1
|
Paul PS, Rathnam M, Khalili A, Cortez LM, Srinivasan M, Planel E, Cho JY, Wille H, Sim VL, Mok SA, Kar S. Temperature-Dependent Aggregation of Tau Protein Is Attenuated by Native PLGA Nanoparticles Under in vitro Conditions. Int J Nanomedicine 2025; 20:1999-2019. [PMID: 39968061 PMCID: PMC11834738 DOI: 10.2147/ijn.s494104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 02/01/2025] [Indexed: 02/20/2025] Open
Abstract
Introduction Hyperphosphorylation and aggregation of the microtubule-associated tau protein, which plays a critical role in many neurodegenerative diseases (ie, tauopathies) including Alzheimer's disease (AD), are known to be regulated by a variety of environmental factors including temperature. In this study we evaluated the effects of FDA-approved poly (D,L-lactide-co-glycolic) acid (PLGA) nanoparticles, which can inhibit amyloid-β aggregation/toxicity in cellular/animal models of AD, on temperature-dependent aggregation of 0N4R tau isoforms in vitro. Methods We have used a variety of biophysical (Thioflavin T kinetics, dynamic light scattering and asymmetric-flow field-flow fractionation), structural (fluorescence imaging and transmission electron microscopy) and biochemical (Filter-trap assay and detection of soluble protein) approaches, to evaluate the effects of native PLGA nanoparticles on the temperature-dependent tau aggregation. Results Our results show that the aggregation propensity of 0N4R tau increases significantly in a dose-dependent manner with a rise in temperature from 27°C to 40°C, as measured by lag time and aggregation rate. Additionally, the aggregation of 2N4R tau increases in a dose-dependent manner. Native PLGA significantly inhibits tau aggregation at all temperatures in a concentration-dependent manner, possibly by interacting with the aggregation-prone hydrophobic hexapeptide motifs of tau. Additionally, native PLGA is able to trigger disassembly of preformed 0N4R tau aggregates as a function of temperature from 27°C to 40°C. Conclusion These results, taken together, suggest that native PLGA nanoparticles can not only attenuate temperature-dependent tau aggregation but also promote disassembly of preformed aggregates, which increased with a rise of temperature. Given the evidence that temperature can influence tau pathology, we believe that native PLGA may have a unique potential to regulate tau abnormalities associated with AD-related pathology.
Collapse
Affiliation(s)
- Pallabi Sil Paul
- Department of Medicine (Neurology), Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, T6G 2M8, Canada
| | - Mallesh Rathnam
- Department of Medicine (Neurology), Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, T6G 2M8, Canada
| | - Aria Khalili
- Quantum and Nanotechnology Research Centre, National Research Council Canada, Edmonton, Alberta, Canada
| | - Leonardo M Cortez
- Department of Medicine (Neurology), Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, T6G 2M8, Canada
| | - Mahalashmi Srinivasan
- Department of Biochemistry, Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Emmanuel Planel
- Department of Psychiatry and Neurosciences, University of Laval, Quebec, Canada
| | - Jae-Young Cho
- Quantum and Nanotechnology Research Centre, National Research Council Canada, Edmonton, Alberta, Canada
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Holger Wille
- Department of Biochemistry, Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Valerie L Sim
- Department of Medicine (Neurology), Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, T6G 2M8, Canada
| | - Sue-Ann Mok
- Department of Biochemistry, Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Satyabrata Kar
- Department of Medicine (Neurology), Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, T6G 2M8, Canada
| |
Collapse
|
2
|
Canet G, Rocaboy E, Laliberté F, Boscher E, Guisle I, Diego-Diaz S, Fereydouni-Forouzandeh P, Whittington RA, Hébert SS, Pernet V, Planel E. Temperature-induced Artifacts in Tau Phosphorylation: Implications for Reliable Alzheimer's Disease Research. Exp Neurobiol 2023; 32:423-440. [PMID: 38196137 PMCID: PMC10789175 DOI: 10.5607/en23025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/10/2023] [Accepted: 12/19/2023] [Indexed: 01/11/2024] Open
Abstract
