1
|
Udoh UG, Zheng K, Bruno JR, Hunt JE, Pratt KG. Distinct Developmental Programs Displayed by the Xenopus Tadpole Accessory Optic System and Retinotectal Projection. Dev Neurobiol 2025; 85:e22968. [PMID: 40342272 DOI: 10.1002/dneu.22968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/03/2025] [Accepted: 04/08/2025] [Indexed: 05/11/2025]
Abstract
The retinotectal projection, the direct synapse between retinal ganglion cells (RGCs) of the eye and tectal neurons of the optic tectum, is a major component of the amphibian visual system. A model of circuit formation, this projection has been studied in detail. There are, however, other retinorecipient targets that also comprise the amphibian visual system such as the pretectum and ventral midbrain tegmentum. Understanding how these other components of the visual system form and function will lead to a more comprehensive understanding of how the visual system, as a whole, assembles and functions. Toward this aim, here we describe the functional development of the Xenopus tadpole accessory optic system (AOS), a direct synaptic connection between RGC axons and the basal optic nucleus of the midbrain tegmentum. The AOS is highly conserved across vertebrates. It functions as the sensory side of the optokinetic and optomotor reflexes, compensatory eye and body movements, respectively, that stabilize the visual scene as the organism moves through it. Using an isolated brain preparation and whole-cell electrophysiological approaches, we compared the development of the AOS and retinotectal projection. We found that these two retinofugal projections display distinct developmental programs, which appear to mirror their different functions. Retinotectal synapses moved through a dynamic phase of previously described NMDA receptor-dependent refinement, a process that is known to sharpen the retinotopic map and thereby visual acuity. In contrast, the AOS synapse appeared more stable and activity independent across development, indicative of a hardwired circuit, built to support reflexive optic behaviors.
Collapse
Affiliation(s)
- Uwemedimo G Udoh
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, USA
- Program in Neuroscience, University of Wyoming, Laramie, Wyoming, USA
| | - Kaiyuan Zheng
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, USA
- Program in Neuroscience, University of Wyoming, Laramie, Wyoming, USA
| | - John R Bruno
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, USA
| | - Jasper E Hunt
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Kara G Pratt
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, USA
- Program in Neuroscience, University of Wyoming, Laramie, Wyoming, USA
| |
Collapse
|
2
|
McKeown CR, Ta AC, Marshall CL, McLain NJ, Archuleta KJ, Cline HT. X-Tracker: Automated Analysis of Xenopus Tadpole Visual Avoidance Behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617688. [PMID: 39416226 PMCID: PMC11482948 DOI: 10.1101/2024.10.10.617688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Xenopus laevis tadpoles exhibit an avoidance behavior when they encounter a moving visual stimulus. A visual avoidance event occurs when a moving object approaches the eye of a free-swimming animal at an approximately 90-degree angle and the animal turns in response to the encounter. Analysis of this behavior requires tracking both the free-swimming animal and the moving visual stimulus both prior to and after the encounter. Previous automated tracking software does not discriminate the moving animal from the moving stimulus, requiring time-consuming manual analysis. Here we present X-Tracker, an automated behavior tracking code that can detect and discriminate moving visual stimuli and free-swimming animals and score encounters and avoidance events. X-Tracker is as accurate as human analysis without the human time commitment. We also present software improvements to our previous visual stimulus presentation and image capture that optimize videos for automated analysis, and hardware improvements that increase the number of animal-stimulus encounters. X-Tracker is a high throughput, unbiased, and significant time-saving analysis system that will greatly facilitate visual avoidance behavior analysis of Xenopus laevis tadpoles, and potentially other free-swimming organisms. The tool is available at https://github.com/ClineLab/Tadpole-Behavior-Automation.
Collapse
Affiliation(s)
| | - Aaron C Ta
- Department of Neuroscience, Scripps Research, La Jolla, CA, USA
| | | | | | | | - Hollis T Cline
- Department of Neuroscience, Scripps Research, La Jolla, CA, USA
| |
Collapse
|
3
|
Thompson AC, Aizenman CD. Characterization of Na + currents regulating intrinsic excitability of optic tectal neurons. Life Sci Alliance 2024; 7:e202302232. [PMID: 37918964 PMCID: PMC10622587 DOI: 10.26508/lsa.202302232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023] Open
Abstract
Developing neurons adapt their intrinsic excitability to maintain stable output despite changing synaptic input. The mechanisms behind this process remain unclear. In this study, we examined Xenopus optic tectal neurons and found that the expressions of Nav1.1 and Nav1.6 voltage-gated Na+ channels are regulated during changes in intrinsic excitability, both during development and becsuse of changes in visual experience. Using whole-cell electrophysiology, we demonstrate the existence of distinct, fast, persistent, and resurgent Na+ currents in the tectum, and show that these Na+ currents are co-regulated with changes in Nav channel expression. Using antisense RNA to suppress the expression of specific Nav subunits, we found that up-regulation of Nav1.6 expression, but not Nav1.1, was necessary for experience-dependent increases in Na+ currents and intrinsic excitability. Furthermore, this regulation was also necessary for normal development of sensory guided behaviors. These data suggest that the regulation of Na+ currents through the modulation of Nav1.6 expression, and to a lesser extent Nav1.1, plays a crucial role in controlling the intrinsic excitability of tectal neurons and guiding normal development of the tectal circuitry.
Collapse
|
4
|
Del Rio R, Serrano RG, Gomez E, Martinez JC, Edward MA, Santos RA, Diaz KS, Cohen-Cory S. Cell-autonomous and differential endocannabinoid signaling impacts the development of presynaptic retinal ganglion cell axon connectivity in vivo. Front Synaptic Neurosci 2023; 15:1176864. [PMID: 37252636 PMCID: PMC10213524 DOI: 10.3389/fnsyn.2023.1176864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023] Open
Abstract
Cannabis exposure during gestation evokes significant molecular modifications to neurodevelopmental programs leading to neurophysiological and behavioral abnormalities in humans. The main neuronal receptor for Δ9-tetrahydrocannabinol (THC) is the type-1 cannabinoid receptor CB1R, one of the most abundant G-protein-coupled receptors in the nervous system. While THC is the major psychoactive phytocannabinoid, endocannabinoids (eCBs) are the endogenous ligands of CB1R and are known to act as retrograde messengers to modulate synaptic plasticity at different time scales in the adult brain. Accumulating evidence indicates that eCB signaling through activation of CB1R plays a central role in neural development. During development, most CB1R localized to axons of projection neurons, and in mice eCB signaling impacts axon fasciculation. Understanding of eCB-mediated structural plasticity during development, however, requires the identification of the precise spatial and temporal dynamics of CB1R-mediated modifications at the level of individual neurons in the intact brain. Here, the cell-autonomous role of CB1R and the effects of CB1R-mediated eCB signaling were investigated using targeted single-cell knockdown and pharmacologic treatments in Xenopus. We imaged axonal arbors of retinal ganglion cells (RGCs) in real time following downregulation of CB1R via morpholino (MO) knockdown. We also analyzed RGC axons with altered eCB signaling following treatment with URB597, a selective inhibitor of the enzyme that degrades Anandamide (AEA), or JZL184, an inhibitor of the enzyme that blocks 2-Arachidonoylglycerol (2-AG) hydrolysis, at two distinct stages of retinotectal development. Our results demonstrate that CB1R knockdown impacts RGC axon branching at their target and that differential 2-AG and AEA-mediated eCB signaling contributes to presynaptic structural connectivity at the time that axons terminate and when retinotectal synaptic connections are made. Altering CB1R levels through CB1R MO knockdown similarly impacted dendritic morphology of tectal neurons, thus supporting both pre- and postsynaptic cell-autonomous roles for CB1R-mediated eCB signaling.
