalized precision medicine for CLPD-NK patients.
Collapse
Affiliation(s)
- Vanessa Rebecca Gasparini
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Andrea Binatti
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Alessandro Coppe
- Department of Women's and Children's Health, University of Padova, Padova, Italy
- Department of Biology, University of Padova, Padova, Italy
| | - Antonella Teramo
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Cristina Vicenzetto
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Giulia Calabretto
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Gregorio Barilà
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Annica Barizza
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Edoardo Giussani
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Monica Facco
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | - Gianpietro Semenzato
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova, Padova, Italy.
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy.
| | - Renato Zambello
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Stefania Bortoluzzi
- Department of Molecular Medicine, University of Padova, Padova, Italy
- CRIBI Interdepartmental Research Center for Innovative Biotechnologies (CRIBI), University of Padova, Padova, Italy
| |
Collapse
|
15
|
Epstein-Barr virus-associated T- and NK-cell lymphoproliferative diseases: an update and diagnostic approach. Pathology 2019; 52:111-127. [PMID: 31767131 DOI: 10.1016/j.pathol.2019.09.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 11/21/2022]
Abstract
Epstein-Barr virus (EBV)-positive T-cell and natural killer (NK)-cell lymphoproliferative diseases (EBV-TNKLPD) are a group of uncommon disorders characterised by EBV infection of T- and NK-cells. As a group, EBV-TNKLPD are more commonly encountered in Asians and Native Americans from Central and South America compared to Western populations. They encompass a spectrum of entities that range from non-neoplastic lesions such as EBV-associated haemophagocytic lymphohistiocytosis (EBV-HLH) to more chronic conditions with variable outcomes such as chronic active EBV infections (CAEBV) of T- and NK-cell type (cutaneous and systemic forms) and malignant diseases such as systemic EBV-positive T-cell lymphoma of childhood, aggressive NK-cell leukaemia, extranodal NK/T-cell lymphoma, nasal-type, and primary EBV-positive nodal T/NK-cell lymphoma. Due to their rarity, broad clinicopathological spectrum and significant morphological and immunophenotypic overlap, the diagnosis and precise classification of EBV-TNKLPD often pose a challenge to clinicians and pathologists. Correct classification of this group of rare diseases relies heavily on the age of onset, disease presentation, duration of symptoms and cell of origin (T- vs NK-cell lineage). In this review, we provide an update on the clinicopathological and molecular features of the various EBV-TNKLPD entities occurring in non-immunocompromised patients and present a practical algorithmic approach for the general pathologist who is confronted with these disorders in routine clinical practice.
Collapse
|
16
|
Qiu ZY, Qin R, Tian GY, Wang Y, Zhang YQ. Pathophysiologic Mechanisms And Management Of Large Granular Lymphocytic Leukemia Associated Pure Red Cell Aplasia. Onco Targets Ther 2019; 12:8229-8240. [PMID: 31632073 PMCID: PMC6781944 DOI: 10.2147/ott.s222378] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/13/2019] [Indexed: 12/31/2022] Open
Abstract
Large granular lymphocytic leukemia (LGLL) is a chronic clonal lymphoproliferative disease of mature T or NK cells, and produces a variety of hematological abnormalities. Pure red cell aplasia (PRCA) is a rare haematological disease and is one of the most common complications of LGLL. LGLL-associated PRCA may represent a relatively indolent type and may be more common than reported, but its natural history and clinical course have not been well described. The ethnic origin of the patients is an important consideration in determining the relationship between PRCA and LGLL. Guidelines and progresses for management of LGLL-associated PRCA rely on accumulation of empirical experiences, integrative analyses of several cases and clinical trials. The purpose of this review is to evaluate occurrence, possible mechanisms, diagnosis, clinical features, treatments and outcomes of LGLL-associated PRCA.
Collapse
Affiliation(s)
- Zhi-Yuan Qiu
- Department of Oncology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang 212002, Jiangsu, People's Republic of China
| | - Rong Qin
- Department of Oncology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang 212002, Jiangsu, People's Republic of China
| | - Guang-Yu Tian
- Department of Oncology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang 212002, Jiangsu, People's Republic of China
| | - Yan Wang
- Department of Oncology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang 212002, Jiangsu, People's Republic of China
| | - Ye-Qing Zhang
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu, People's Republic of China
| |
Collapse
|
17
|
A Stab in the Back: An Unusual Case of Cutaneous Neural Infiltration as a Manifestation of Chronic Lymphoproliferative Disorder of Natural Killer Cells. Am J Dermatopathol 2019; 41:378-381. [PMID: 30371512 DOI: 10.1097/dad.0000000000001280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chronic lymphoproliferative disorder of natural killer cells (CLPDNK) is a rare heterogenous indolent disorder comprising a persistent peripheral blood cell count of more than ≥2 × 10/L natural killer cells for over 6 months. We report an unusual case of cutaneous neural infiltration as a manifestation of CLPDNK. A 52-year-old woman with a background of CLPDNK was referred to dermatology with a painful rash primarily affecting her back. Skin biopsies revealed a neurotropic atypical lymphoid infiltration. Results of immunohistochemistry studies showed CD8, CD56, granzyme B, perforin positivity, and CD3 negativity in keeping with an atypical neurotropic lymphoid infiltrate consistent with cutaneous involvement by the patient's known CLPDNK. Cutaneous lesions and peripheral neuropathy in patients with CLPDNK have been reported; however, the involvement of cutaneous peripheral nerves as described in our case has not been reported before.
Collapse
|
18
|
Kawakami T, Sekiguchi N, Kobayashi J, Yamane T, Nishina S, Sakai H, Hirabayashi Y, Nakazawa H, Ishida F. STAT3 mutations in natural killer cells are associated with cytopenia in patients with chronic lymphoproliferative disorder of natural killer cells. Int J Hematol 2019; 109:563-571. [DOI: 10.1007/s12185-019-02625-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 01/10/2023]
|