In preclinical research on Alzheimer's disease and related tauopathies, tau phosphorylation analysis is routinely employed in both cellular and animal models. However, recognizing the sensitivity of tau phosphorylation to various extrinsic factors, notably temperature, is vital for experimental accuracy. Hypothermia can trigger tau hyperphosphorylation, while hyperthermia leads to its dephosphorylation. Nevertheless, the rapidity of tau phosphorylation in response to unintentional temperature variations remains unknown. In cell cultures, the most significant temperature change occurs when the cells are removed from the incubator before harvesting, and in animal models, during anesthesia prior to euthanasia. In this study, we investigate the kinetics of tau phosphorylation in N2a and SH-SY5Y neuronal cell lines, as well as in mice exposed to anesthesia. We observed changes in tau phosphorylation within the few seconds upon transferring cell cultures from their 37°C incubator to room temperature conditions. However, cells placed directly on ice post-incubation exhibited negligible phosphorylation changes. In vivo, isoflurane anesthesia rapidly resulted in tau hyperphosphorylation within the few seconds needed to lose the pedal withdrawal reflex in mice. These findings emphasize the critical importance of preventing temperature variation in researches focused on tau. To ensure accurate results, we recommend avoiding anesthesia before euthanasia and promptly placing cells on ice after removal from the incubator. By controlling temperature fluctuations, the reliability and validity of tau phosphorylation studies can be significantly enhanced.
Collapse
Affiliation(s)
- Geoffrey Canet
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Laval University, Québec G1V 4G2, Canada
- Neurosciences Axis, Research Center of the CHU de Québec - Laval University, Québec G1V 4G2, Canada
| | - Emma Rocaboy
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Laval University, Québec G1V 4G2, Canada
| | - Francis Laliberté
- Neurosciences Axis, Research Center of the CHU de Québec - Laval University, Québec G1V 4G2, Canada
| | - Emmanuelle Boscher
- Neurosciences Axis, Research Center of the CHU de Québec - Laval University, Québec G1V 4G2, Canada
| | - Isabelle Guisle
- Neurosciences Axis, Research Center of the CHU de Québec - Laval University, Québec G1V 4G2, Canada
| | - Sofia Diego-Diaz
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Laval University, Québec G1V 4G2, Canada
| | | | - Robert A. Whittington
- Department of Anesthesiology and Perioperative Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Sébastien S. Hébert
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Laval University, Québec G1V 4G2, Canada
- Neurosciences Axis, Research Center of the CHU de Québec - Laval University, Québec G1V 4G2, Canada
| | - Vincent Pernet
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Laval University, Québec G1V 4G2, Canada
- Department of Neurology, Bern University Hospital, Bern 3010, Switzerland
| | - Emmanuel Planel
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Laval University, Québec G1V 4G2, Canada
- Neurosciences Axis, Research Center of the CHU de Québec - Laval University, Québec G1V 4G2, Canada
| |
Collapse
|
3
|
Sauna-like conditions or menthol treatment reduce tau phosphorylation through mild hyperthermia. Neurobiol Aging 2022; 113:118-130. [DOI: 10.1016/j.neurobiolaging.2022.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 02/02/2022] [Accepted: 02/20/2022] [Indexed: 02/08/2023]
|
4
|
Govaerts K, Lechat B, Struys T, Kremer A, Borghgraef P, Van Leuven F, Himmelreich U, Dresselaers T. Longitudinal assessment of cerebral perfusion and vascular response to hypoventilation in a bigenic mouse model of Alzheimer's disease with amyloid and tau pathology. NMR IN BIOMEDICINE 2019; 32:e4037. [PMID: 30489666 DOI: 10.1002/nbm.4037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 06/09/2023]
Abstract
Alzheimer's disease is the most common neurodegenerative disease, and many patients also present with vascular dysfunction. In this study, we aimed to assess cerebral blood flow (CBF) and cerebrovascular response (CVR) as early, pre-symptomatic (3 months of age), imaging markers in a bigenic model of Alzheimer's disease (APP.V717IxTau.P301L, biAT) and in the monogenic parental strains. We further developed our previously published combination of pulsed arterial spin labeling perfusion MRI and hypo-ventilation paradigm, which allows weaning of the mice from the ventilator. Furthermore, the commonly used isoflurane anesthesia induces vasodilation and is thereby inherently a vascular challenge. We therefore assessed perfusion differences in the mouse models under free-breathing isoflurane conditions. We report (i) that we can determine CBF and hypoventilation-based CVR under ketamine/midazolam anesthesia and wean mice from the ventilator, making it a valuable tool for assessment of CBF and CVR in mice, (ii) that biAT mice exhibit lower cortical CBF than wild-type mice at age 3 months, (iii) that CVR was increased in both biAT and APP.V717I mice but not in Tau.P301L mice, identifying the APP genotype as a strong influencer of brain CVR and (iv) that perfusion differences at baseline are masked by the widely used isoflurane anesthesia.