Collapse
|
5
|
Fague L, Marsh-Armstrong N. Dual leucine zipper kinase is necessary for retinal ganglion cell axonal regeneration in Xenopus laevis. PNAS NEXUS 2023; 2:pgad109. [PMID: 37152673 PMCID: PMC10162689 DOI: 10.1093/pnasnexus/pgad109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/08/2023] [Indexed: 05/09/2023]
Abstract
Retinal ganglion cell (RGC) axons of the African clawed frog, Xenopus laevis, unlike those of mammals, are capable of regeneration and functional reinnervation of central brain targets following injury. Here, we describe a tadpole optic nerve crush (ONC) procedure and assessments of brain reinnervation based on live imaging of RGC-specific transgenes which, when paired with CRISPR/Cas9 injections at the one-cell stage, can be used to assess the function of regeneration-associated genes in vivo in F0 animals. Using this assay, we find that map3k12, also known as dual leucine zipper kinase (Dlk), is necessary for RGC axonal regeneration and acts in a dose-dependent manner. Loss of Dlk does not affect RGC innervation of the brain during development or visually driven behavior but does block both axonal regeneration and functional vision restoration after ONC. Dlk loss does not alter the acute changes in mitochondrial movement that occur within RGC axons hours after ONC but does completely block the phosphorylation and nuclear translocation of the transcription factor Jun within RGCs days after ONC; yet, Jun is dispensable for reinnervation. These results demonstrate that in a species fully capable of regenerating its RGC axons, Dlk is essential for the axonal injury signal to reach the nucleus but may affect regeneration through a different pathway than by which it signals in mammalian RGCs.
Collapse
Affiliation(s)
- Lindsay Fague
- Department of Ophthalmology and Vision Science, UC Davis Eye Center, University of California, Davis, 1275 Med Science Drive Rm. 3451, Davis, CA 95616, USA
| | | |
Collapse
|
6
|
Liu X, Feng X, Huang H, Huang K, Xu Y, Ye S, Tseng YT, Wei P, Wang L, Wang F. Male and female mice display consistent lifelong ability to address potential life-threatening cues using different post-threat coping strategies. BMC Biol 2022; 20:281. [PMID: 36522765 PMCID: PMC9753375 DOI: 10.1186/s12915-022-01486-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Sex differences ranging from physiological functions to pathological disorders are developmentally hard-wired in a broad range of animals, from invertebrates to humans. These differences ensure that animals can display appropriate behaviors under a variety of circumstances, such as aggression, hunting, sleep, mating, and parental care, which are often thought to be important in the acquisition of resources, including territory, food, and mates. Although there are reports of an absence of sexual dimorphism in the context of innate fear, the question of whether there is sexual dimorphism of innate defensive behavior is still an open question. Therefore, an in-depth investigation to determine whether there are sex differences in developmentally hard-wired innate defensive behaviors in life-threatening circumstances is warranted. RESULTS We found that innate defensive behavioral responses to potentially life-threatening stimuli between males and females were indistinguishable over their lifespan. However, by using 3 dimensional (3D)-motion learning framework analysis, we found that males and females showed different behavioral patterns after escaping to the refuge. Specifically, the defensive "freezing" occurred primarily in males, whereas females were more likely to return directly to exploration. Moreover, there were also no estrous phase differences in innate defensive behavioral responses after looming stimuli. CONCLUSIONS Our results demonstrate that visually-evoked innate fear behavior is highly conserved throughout the lifespan in both males and females, while specific post-threat coping strategies depend on sex. These findings indicate that innate fear behavior is essential to both sexes and as such, there are no evolutionary-driven sex differences in defensive ability.
Collapse
Affiliation(s)
- Xue Liu
- Shenzhen Key Lab of Translational Research for Brain Diseases, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaolong Feng
- Shenzhen Key Lab of Translational Research for Brain Diseases, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Hongren Huang
- Shenzhen Key Lab of Translational Research for Brain Diseases, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kang Huang
- Shenzhen Key Lab of Translational Research for Brain Diseases, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Yang Xu
- Shenzhen Key Lab of Translational Research for Brain Diseases, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuwei Ye
- Shenzhen Key Lab of Translational Research for Brain Diseases, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Yu-Ting Tseng
- Shenzhen Key Lab of Translational Research for Brain Diseases, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Pengfei Wei
- Shenzhen Key Lab of Translational Research for Brain Diseases, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Liping Wang
- Shenzhen Key Lab of Translational Research for Brain Diseases, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Feng Wang
- Shenzhen Key Lab of Translational Research for Brain Diseases, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| |
Collapse
|
7
|
Gao J, Luo Y, Lu Y, Wu X, Chen P, Zhang X, Han L, Qiu M, Shen W. Epigenetic regulation of GABAergic differentiation in the developing brain. Front Cell Neurosci 2022; 16:988732. [PMID: 36212693 PMCID: PMC9539098 DOI: 10.3389/fncel.2022.988732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
In the vertebrate brain, GABAergic cell development and neurotransmission are important for the establishment of neural circuits. Various intrinsic and extrinsic factors have been identified to affect GABAergic neurogenesis. However, little is known about the epigenetic control of GABAergic differentiation in the developing brain. Here, we report that the number of GABAergic neurons dynamically changes during the early tectal development in the Xenopus brain. The percentage of GABAergic neurons is relatively unchanged during the early stages from stage 40 to 46 but significantly decreased from stage 46 to 48 tadpoles. Interestingly, the histone acetylation of H3K9 is developmentally decreased from stage 42 to 48 (about 3.5 days). Chronic application of valproate acid (VPA), a broad-spectrum histone deacetylase (HDAC) inhibitor, at stage 46 for 48 h increases the acetylation of H3K9 and the number of GABAergic cells in the optic tectum. VPA treatment also reduces apoptotic cells. Electrophysiological recordings show that a VPA induces an increase in the frequency of mIPSCs and no changes in the amplitude. Behavioral studies reveal that VPA decreases swimming activity and visually guided avoidance behavior. These findings extend our understanding of histone modification in the GABAergic differentiation and neurotransmission during early brain development.
Collapse
Affiliation(s)
- Juanmei Gao
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yuhao Luo
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yufang Lu
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xiaohua Wu
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Peiyao Chen
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xinyu Zhang
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Lu Han
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Mengsheng Qiu
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- *Correspondence: Mengsheng Qiu,
| | - Wanhua Shen
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Wanhua Shen,
| |
Collapse
|
8
|
Liu X, Huang H, Snutch TP, Cao P, Wang L, Wang F. The Superior Colliculus: Cell Types, Connectivity, and Behavior. Neurosci Bull 2022; 38:1519-1540. [PMID: 35484472 DOI: 10.1007/s12264-022-00858-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/16/2022] [Indexed: 10/18/2022] Open
Abstract
The superior colliculus (SC), one of the most well-characterized midbrain sensorimotor structures where visual, auditory, and somatosensory information are integrated to initiate motor commands, is highly conserved across vertebrate evolution. Moreover, cell-type-specific SC neurons integrate afferent signals within local networks to generate defined output related to innate and cognitive behaviors. This review focuses on the recent progress in understanding of phenotypic diversity amongst SC neurons and their intrinsic circuits and long-projection targets. We further describe relevant neural circuits and specific cell types in relation to behavioral outputs and cognitive functions. The systematic delineation of SC organization, cell types, and neural connections is further put into context across species as these depend upon laminar architecture. Moreover, we focus on SC neural circuitry involving saccadic eye movement, and cognitive and innate behaviors. Overall, the review provides insight into SC functioning and represents a basis for further understanding of the pathology associated with SC dysfunction.