Collapse
Affiliation(s)
- Kristof Govaerts
- Biomedical MRI/MoSAIC, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Benoit Lechat
- LEGTEGG, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Tom Struys
- Morphology Research Group, Biomedical Research Institute, Universiteit Hasselt, Hasselt, Belgium
| | - Anna Kremer
- LEGTEGG, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Peter Borghgraef
- LEGTEGG, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Fred Van Leuven
- LEGTEGG, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Uwe Himmelreich
- Biomedical MRI/MoSAIC, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Tom Dresselaers
- Biomedical MRI/MoSAIC, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| |
Collapse
|
5
|
Zhang Q, Zhang P, Qi GJ, Zhang Z, He F, Lv ZX, Peng X, Cai HW, Li TX, Wang XM, Tian B. Cdk5 suppression blocks SIRT1 degradation via the ubiquitin-proteasome pathway in Parkinson's disease models. Biochim Biophys Acta Gen Subj 2018; 1862:1443-1451. [PMID: 29571747 DOI: 10.1016/j.bbagen.2018.03.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/16/2018] [Accepted: 03/19/2018] [Indexed: 12/18/2022]
Abstract
The NAD+-dependent protein deacetylase sirtuin 1 (SIRT1), a member of the sirtuin family, may have a neuroprotective effect in multiple neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD) and Amyotrophic lateral sclerosis (ALS). Many studies have suggested that overexpression-induced or resveratrol-treated activation of SIRT1 could significantly ameliorate several neurodegenerative diseases in mouse models. However, the type of SIRT1, protein expression levels and underlying mechanisms remain unclear, especially in PD. In this study, the results demonstrated that SIRT1 knockout markedly worsened the movement function in MPTP-lesioned animal model of PD. SIRT1 expression was found to be markedly decreased not only in environmental factor PD models, neurotoxin MPP+-treated primary culture neurons and MPTP-induced mice but also in genetic factor PD models, overexpressed α-synuclein-A30PA53T SH-SY5Y stable cell line and hm2α-SYN-39 transgenic mouse strain. Importantly, the degradation of SIRT1 during MPP+ treatment was mediated by the ubiquitin-proteasome pathway. Furthermore, the results indicated that cyclin-dependent kinase 5 (Cdk5) was also involved in the decrease of SIRT1 expression, which could be efficiently blocked by the inhibition of Cdk5. In conclusion, our findings revealed that the Cdk5-dependent ubiquitin-proteasome pathway mediated degradation of SIRT1 plays a vital role in the progression of PD.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, PR China; Key Laboratory of Neurological Diseases, Ministry of Education, 13 Hangkong Road, Wuhan, Hubei Province 430030, PR China; Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, PR China
| | - Pei Zhang
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, PR China; Key Laboratory of Neurological Diseases, Ministry of Education, 13 Hangkong Road, Wuhan, Hubei Province 430030, PR China; Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, PR China
| | - Guang-Jian Qi
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, PR China; Key Laboratory of Neurological Diseases, Ministry of Education, 13 Hangkong Road, Wuhan, Hubei Province 430030, PR China; Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, PR China
| | - Zheng Zhang
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, PR China; Key Laboratory of Neurological Diseases, Ministry of Education, 13 Hangkong Road, Wuhan, Hubei Province 430030, PR China; Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, PR China
| | - Feng He
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, PR China; Key Laboratory of Neurological Diseases, Ministry of Education, 13 Hangkong Road, Wuhan, Hubei Province 430030, PR China; Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, PR China
| | - Ze-Xi Lv
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, PR China; Key Laboratory of Neurological Diseases, Ministry of Education, 13 Hangkong Road, Wuhan, Hubei Province 430030, PR China; Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, PR China
| | - Xiang Peng
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, PR China; Key Laboratory of Neurological Diseases, Ministry of Education, 13 Hangkong Road, Wuhan, Hubei Province 430030, PR China; Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, PR China
| | - Hong-Wei Cai
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, PR China; Key Laboratory of Neurological Diseases, Ministry of Education, 13 Hangkong Road, Wuhan, Hubei Province 430030, PR China; Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, PR China
| | - Tong-Xia Li
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, PR China; Key Laboratory of Neurological Diseases, Ministry of Education, 13 Hangkong Road, Wuhan, Hubei Province 430030, PR China; Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, PR China
| | - Xue-Min Wang
- Department of Neurobiology, Southern Medical University, Guangzhou, Guangdong Province 510515, PR China
| | - Bo Tian
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, PR China; Key Laboratory of Neurological Diseases, Ministry of Education, 13 Hangkong Road, Wuhan, Hubei Province 430030, PR China; Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, PR China.
| |
Collapse
|
6
|
Almeida MC, Carrettiero DC. Hypothermia as a risk factor for Alzheimer disease. HANDBOOK OF CLINICAL NEUROLOGY 2018; 157:727-735. [PMID: 30459036 DOI: 10.1016/b978-0-444-64074-1.00044-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Alzheimer disease (AD), which is associated with chronic and progressive neurodegeneration, is the most prevalent cause of dementia linked to aging. Among the risk factors for AD, age stands as the greatest one, with the vast majority of people with AD being 65 years of age or older. Nevertheless, the pathophysiologic mechanisms underlying the link between aging and the development of AD, although not completely understood, might reveal important aspects for the understanding of this pathology. Thus, there is significant evidence that the impaired thermal homeostasis associated with normal aging leads to a variety of metabolic changes that could be associated with AD development. In this chapter, we assess the clinical and biochemical evidence implicating hypothermia as a risk factor for the development of AD and the impact of hypothermia on the two pathologic hallmarks of AD: accumulation of senile plaques of amyloid-beta and neurofibrillary tangles of aberrant hyperphosphorylated tau protein.
Collapse
Affiliation(s)
- Maria Camila Almeida
- Natural and Human Sciences Center, Federal University of ABC, São Bernardo do Campo, SP, Brazil.
| | | |
Collapse
|
7
|
Stevanovic K, Yunus A, Joly-Amado A, Gordon M, Morgan D, Gulick D, Gamsby J. Disruption of normal circadian clock function in a mouse model of tauopathy. Exp Neurol 2017; 294:58-67. [PMID: 28461004 DOI: 10.1016/j.expneurol.2017.04.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/07/2017] [Accepted: 04/27/2017] [Indexed: 01/25/2023]
Abstract
Disruption of normal circadian rhythm physiology is associated with neurodegenerative disease, which can lead to symptoms such as altered sleep cycles. In Alzheimer's disease (AD), circadian dysfunction has been attributed to β-amyloidosis. However, it is unclear whether tauopathy, another AD-associated neuropathology, can disrupt the circadian clock. We have evaluated the status of the circadian clock in a mouse model of tauopathy (Tg4510). Tg4510 mice display a long free-running period at an age when tauopathy is present, and show evidence of tauopathy in the suprachiasmatic nucleus (SCN) of the hypothalamus - the site of the master circadian clock. Additionally, cyclic expression of the core clock protein PER2 is disrupted in the hypothalamus of Tg4510 mice. Finally, disruption of the cyclic expression of PER2 and BMAL1, another core circadian clock protein, is evident in the Tg4510 hippocampus. These results demonstrate that tauopathy disrupts normal circadian clock function both at the behavioral and molecular levels, which may be attributed to the tauopathy-induced neuropathology in the SCN. Furthermore, these results establish the Tg4510 mouse line as a model to study how tauopathy disrupts normal circadian rhythm biology.