Collapse
Affiliation(s)
- Xue Liu
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongren Huang
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Terrance P Snutch
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Peng Cao
- National Institute of Biological Sciences, Beijing, 100049, China
| | - Liping Wang
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| | - Feng Wang
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| |
Collapse
|
9
|
Liu K, Garcia A, Park JJ, Toliver AA, Ramos L, Aizenman CD. Early Developmental Exposure to Fluoxetine and Citalopram Results in Different Neurodevelopmental Outcomes. Neuroscience 2021; 467:110-121. [PMID: 34048796 DOI: 10.1016/j.neuroscience.2021.05.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 11/25/2022]
Abstract
Although selective serotonin reuptake inhibitors are commonly prescribed for prenatal depression, there exists controversy over adverse effects of SSRI use on fetal development. Few studies have adequately isolated outcomes due to SSRI exposure and those due to maternal psychiatric conditions. Here, we directly investigated outcomes of exposure to widely-used SSRIs Fluoxetine and Citalopram on the developing nervous system of Xenopus laevis tadpoles, using an integrative experimental approach. We exposed tadpoles to low doses of Citalopram and Fluoxetine during a critical developmental period and found that different experimental groups displayed opposing behavioral effects. While both groups showed reduced schooling behavior, the Fluoxetine group showed increased seizure susceptibility and reduced startle habituation. In contrast, Citalopram treated tadpoles had decreased seizure susceptibility and increased habituation. Both groups had abnormal dendritic morphology in the optic tectum, a brain area important for behaviors tested. Whole-cell electrophysiological recordings of tectal neurons showed no differences in synaptic function; however, tectal cells from Fluoxetine-treated tadpoles had decreased voltage gated K+ currents while cells in the Citalopram group had increased K+ currents. Both behavioral and electrophysiological findings indicate that cells and circuits in the Fluoxetine treated optic tecta are hyperexcitable, while the Citalopram group exhibits decreased excitability. Taken together, these results show that early developmental exposure to SSRIs is sufficient to induce neurodevelopmental effects, however these effects can be complex and vary depending on the SSRI. This may explain some discrepancies across human studies, and further underscores the importance of serotonergic signaling for the developing nervous system.
Collapse
Affiliation(s)
- Karine Liu
- Department of Neuroscience, Brown University, United States
| | - Alfonso Garcia
- Department of Neuroscience, Brown University, United States
| | - Jenn J Park
- Department of Neuroscience, Brown University, United States
| | | | | | | |
Collapse
|
10
|
Khakhalin AS. Analysis of Visual Collision Avoidance in Xenopus Tadpoles. Cold Spring Harb Protoc 2021; 2021:pdb.prot106914. [PMID: 33272972 DOI: 10.1101/pdb.prot106914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In teaching, the best exam questions are those that seem simple at first but can lead to deep and nuanced conversations. Similarly, to probe brain development, we should look for behaviors that are easy to evoke and quantify, but that are demanding, malleable, and inherently variable. Visual collision avoidance is an example of such a behavior; it is ecologically relevant, robust, and easy to record, but also nuanced and shaped by the sensory history of the animal. Here we describe how to set up a visual avoidance assay and how to use it to test sensory processing and sensorimotor transformations in the vertebrate brain.
Collapse
|
11
|
Lim TKY, Ruthazer ES. Microglial trogocytosis and the complement system regulate axonal pruning in vivo. eLife 2021; 10:e62167. [PMID: 33724186 PMCID: PMC7963485 DOI: 10.7554/elife.62167] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 02/28/2021] [Indexed: 12/14/2022] Open
Abstract
Partial phagocytosis-called trogocytosis-of axons by microglia has been documented in ex vivo preparations but has not been directly observed in vivo. The mechanisms that modulate microglial trogocytosis of axons and its function in neural circuit development remain poorly understood. Here, we directly observe axon trogocytosis by microglia in vivo in the developing Xenopus laevis retinotectal circuit. We show that microglia regulate pruning of retinal ganglion cell axons and are important for proper behavioral response to dark and bright looming stimuli. Using bioinformatics, we identify amphibian regulator of complement activation 3, a homolog of human CD46, as a neuronally expressed synapse-associated complement inhibitory molecule that inhibits trogocytosis and axonal pruning. Using a membrane-bound complement C3 fusion protein, we demonstrate that enhancing complement activity enhances axonal pruning. Our results support the model that microglia remodel axons via trogocytosis and that neurons can control this process through expression of complement inhibitory proteins.
Collapse
Affiliation(s)
- Tony KY Lim
- Department of Neurology & Neurosurgery, Montreal Neurological Institute-Hospital, McGill UniversityMontrealCanada
| | - Edward S Ruthazer
- Department of Neurology & Neurosurgery, Montreal Neurological Institute-Hospital, McGill UniversityMontrealCanada
| |
Collapse
|
12
|
Fontinha BM, Zekoll T, Al-Rawi M, Gallach M, Reithofer F, Barker AJ, Hofbauer M, Fischer RM, von Haeseler A, Baier H, Tessmar-Raible K. TMT-Opsins differentially modulate medaka brain function in a context-dependent manner. PLoS Biol 2021; 19:e3001012. [PMID: 33411725 PMCID: PMC7837489 DOI: 10.1371/journal.pbio.3001012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/26/2021] [Accepted: 12/10/2020] [Indexed: 12/13/2022] Open
Abstract
Vertebrate behavior is strongly influenced by light. Light receptors, encoded by functional opsin proteins, are present inside the vertebrate brain and peripheral tissues. This expression feature is present from fishes to human and appears to be particularly prominent in diurnal vertebrates. Despite their conserved widespread occurrence, the nonvisual functions of opsins are still largely enigmatic. This is even more apparent when considering the high number of opsins. Teleosts possess around 40 opsin genes, present from young developmental stages to adulthood. Many of these opsins have been shown to function as light receptors. This raises the question of whether this large number might mainly reflect functional redundancy or rather maximally enables teleosts to optimally use the complex light information present under water. We focus on tmt-opsin1b and tmt-opsin2, c-opsins with ancestral-type sequence features, conserved across several vertebrate phyla, expressed with partly similar expression in non-rod, non-cone, non-retinal-ganglion-cell brain tissues and with a similar spectral sensitivity. The characterization of the single mutants revealed age- and light-dependent behavioral changes, as well as an impact on the levels of the preprohormone sst1b and the voltage-gated sodium channel subunit scn12aa. The amount of daytime rest is affected independently of the eyes, pineal organ, and circadian clock in tmt-opsin1b mutants. We further focused on daytime behavior and the molecular changes in tmt-opsin1b/2 double mutants, and found that-despite their similar expression and spectral features-these opsins interact in part nonadditively. Specifically, double mutants complement molecular and behavioral phenotypes observed in single mutants in a partly age-dependent fashion. Our work provides a starting point to disentangle the highly complex interactions of vertebrate nonvisual opsins, suggesting that tmt-opsin-expressing cells together with other visual and nonvisual opsins provide detailed light information to the organism for behavioral fine-tuning. This work also provides a stepping stone to unravel how vertebrate species with conserved opsins, but living in different ecological niches, respond to similar light cues and how human-generated artificial light might impact on behavioral processes in natural environments.
Collapse
Affiliation(s)
- Bruno M. Fontinha
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- Research Platform ‘‘Rhythms of Life,” University of Vienna, Vienna, Austria
| | - Theresa Zekoll
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- Research Platform ‘‘Rhythms of Life,” University of Vienna, Vienna, Austria
| | - Mariam Al-Rawi
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- Research Platform ‘‘Rhythms of Life,” University of Vienna, Vienna, Austria
| | - Miguel Gallach
- Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Florian Reithofer
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- Research Platform ‘‘Rhythms of Life,” University of Vienna, Vienna, Austria
| | | | - Maximilian Hofbauer
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- Research Platform ‘‘Rhythms of Life,” University of Vienna, Vienna, Austria
- loopbio, Vienna, Austria
| | - Ruth M. Fischer
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Arndt von Haeseler
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- Research Platform ‘‘Rhythms of Life,” University of Vienna, Vienna, Austria
- Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna and Medical University of Vienna, Vienna, Austria
- Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna, Austria
| | - Herwig Baier
- Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Kristin Tessmar-Raible
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- Research Platform ‘‘Rhythms of Life,” University of Vienna, Vienna, Austria
- FENS-Kavli Network of Excellence, Brussels, Belgium
| |
Collapse
|
13
|
Gao J, Shen W. Xenopus in revealing developmental toxicity and modeling human diseases. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115809. [PMID: 33096388 DOI: 10.1016/j.envpol.2020.115809] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/01/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
The Xenopus model offers many advantages for investigation of the molecular, cellular, and behavioral mechanisms underlying embryo development. Moreover, Xenopus oocytes and embryos have been extensively used to study developmental toxicity and human diseases in response to various environmental chemicals. This review first summarizes recent advances in using Xenopus as a vertebrate model to study distinct types of tissue/organ development following exposure to environmental toxicants, chemical reagents, and pharmaceutical drugs. Then, the successful use of Xenopus as a model for diseases, including fetal alcohol spectrum disorders, autism, epilepsy, and cardiovascular disease, is reviewed. The potential application of Xenopus in genetic and chemical screening to protect against embryo deficits induced by chemical toxicants and related diseases is also discussed.
Collapse
Affiliation(s)
- Juanmei Gao
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; College of Life and Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Wanhua Shen
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
14
|
Busch SE, Khakhalin AS. Intrinsic temporal tuning of neurons in the optic tectum is shaped by multisensory experience. J Neurophysiol 2019; 122:1084-1096. [PMID: 31291161 DOI: 10.1152/jn.00099.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
For a biological neural network to be functional, its neurons need to be connected with synapses of appropriate strength, and each neuron needs to appropriately respond to its synaptic inputs. This second aspect of network tuning is maintained by intrinsic plasticity; yet it is often considered secondary to changes in connectivity and mostly limited to adjustments of overall excitability of each neuron. Here we argue that even nonoscillatory neurons can be tuned to inputs of different temporal dynamics and that they can routinely adjust this tuning to match the statistics of their synaptic activation. Using the dynamic clamp technique, we show that, in the tectum of Xenopus tadpole, neurons become selective for faster inputs when animals are exposed to fast visual stimuli but remain responsive to longer inputs in animals exposed to slower, looming, or multisensory stimulation. We also report a homeostatic cotuning between synaptic and intrinsic temporal properties of individual tectal cells. These results expand our understanding of intrinsic plasticity in the brain and suggest that there may exist an additional dimension of network tuning that has been so far overlooked.NEW & NOTEWORTHY We use dynamic clamp to show that individual neurons in the tectum of Xenopus tadpoles are selectively tuned to either shorter (more synchronous) or longer (less synchronous) synaptic inputs. We also demonstrate that this intrinsic temporal tuning is strongly shaped by sensory experiences. This new phenomenon, which is likely to be mediated by changes in sodium channel inactivation, is bound to have important consequences for signal processing and the development of local recurrent connections.
Collapse
Affiliation(s)
- Silas E Busch
- Biology Program, Bard College, Annandale-on-Hudson, New York
| | | |
Collapse
|
15
|
He HY, Cline HT. What Is Excitation/Inhibition and How Is It Regulated? A Case of the Elephant and the Wisemen. J Exp Neurosci 2019; 13:1179069519859371. [PMID: 31258334 PMCID: PMC6591655 DOI: 10.1177/1179069519859371] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 05/30/2019] [Indexed: 12/04/2022] Open
Abstract
The balance between excitation and inhibition in neuronal circuits has drawn more
and more attention in recent years, due to its proposed multifaceted functions
in the normal neural circuit as well as its potential roles in the etiology of
many neurological disorders. Here, we discuss the importance of clearly defining
excitation/inhibition by experimental measurements and the implications of some
recent studies to our understanding of the regulation of excitation/inhibition
at the neuronal level.
Collapse
Affiliation(s)
- Hai-Yan He
- The Scripps Research Institute, La Jolla, CA, USA
| | | |
Collapse
|
16
|
Evans DA, Stempel AV, Vale R, Branco T. Cognitive Control of Escape Behaviour. Trends Cogn Sci 2019; 23:334-348. [PMID: 30852123 PMCID: PMC6438863 DOI: 10.1016/j.tics.2019.01.012] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 12/21/2022]
Abstract
When faced with potential predators, animals instinctively decide whether there is a threat they should escape from, and also when, how, and where to take evasive action. While escape is often viewed in classical ethology as an action that is released upon presentation of specific stimuli, successful and adaptive escape behaviour relies on integrating information from sensory systems, stored knowledge, and internal states. From a neuroscience perspective, escape is an incredibly rich model that provides opportunities for investigating processes such as perceptual and value-based decision-making, or action selection, in an ethological setting. We review recent research from laboratory and field studies that explore, at the behavioural and mechanistic levels, how elements from multiple information streams are integrated to generate flexible escape behaviour.
Collapse
Affiliation(s)
- Dominic A Evans
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, UCL, London, UK; These authors contributed equally to this work
| | - A Vanessa Stempel
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, UCL, London, UK; These authors contributed equally to this work
| | - Ruben Vale
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, UCL, London, UK; These authors contributed equally to this work
| | - Tiago Branco
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, UCL, London, UK.
| |
Collapse
|
17
|
Liu Z, Thakar A, Santoro SW, Pratt KG. Presenilin Regulates Retinotectal Synapse Formation through EphB2 Receptor Processing. Dev Neurobiol 2018; 78:1171-1190. [PMID: 30246932 DOI: 10.1002/dneu.22638] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/18/2018] [Accepted: 08/31/2018] [Indexed: 12/15/2022]
Abstract
As the catalytic component of γ-secretase, presenilin (PS) has long been studied in the context of Alzheimer's disease through cleaving the amyloid precursor protein. PS/γ-secretase, however, also cleaves a multitude of single-pass transmembrane proteins that are important during development, including Notch, the netrin receptor DCC, cadherins, drebrin-A, and the EphB2 receptor. Because transgenic PS-KO mice do not survive to birth, studies of this molecule during later embryonic or early postnatal stages of development have been carried out using cell cultures or conditional knock-out mice, respectively. As a result, the function of PS in synapse formation had not been well-addressed. Here, we study the role of PS in the developing Xenopus tadpole retinotectal circuit, an in-vivo model that allows for protein expression to be manipulated specifically during the peak of synapse formation between retinal ganglion cells and tectal neurons. We found that inhibiting PS in the postsynaptic tectal neurons impaired tadpole visual avoidance behavior. Whole cell recordings indicated weaker retinotectal synaptic transmission which was characterized by significant reductions in both NMDA receptor (NMDAR)- and AMPA receptor (AMPAR)-mediated currents. We also found that expression of the C-tail fragment of the EphB2 receptor, which is normally cleaved by PS/γ-secretase and which has been shown to upregulate NMDARs at the synapse, rescued the reduced NMDAR-mediated responses. Our data determine that normal PS function is important for proper formation and strengthening of retinotectal synapses through cleaving the EphB2 receptor.