Collapse
Affiliation(s)
- Korey Stevanovic
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA; Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, USA.
| | - Amara Yunus
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA; Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, USA.
| | - Aurelie Joly-Amado
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, USA; Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, USA.
| | - Marcia Gordon
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, USA; Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, USA.
| | - David Morgan
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, USA; Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, USA.
| | - Danielle Gulick
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA; Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, USA.
| | - Joshua Gamsby
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA; Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
8
|
de Paula CAD, Santiago FE, de Oliveira ASA, Oliveira FA, Almeida MC, Carrettiero DC. The Co-chaperone BAG2 Mediates Cold-Induced Accumulation of Phosphorylated Tau in SH-SY5Y Cells. Cell Mol Neurobiol 2016; 36:593-602. [PMID: 26208804 PMCID: PMC11482429 DOI: 10.1007/s10571-015-0239-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/08/2015] [Indexed: 12/23/2022]
Abstract
Inclusions of phosphorylated tau (p-tau) are a hallmark of many neurodegenerative disorders classified as "tauopathy," of which Alzheimer's disease is the most prevalent form. Dysregulation of tau phosphorylation disrupts neuron structure and function, and hyperphosphorylated tau aggregates to form neurotoxic inclusions. The abundance of ubiquitin in tau inclusions suggests a defect in ubiquitin-mediated tau protein degradation by the proteasome. Under the temperature of 37 °C, the co-chaperone BAG2 protein targets phosphorylated tau for degradation via by a more-efficient, ubiquitin-independent pathway. In both in vivo and in vitro studies, cold exposure induces the accumulation of phosphorylated tau protein. The SH-SY5Y cell line differentiates into neuron-like cells on treatment with retinoic acid and is an established model for research on the effects of cold on tau phosphorylation. The aim of the present study was to investigate whether BAG2 mediates the cold-induced accumulation of phosphorylated tau protein. Our findings show that cold exposure causes a decrease in BAG2 expression in undifferentiated cells. Conversely, BAG2 expression is increased in differentiated cells exposed to cold. Further, undifferentiated cells exposed to cold had an increased proportion of p-tau to total tau, suggesting an accumulation of p-tau that is consistent with decreased levels of BAG2. Overexpression of BAG2 in cold-exposed undifferentiated cells restored levels of p-tau to those of 37 °C undifferentiated control. Interestingly, although BAG2 expression increased in differentiated cells, this increase was not accompanied by a decrease in the proportion of p-tau to total tau. Further, overexpression of BAG2 in cold exposed differentiated cells showed no significant difference in p-tau levels compared to 37 °C controls. Taken together, these data show that expression of BAG2 is differently regulated in a differentiation-dependent context. Our results suggest that repression of BAG2 expression or BAG2 activity by cold-sensitive pathways, as modeled in undifferentiated and differentiated cells, respectively, may be a causal factor in the accumulation of cytotoxic hyperphosphorylated tau protein via restriction of BAG2-mediated clearance of cellular p-tau.
Collapse
Affiliation(s)
| | | | | | - Fernando Augusto Oliveira
- Universidade Federal do ABC, São Bernardo do Campo, São Paulo, Brazil
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, São Paulo, Brazil
| | - Maria Camila Almeida
- Universidade Federal do ABC, São Bernardo do Campo, São Paulo, Brazil
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, São Paulo, Brazil
| | - Daniel Carneiro Carrettiero
- Universidade Federal do ABC, São Bernardo do Campo, São Paulo, Brazil.
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, São Paulo, Brazil.