Collapse
Affiliation(s)
- Zhenyu Liu
- Department of Zoology and Physiology and Program in Neuroscience, University of Wyoming, Laramie, Wyoming
| | - Amit Thakar
- Department of Zoology and Physiology and Program in Neuroscience, University of Wyoming, Laramie, Wyoming
| | - Stephen W Santoro
- Department of Zoology and Physiology and Program in Neuroscience, University of Wyoming, Laramie, Wyoming
| | - Kara G Pratt
- Department of Zoology and Physiology and Program in Neuroscience, University of Wyoming, Laramie, Wyoming
| |
Collapse
|
18
|
He HY, Shen W, Zheng L, Guo X, Cline HT. Excitatory synaptic dysfunction cell-autonomously decreases inhibitory inputs and disrupts structural and functional plasticity. Nat Commun 2018; 9:2893. [PMID: 30042473 PMCID: PMC6057951 DOI: 10.1038/s41467-018-05125-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 06/08/2018] [Indexed: 12/23/2022] Open
Abstract
Functional circuit assembly is thought to require coordinated development of excitation and inhibition, but whether they are co-regulated cell-autonomously remains unclear. We investigate effects of decreased glutamatergic synaptic input on inhibitory synapses by expressing AMPAR subunit, GluA1 and GluA2, C-terminal peptides (GluA1CTP and GluA2CTP) in developing Xenopus tectal neurons. GluACTPs decrease excitatory synaptic inputs and cell-autonomously decreases inhibitory synaptic inputs in excitatory and inhibitory neurons. Visually evoked excitatory and inhibitory currents decrease proportionately, maintaining excitation/inhibition. GluACTPs affect dendrite structure and visual experience-dependent structural plasticity differently in excitatory and inhibitory neurons. Deficits in excitatory and inhibitory synaptic transmission and experience-dependent plasticity manifest in altered visual receptive field properties. Both visual avoidance behavior and learning-induced behavioral plasticity are impaired, suggesting that maintaining excitation/inhibition alone is insufficient to preserve circuit function. We demonstrate that excitatory synaptic dysfunction in individual neurons cell-autonomously decreases inhibitory inputs and disrupts neuronal and circuit plasticity, information processing and learning. Both inhibitory and excitatory input development are shaped by activity, but one may be dependent on the other. Here, the authors examine plasticity of inhibitory inputs in vivo, as well as behavioral consequences in tadpoles where excitatory transmission has been impaired.
Collapse
Affiliation(s)
- Hai-Yan He
- The Dorris Neuroscience Center, Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Wanhua Shen
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, China.
| | - Lijun Zheng
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, China
| | - Xia Guo
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, China
| | - Hollis T Cline
- The Dorris Neuroscience Center, Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
19
|
Divergent midbrain circuits orchestrate escape and freezing responses to looming stimuli in mice. Nat Commun 2018; 9:1232. [PMID: 29581428 PMCID: PMC5964329 DOI: 10.1038/s41467-018-03580-7] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 02/23/2018] [Indexed: 01/30/2023] Open
Abstract
Animals respond to environmental threats, e.g. looming visual stimuli, with innate defensive behaviors such as escape and freezing. The key neural circuits that participate in the generation of such dimorphic defensive behaviors remain unclear. Here we show that the dimorphic behavioral patterns triggered by looming visual stimuli are mediated by parvalbumin-positive (PV+) projection neurons in mouse superior colliculus (SC). Two distinct groups of SC PV+ neurons form divergent pathways to transmit threat-relevant visual signals to neurons in the parabigeminal nucleus (PBGN) and lateral posterior thalamic nucleus (LPTN). Activations of PV+ SC-PBGN and SC-LPTN pathways mimic the dimorphic defensive behaviors. The PBGN and LPTN neurons are co-activated by looming visual stimuli. Bilateral inactivation of either nucleus results in the defensive behavior dominated by the other nucleus. Together, these data suggest that the SC orchestrates dimorphic defensive behaviors through two separate tectofugal pathways that may have interactions. In response to environmental threats, such as visual looming stimuli, mice either freeze or escape. Here the authors demonstrate that these two behaviors are mediated by separate tectofugal pathways formed by parvalbumin-positive neurons in the superior colliculus.
Collapse
|
20
|
Liu Z, Donnelly KB, Pratt KG. Preparations and Protocols for Whole Cell Patch Clamp Recording of Xenopus laevis Tectal Neurons. J Vis Exp 2018. [PMID: 29608176 DOI: 10.3791/57465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The Xenopus tadpole retinotectal circuit, comprised of the retinal ganglion cells (RGCs) in the eye which form synapses directly onto neurons in the optic tectum, is a popular model to study how neural circuits self-assemble. The ability to carry out whole cell patch clamp recordings from tectal neurons and to record RGC-evoked responses, either in vivo or using a whole brain preparation, has generated a large body of high-resolution data about the mechanisms underlying normal, and abnormal, circuit formation and function. Here we describe how to perform the in vivo preparation, the original whole brain preparation, and a more recently developed horizontal brain slice preparation for obtaining whole cell patch clamp recordings from tectal neurons. Each preparation has unique experimental advantages. The in vivo preparation enables the recording of the direct response of tectal neurons to visual stimuli projected onto the eye. The whole brain preparation allows for the RGC axons to be activated in a highly controlled manner, and the horizontal brain slice preparation allows recording from across all layers of the tectum.
Collapse
Affiliation(s)
- Zhenyu Liu
- Department of Zoology and Physiology and Program in Neuroscience, University of Wyoming
| | - Katelynne B Donnelly
- Department of Zoology and Physiology and Program in Neuroscience, University of Wyoming
| | - Kara G Pratt
- Department of Zoology and Physiology and Program in Neuroscience, University of Wyoming;
| |
Collapse
|
21
|
Gambrill AC, Faulkner RL, Cline HT. Direct intertectal inputs are an integral component of the bilateral sensorimotor circuit for behavior in Xenopus tadpoles. J Neurophysiol 2018; 119:1947-1961. [PMID: 29442555 DOI: 10.1152/jn.00051.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The circuit controlling visually guided behavior in nonmammalian vertebrates, such as Xenopus tadpoles, includes retinal projections to the contralateral optic tectum, where visual information is processed, and tectal motor outputs projecting ipsilaterally to hindbrain and spinal cord. Tadpoles have an intertectal commissure whose function is unknown, but it might transfer information between the tectal lobes. Differences in visual experience between the two eyes have profound effects on the development and function of visual circuits in animals with binocular vision, but the effects on animals with fully crossed retinal projections are not clear. We tested the effect of monocular visual experience on the visuomotor circuit in Xenopus tadpoles. We show that cutting the intertectal commissure or providing visual experience to one eye (monocular visual experience) is sufficient to disrupt tectally mediated visual avoidance behavior. Monocular visual experience induces asymmetry in tectal circuit activity across the midline. Repeated exposure to monocular visual experience drives maturation of the stimulated retinotectal synapses, seen as increased AMPA-to-NMDA ratios, induces synaptic plasticity in intertectal synaptic connections, and induces bilaterally asymmetric changes in the tectal excitation-to-inhibition ratio (E/I). We show that unilateral expression of peptides that interfere with AMPA or GABAA receptor trafficking alters E/I in the transfected tectum and is sufficient to degrade visuomotor behavior. Our study demonstrates that monocular visual experience in animals with fully crossed visual systems produces asymmetric circuit function across the midline and degrades visuomotor behavior. The data further suggest that intertectal inputs are an integral component of a bilateral visuomotor circuit critical for behavior. NEW & NOTEWORTHY The developing optic tectum of Xenopus tadpoles represents a unique circuit in which laterally positioned eyes provide sensory input to a circuit that is transiently monocular, but which will be binocular in the animal's adulthood. We challenge the idea that the two lobes of tadpole optic tectum function independently by testing the requirement of interhemispheric communication and demonstrate that unbalanced sensory input can induce structural and functional plasticity in the tectum sufficient to disrupt function.
Collapse
Affiliation(s)
- Abigail C Gambrill
- Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute , La Jolla, California
| | - Regina L Faulkner
- Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute , La Jolla, California
| | - Hollis T Cline
- Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute , La Jolla, California
| |
Collapse
|
22
|
Avitan L, Pujic Z, Mölter J, Van De Poll M, Sun B, Teng H, Amor R, Scott EK, Goodhill GJ. Spontaneous Activity in the Zebrafish Tectum Reorganizes over Development and Is Influenced by Visual Experience. Curr Biol 2017; 27:2407-2419.e4. [PMID: 28781054 DOI: 10.1016/j.cub.2017.06.056] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 05/18/2017] [Accepted: 06/20/2017] [Indexed: 10/19/2022]
Abstract
Spontaneous patterns of activity in the developing visual system may play an important role in shaping the brain for function. During the period 4-9 dpf (days post-fertilization), larval zebrafish learn to hunt prey, a behavior that is critically dependent on the optic tectum. However, how spontaneous activity develops in the tectum over this period and the effect of visual experience are unknown. Here we performed two-photon calcium imaging of GCaMP6s zebrafish larvae at all days from 4 to 9 dpf. Using recently developed graph theoretic techniques, we found significant changes in both single-cell and population activity characteristics over development. In particular, we identified days 5-6 as a critical moment in the reorganization of the underlying functional network. Altering visual experience early in development altered the statistics of tectal activity, and dark rearing also caused a long-lasting deficit in the ability to capture prey. Thus, tectal development is shaped by both intrinsic factors and visual experience.
Collapse
Affiliation(s)
- Lilach Avitan
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Zac Pujic
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jan Mölter
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia; School of Mathematics and Physics, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Matthew Van De Poll
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Biao Sun
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Haotian Teng
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Rumelo Amor
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ethan K Scott
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Geoffrey J Goodhill
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia; School of Mathematics and Physics, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
23
|
Truszkowski TLS, Carrillo OA, Bleier J, Ramirez-Vizcarrondo CM, Felch DL, McQuillan M, Truszkowski CP, Khakhalin AS, Aizenman CD. A cellular mechanism for inverse effectiveness in multisensory integration. eLife 2017; 6:e25392. [PMID: 28315524 PMCID: PMC5375642 DOI: 10.7554/elife.25392] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/15/2017] [Indexed: 12/16/2022] Open
Abstract
To build a coherent view of the external world, an organism needs to integrate multiple types of sensory information from different sources, a process known as multisensory integration (MSI). Previously, we showed that the temporal dependence of MSI in the optic tectum of Xenopus laevis tadpoles is mediated by the network dynamics of the recruitment of local inhibition by sensory input (Felch et al., 2016). This was one of the first cellular-level mechanisms described for MSI. Here, we expand this cellular level view of MSI by focusing on the principle of inverse effectiveness, another central feature of MSI stating that the amount of multisensory enhancement observed inversely depends on the size of unisensory responses. We show that non-linear summation of crossmodal synaptic responses, mediated by NMDA-type glutamate receptor (NMDARs) activation, form the cellular basis for inverse effectiveness, both at the cellular and behavioral levels.
Collapse
Affiliation(s)
| | - Oscar A Carrillo
- Department of Neuroscience, Brown University, Providence, United States
| | - Julia Bleier
- Department of Neuroscience, Brown University, Providence, United States
| | | | - Daniel L Felch
- Department of Neuroscience, Brown University, Providence, United States
| | | | | | | | - Carlos D Aizenman
- Department of Neuroscience, Brown University, Providence, United States
| |
Collapse
|
24
|
Ruan H, Gao J, Qi X, Tao Y, Guo X, Guo Z, Zheng L, Song Y, Liao Y, Shen W. Visual experience dependent regulation of neuronal structure and function by histone deacetylase 1 in developing Xenopus tectum in vivo. Dev Neurobiol 2017; 77:947-962. [PMID: 28033671 DOI: 10.1002/dneu.22480] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 12/13/2016] [Accepted: 12/16/2016] [Indexed: 01/28/2023]
Abstract
Histone deacetylase 1 (HDAC1) is thought to play pivotal roles in neurogenesis and neurodegeneration. However, the role of HDAC1 in neuronal growth and structural plasticity in the developing brain in vivo remains unclear. Here, we show that in the optic tectum of Xenopus laevis, HDAC1 knockdown dramatically decreased the frequency of AMPAR-mediated synaptic currents and increased the frequency of GABAAR-mediated currents, whereas HDAC1 overexpression significantly decreased the frequency of GABAAR-mediated synaptic currents. Both HDAC1 knockdown and overexpression adversely affected dendritic arbor growth and visual experience-dependent structural plasticity. Furthermore, HDAC1 knockdown decreased BDNF expression via a mechanism that involves acetylation of specific histone H4 residues at lysine K5. In particular, the deficits in dendritic growth and visually guided avoidance behavior in HDAC1-knockdown tadpoles could be rescued by acute tectal infusion of BDNF. These results establish a relationship between HDAC1 expression, histone H4 modification and BDNF signaling in the visual-experience dependent regulation of dendritic growth, structural plasticity and function in intact animals in vivo. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 947-962, 2017.
Collapse
Affiliation(s)
- Hangze Ruan
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, China
| | - Juanmei Gao
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, China
| | - Xianjie Qi
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, China
| | - Yi Tao
- Department of Neurosurgery, Nanjing Medical University Affiliated Jiangsu Cancer Hospital, Nanjing, Jiangsu, 210029, China
| | - Xia Guo
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, China
| | - Zhaoyi Guo
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, China
| | - Lijun Zheng
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, China
| | - Yaling Song
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, China
| | - Yuan Liao
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, China
| | - Wanhua Shen
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, China
| |
Collapse
|
25
|
Jang EV, Ramirez-Vizcarrondo C, Aizenman CD, Khakhalin AS. Emergence of Selectivity to Looming Stimuli in a Spiking Network Model of the Optic Tectum. Front Neural Circuits 2016; 10:95. [PMID: 27932957 PMCID: PMC5121234 DOI: 10.3389/fncir.2016.00095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/08/2016] [Indexed: 11/13/2022] Open
Abstract
The neural circuits in the optic tectum of Xenopus tadpoles are selectively responsive to looming visual stimuli that resemble objects approaching the animal at a collision trajectory. This selectivity is required for adaptive collision avoidance behavior in this species, but its underlying mechanisms are not known. In particular, it is still unclear how the balance between the recurrent spontaneous network activity and the newly arriving sensory flow is set in this structure, and to what degree this balance is important for collision detection. Also, despite the clear indication for the presence of strong recurrent excitation and spontaneous activity, the exact topology of recurrent feedback circuits in the tectum remains elusive. In this study we take advantage of recently published detailed cell-level data from tadpole tectum to build an informed computational model of it, and investigate whether dynamic activation in excitatory recurrent retinotopic networks may on its own underlie collision detection. We consider several possible recurrent connectivity configurations and compare their performance for collision detection under different levels of spontaneous neural activity. We show that even in the absence of inhibition, a retinotopic network of quickly inactivating spiking neurons is naturally selective for looming stimuli, but this selectivity is not robust to neuronal noise, and is sensitive to the balance between direct and recurrent inputs. We also describe how homeostatic modulation of intrinsic properties of individual tectal cells can change selectivity thresholds in this network, and qualitatively verify our predictions in a behavioral experiment in freely swimming tadpoles.