| |
Collapse
|
9
|
Joly-Amado A, Serraneau KS, Brownlow M, Marín de Evsikova C, Speakman JR, Gordon MN, Morgan D. Metabolic changes over the course of aging in a mouse model of tau deposition. Neurobiol Aging 2016; 44:62-73. [PMID: 27318134 DOI: 10.1016/j.neurobiolaging.2016.04.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 04/01/2016] [Accepted: 04/18/2016] [Indexed: 12/21/2022]
Abstract
Weight loss and food intake disturbances that often precede cognitive decline and diagnosis have been extensively reported in Alzheimer's disease patients. Previously, we observed that transgenic mice overexpressing tau seemed to eat more food yet weigh less than nontransgenic littermates. Thus, the present longitudinal study measured the time course of changes in metabolic state over the lifespan of the tau depositing Tg4510 mouse model of tau deposition. Although body weight was comparable to nontransgenic littermates at 2 months of age, Tg4510 mice weighed less at older ages. This was accompanied by the accumulation of tau pathology and by dramatically increased activity in all phases of the 24-hour cycle. Resting metabolic rate was also increased at 7 months of age. At 12 months near the end of the Tg4510 lifespan, there was a wasting phase, with a considerable decrease of resting metabolic rate, although hyperactivity was maintained. These diverse changes in metabolism in a mouse model of tau deposition are discussed in the context of known changes in energy metabolism in Alzheimer's disease.
Collapse
Affiliation(s)
- Aurélie Joly-Amado
- Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, USA; Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, USA.
| | - Karisa S Serraneau
- Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, USA; Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, USA
| | - Milene Brownlow
- Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, USA; Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, USA
| | | | - John R Speakman
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang, Beijing, China
| | - Marcia N Gordon
- Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, USA; Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, USA
| | - Dave Morgan
- Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, USA; Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, USA
| |
Collapse
|
10
|
Vandal M, White PJ, Tournissac M, Tremblay C, St-Amour I, Drouin-Ouellet J, Bousquet M, Traversy MT, Planel E, Marette A, Calon F. Impaired thermoregulation and beneficial effects of thermoneutrality in the 3×Tg-AD model of Alzheimer's disease. Neurobiol Aging 2016; 43:47-57. [PMID: 27255814 DOI: 10.1016/j.neurobiolaging.2016.03.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 10/22/2022]
Abstract
The sharp rise in the incidence of Alzheimer's disease (AD) at an old age coincides with a reduction in energy metabolism and core body temperature. We found that the triple-transgenic mouse model of AD (3×Tg-AD) spontaneously develops a lower basal body temperature and is more vulnerable to a cold environment compared with age-matched controls. This was despite higher nonshivering thermogenic activity, as evidenced by brown adipose tissue norepinephrine content and uncoupling protein 1 expression. A 24-hour exposure to cold (4 °C) aggravated key neuropathologic markers of AD such as: tau phosphorylation, soluble amyloid beta concentrations, and synaptic protein loss in the cortex of 3×Tg-AD mice. Strikingly, raising the body temperature of aged 3×Tg-AD mice via exposure to a thermoneutral environment improved memory function and reduced amyloid and synaptic pathologies within a week. Our results suggest the presence of a vicious cycle between impaired thermoregulation and AD-like neuropathology, and it is proposed that correcting thermoregulatory deficits might be therapeutic in AD.
Collapse
Affiliation(s)
- Milene Vandal
- Faculté de pharmacie, Université Laval, Québec, Québec, Canada; Axe Neurosciences, Centre de recherche du CHU-Q (Pavillon CHUL), Québec, Québec, Canada; Institut sur la nutrition et les aliments fonctionnels, Université Laval, Québec, Québec, Canada
| | - Philip J White
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Duke University Medical Center, NC, USA; Faculté de medicine, Université Laval, Québec, Québec, Canada; Institut universitaire de pneumologie et de cardiologie de Québec, Québec, Québec, Canada
| | - Marine Tournissac
- Faculté de pharmacie, Université Laval, Québec, Québec, Canada; Axe Neurosciences, Centre de recherche du CHU-Q (Pavillon CHUL), Québec, Québec, Canada; Institut sur la nutrition et les aliments fonctionnels, Université Laval, Québec, Québec, Canada
| | - Cyntia Tremblay
- Axe Neurosciences, Centre de recherche du CHU-Q (Pavillon CHUL), Québec, Québec, Canada
| | - Isabelle St-Amour
- Faculté de pharmacie, Université Laval, Québec, Québec, Canada; Axe Neurosciences, Centre de recherche du CHU-Q (Pavillon CHUL), Québec, Québec, Canada; Département de Recherche et Développement, Héma-Québec, Québec, Québec, Canada
| | - Janelle Drouin-Ouellet
- Faculté de medicine, Université Laval, Québec, Québec, Canada; John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - Melanie Bousquet
- Faculté de pharmacie, Université Laval, Québec, Québec, Canada; Axe Neurosciences, Centre de recherche du CHU-Q (Pavillon CHUL), Québec, Québec, Canada; Institut sur la nutrition et les aliments fonctionnels, Université Laval, Québec, Québec, Canada
| | - Marie-Thérèse Traversy
- Faculté de pharmacie, Université Laval, Québec, Québec, Canada; Axe Neurosciences, Centre de recherche du CHU-Q (Pavillon CHUL), Québec, Québec, Canada
| | - Emmanuel Planel
- Axe Neurosciences, Centre de recherche du CHU-Q (Pavillon CHUL), Québec, Québec, Canada; Faculté de medicine, Université Laval, Québec, Québec, Canada
| | - Andre Marette
- Institut sur la nutrition et les aliments fonctionnels, Université Laval, Québec, Québec, Canada; Faculté de medicine, Université Laval, Québec, Québec, Canada; Institut universitaire de pneumologie et de cardiologie de Québec, Québec, Québec, Canada
| | - Frederic Calon
- Faculté de pharmacie, Université Laval, Québec, Québec, Canada; Axe Neurosciences, Centre de recherche du CHU-Q (Pavillon CHUL), Québec, Québec, Canada; Institut sur la nutrition et les aliments fonctionnels, Université Laval, Québec, Québec, Canada.
| |
Collapse
|
11
|
Carrettiero DC, Santiago FE, Motzko-Soares ACP, Almeida MC. Temperature and toxic Tau in Alzheimer's disease: new insights. Temperature (Austin) 2015; 2:491-8. [PMID: 27227069 PMCID: PMC4843920 DOI: 10.1080/23328940.2015.1096438] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 09/15/2015] [Accepted: 09/15/2015] [Indexed: 12/31/2022] Open
Abstract
Alzheimer's disease (AD), the most common dementia in the elderly, is characterized by cognitive impairment and severe autonomic symptoms such as disturbance in core body temperature (Tc), which may be predictors or early events in AD onset. Inclusions of phosphorylated Tau (p-Tau) are a hallmark of AD and other neurodegenerative disorders called “Tauopathies.” Animal and human studies show that anesthesia augments p-Tau levels through reduction of Tc, with implications for AD. Additionally, hypothermia impairs memory and cognitive function. The molecular networks related to Tc that are associated with AD remain poorly characterized. Under physiological conditions, Tau binds microtubules, promoting their assembly and stability. The dynamically regulated Tau-microtubule interaction plays an important role in structural remodeling of the cytoskeleton, having important functions in neuronal plasticity and memory in the hippocampus. Hypothermia-induced increases in p-Tau levels are significant, with an 80% increase for each degree Celsius below normothermic conditions. Although the effects of temperature on Tau phosphorylation are evident, its effects on p-Tau degradation remain poorly understoodWe review information concerning the mechanisms of Tau regulation of neuron plasticity via its effects on microtubule dynamics, with focus on pathways regulating the abundance of phosphorylated Tau species. We highlight the effects of temperature on molecular mechanisms influencing the development of Tau-related diseases. Specifically, we argue that cold might preferentially affects central nervous system structures that are highly reliant upon plasticity, such as the hippocampus, and that the effect of cold on Tau phosphorylation may constitute a pathology-initiating trigger leading to neurodegeneration.
Collapse
Affiliation(s)
- Daniel Carneiro Carrettiero
- Graduate Program in Neuroscience and Cognition; Universidade Federal do ABC; São Bernardo do Campo, Brasil; Center for Natural Sciences and Humanities; Universidade Federal do ABC; São Bernardo do Campo, Brasil
| | - Fernando Enrique Santiago
- Graduate Program in Neuroscience and Cognition; Universidade Federal do ABC; São Bernardo do Campo , Brasil
| | | | - Maria Camila Almeida
- Graduate Program in Neuroscience and Cognition; Universidade Federal do ABC; São Bernardo do Campo, Brasil; Center for Natural Sciences and Humanities; Universidade Federal do ABC; São Bernardo do Campo, Brasil
| |
Collapse
|