Collapse
Affiliation(s)
- Eric V Jang
- Department of Neuroscience, Brown University Providence, RI, USA
| | | | | | | |
Collapse
|
26
|
Pereira AG, Moita MA. Is there anybody out there? Neural circuits of threat detection in vertebrates. Curr Opin Neurobiol 2016; 41:179-187. [DOI: 10.1016/j.conb.2016.09.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 09/06/2016] [Accepted: 09/19/2016] [Indexed: 12/30/2022]
|
27
|
Pratt KG, Hiramoto M, Cline HT. An Evolutionarily Conserved Mechanism for Activity-Dependent Visual Circuit Development. Front Neural Circuits 2016; 10:79. [PMID: 27818623 PMCID: PMC5073143 DOI: 10.3389/fncir.2016.00079] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/26/2016] [Indexed: 12/01/2022] Open
Abstract
Neural circuit development is an activity-dependent process. This activity can be spontaneous, such as the retinal waves that course across the mammalian embryonic retina, or it can be sensory-driven, such as the activation of retinal ganglion cells (RGCs) by visual stimuli. Whichever the source, neural activity provides essential instruction to the developing circuit. Indeed, experimentally altering activity has been shown to impact circuit development and function in many different ways and in many different model systems. In this review, we contemplate the idea that retinal waves in amniotes, the animals that develop either in ovo or utero (namely reptiles, birds and mammals) could be an evolutionary adaptation to life on land, and that the anamniotes, animals whose development is entirely external (namely the aquatic amphibians and fish), do not display retinal waves, most likely because they simply don’t need them. We then review what is known about the function of both retinal waves and visual stimuli on their respective downstream targets, and predict that the experience-dependent development of the tadpole visual system is a blueprint of what will be found in future studies of the effects of spontaneous retinal waves on instructing development of retinorecipient targets such as the superior colliculus (SC) and the lateral geniculate nucleus.
Collapse
Affiliation(s)
- Kara G Pratt
- Program in Neuroscience, Department of Zoology and Physiology, University of Wyoming Laramie, WY, USA
| | - Masaki Hiramoto
- Department of Molecular and Cellular Neuroscience and The Dorris Neuroscience Center, The Scripps Research Institute La Jolla, CA, USA
| | - Hollis T Cline
- Department of Molecular and Cellular Neuroscience and The Dorris Neuroscience Center, The Scripps Research Institute La Jolla, CA, USA
| |
Collapse
|
28
|
Gambrill AC, Faulkner R, Cline HT. Experience-dependent plasticity of excitatory and inhibitory intertectal inputs in Xenopus tadpoles. J Neurophysiol 2016; 116:2281-2297. [PMID: 27582296 DOI: 10.1152/jn.00611.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 08/29/2016] [Indexed: 01/11/2023] Open
Abstract
Communication between optic tecta/superior colliculi is thought to be required for sensorimotor behaviors by comparing inputs across the midline, however the development of and the role of visual experience in the function and plasticity of intertectal connections are unclear. We combined neuronal tracing, in vivo time-lapse imaging, and electrophysiology to characterize the structural and functional development of intertectal axons and synapses in Xenopus tadpole optic tectum. We find that intertectal connections are established early during optic tectal circuit development. We determined the neurotransmitter identity of intertectal neurons using both rabies virus-mediated tracing combined with post-hoc immunohistochemistry, and electrophysiology. Excitatory and inhibitory intertectal neuronal somata are similarly distributed throughout the tectum. Excitatory and inhibitory intertectal axons are structurally similar and elaborate broadly in the contralateral tectum. We demonstrate that intertectal and retinotectal axons converge onto tectal neurons by recording postsynaptic currents after stimulating intertectal and retinotectal inputs. Cutting the intertectal commissure removes synaptic responses to contralateral tectal stimulation. In vivo time-lapse imaging demonstrated that visual experience drives plasticity in intertectal bouton size and dynamics. Finally, visual experience coordinately drives the maturation of excitatory and inhibitory intertectal inputs by increasing AMPA- and GABA-receptor mediated currents, comparable to experience-dependent maturation of retinotectal inputs. These data indicate that visual experience regulates plasticity of excitatory and inhibitory intertectal inputs, maintaining the excitatory: inhibitory ratio of intertectal input. These studies place intertectal inputs as key players in tectal circuit development and suggest that they may play a role in sensory information processing critical to sensorimotor behaviors.
Collapse
|
29
|
Liu Z, Hamodi AS, Pratt KG. Early development and function of the Xenopus tadpole retinotectal circuit. Curr Opin Neurobiol 2016; 41:17-23. [PMID: 27475307 DOI: 10.1016/j.conb.2016.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/28/2016] [Accepted: 07/10/2016] [Indexed: 01/14/2023]
Abstract
The retinotectal circuit is the major component of the amphibian visual system. It is comprised of the retinal ganglion cells (RGCs) in the eye, which project their axons to the optic tectum and form synapses onto postsynaptic tectal neurons. The retinotectal circuit is relatively simple, and develops quickly: Xenopus tadpoles begin displaying retinotectal-dependent visual avoidance behaviors by approximately 7-8 days post-fertilization, early larval stage. In this review we first provide a summary of the dynamic development of the retinotectal circuit, including the microcircuitry formed by local tectal-tectal connections within the tectum. Second, we discuss the basic visual avoidance behavior generated specifically by this circuit, and how this behavior is being used as an assay to test visual system function.
Collapse
Affiliation(s)
- Zhenyu Liu
- Department of Zoology and Physiology and Program in Neuroscience, University of Wyoming, Laramie, WY 82071, United States
| | - Ali S Hamodi
- Department of Zoology and Physiology and Program in Neuroscience, University of Wyoming, Laramie, WY 82071, United States
| | - Kara G Pratt
- Department of Zoology and Physiology and Program in Neuroscience, University of Wyoming, Laramie, WY 82071, United States.
| |
Collapse
|
30
|
He HY, Shen W, Hiramoto M, Cline HT. Experience-Dependent Bimodal Plasticity of Inhibitory Neurons in Early Development. Neuron 2016; 90:1203-1214. [PMID: 27238867 DOI: 10.1016/j.neuron.2016.04.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 03/11/2016] [Accepted: 04/14/2016] [Indexed: 02/09/2023]
Abstract
Inhibitory neurons are heterogeneous in the mature brain. It is unclear when and how inhibitory neurons express distinct structural and functional profiles. Using in vivo time-lapse imaging of tectal neuron structure and visually evoked Ca(2+) responses in tadpoles, we found that inhibitory neurons cluster into two groups with opposite valence of plasticity after 4 hr of dark and visual stimulation. Half decreased dendritic arbor size and Ca(2+) responses after dark and increased them after visual stimulation, matching plasticity in excitatory neurons. Half increased dendrite arbor size and Ca(2+) responses following dark and decreased them after stimulation. At the circuit level, visually evoked excitatory and inhibitory synaptic inputs were potentiated by visual experience and E/I remained constant. Our results indicate that developing inhibitory neurons fall into distinct functional groups with opposite experience-dependent plasticity and as such, are well positioned to foster experience-dependent synaptic plasticity and maintain circuit stability during labile periods of circuit development.
Collapse
Affiliation(s)
- Hai-Yan He
- The Dorris Neuroscience Center, Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Wanhua Shen
- Key Lab of Organ Development and Regeneration of Zhejiang Province, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Masaki Hiramoto
- The Dorris Neuroscience Center, Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Hollis T Cline
- The Dorris Neuroscience Center, Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
31
|
Felch DL, Khakhalin AS, Aizenman CD. Multisensory integration in the developing tectum is constrained by the balance of excitation and inhibition. eLife 2016; 5. [PMID: 27218449 PMCID: PMC4912350 DOI: 10.7554/elife.15600] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/23/2016] [Indexed: 11/13/2022] Open
Abstract
Multisensory integration (MSI) is the process that allows the brain to bind together spatiotemporally congruent inputs from different sensory modalities to produce single salient representations. While the phenomenology of MSI in vertebrate brains is well described, relatively little is known about cellular and synaptic mechanisms underlying this phenomenon. Here we use an isolated brain preparation to describe cellular mechanisms underlying development of MSI between visual and mechanosensory inputs in the optic tectum of Xenopus tadpoles. We find MSI is highly dependent on the temporal interval between crossmodal stimulus pairs. Over a key developmental period, the temporal window for MSI significantly narrows and is selectively tuned to specific interstimulus intervals. These changes in MSI correlate with developmental increases in evoked synaptic inhibition, and inhibitory blockade reverses observed developmental changes in MSI. We propose a model in which development of recurrent inhibition mediates development of temporal aspects of MSI in the tectum.
Collapse
Affiliation(s)
- Daniel L Felch
- Department of Neuroscience, Brown University, Providence, United States.,Department of Cell and Molecular Biology, Tulane University, New Orleans, United States
| | - Arseny S Khakhalin
- Department of Neuroscience, Brown University, Providence, United States.,Department of Biology, Bard College, New York, United States
| | - Carlos D Aizenman
- Department of Neuroscience, Brown University, Providence, United States
| |
Collapse
|
32
|
Rothman GR, Blackiston DJ, Levin M. Color and intensity discrimination in Xenopus laevis tadpoles. Anim Cogn 2016; 19:911-9. [PMID: 27146661 DOI: 10.1007/s10071-016-0990-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 04/19/2016] [Accepted: 04/25/2016] [Indexed: 12/12/2022]
Abstract
Investigations into the physiology of Xenopus laevis have the potential to greatly accelerate biomedical research, especially concerning neural plasticity and sensory systems, but are limited by the lack of available information on behavioral learning in this species. Here, we attempt to lay the foundations for a behavioral assay in Xenopus that can be used in conjunction with biological manipulations. We tested cohorts of Xenopus tadpoles across four light-mediated active-avoidance experiments, using either wavelength or intensity as the salient discriminative cue. In the wavelength task, we determine a baseline learning rate and characterize retention of learning, identifying active extinction effects as far more potent than the passage of time in the loss of behavior. In the intensity task, we examine the effects of varying differences between the discriminative stimuli on acquisition and extinction and identify a critical range of intensity differences where learning changes. The results of our experiments demonstrate that Xenopus is a tractable model organism for cognitive research and can learn a variety of associative tasks in the laboratory settings. These data reveal new aspects of the Xenopus larval visual processing system and facilitate future research between cognitive methods and biological/chemical manipulations to study mechanisms of brain structure and function.
Collapse
Affiliation(s)
- Gabriel R Rothman
- Department of Biology, Center for Regenerative and Developmental Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA, 02155, USA
| | - Douglas J Blackiston
- Department of Biology, Center for Regenerative and Developmental Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA, 02155, USA
| | - Michael Levin
- Department of Biology, Center for Regenerative and Developmental Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA, 02155, USA.
| |
Collapse
|
33
|
Dunn TW, Gebhardt C, Naumann EA, Riegler C, Ahrens MB, Engert F, Del Bene F. Neural Circuits Underlying Visually Evoked Escapes in Larval Zebrafish. Neuron 2016; 89:613-28. [PMID: 26804997 PMCID: PMC4742414 DOI: 10.1016/j.neuron.2015.12.021] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 07/20/2015] [Accepted: 12/03/2015] [Indexed: 11/26/2022]
Abstract
Escape behaviors deliver organisms away from imminent catastrophe. Here, we characterize behavioral responses of freely swimming larval zebrafish to looming visual stimuli simulating predators. We report that the visual system alone can recruit lateralized, rapid escape motor programs, similar to those elicited by mechanosensory modalities. Two-photon calcium imaging of retino-recipient midbrain regions isolated the optic tectum as an important center processing looming stimuli, with ensemble activity encoding the critical image size determining escape latency. Furthermore, we describe activity in retinal ganglion cell terminals and superficial inhibitory interneurons in the tectum during looming and propose a model for how temporal dynamics in tectal periventricular neurons might arise from computations between these two fundamental constituents. Finally, laser ablations of hindbrain circuitry confirmed that visual and mechanosensory modalities share the same premotor output network. We establish a circuit for the processing of aversive stimuli in the context of an innate visual behavior.
Collapse
Affiliation(s)
- Timothy W Dunn
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; Program in Neuroscience, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Christoph Gebhardt
- Institut Curie, PSL Research University, INSERM, U 934, CNRS UMR3215, 26 rue d'Ulm, 75005 Paris, France
| | - Eva A Naumann
- Department of Neuroscience, Physiology & Pharmacology, University College London, London WC1E 6BT, UK
| | - Clemens Riegler
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; Department of Neurobiology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Wien, Austria
| | - Misha B Ahrens
- Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, VA 20147, USA
| | - Florian Engert
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; Program in Neuroscience, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| | - Filippo Del Bene
- Institut Curie, PSL Research University, INSERM, U 934, CNRS UMR3215, 26 rue d'Ulm, 75005 Paris, France.
| |
Collapse
|
34
|
Liu Z, Ciarleglio CM, Hamodi AS, Aizenman CD, Pratt KG. A population of gap junction-coupled neurons drives recurrent network activity in a developing visual circuit. J Neurophysiol 2016; 115:1477-86. [PMID: 26763780 DOI: 10.1152/jn.01046.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 01/08/2016] [Indexed: 01/04/2023] Open
Abstract
In many regions of the vertebrate brain, microcircuits generate local recurrent activity that aids in the processing and encoding of incoming afferent inputs. Local recurrent activity can amplify, filter, and temporally and spatially parse out incoming input. Determining how these microcircuits function is of great interest because it provides glimpses into fundamental processes underlying brain computation. Within the Xenopus tadpole optic tectum, deep layer neurons display robust recurrent activity. Although the development and plasticity of this local recurrent activity has been well described, the underlying microcircuitry is not well understood. Here, using a whole brain preparation that allows for whole cell recording from neurons of the superficial tectal layers, we identified a physiologically distinct population of excitatory neurons that are gap junctionally coupled and through this coupling gate local recurrent network activity. Our findings provide a novel role for neuronal coupling among excitatory interneurons in the temporal processing of visual stimuli.
Collapse
Affiliation(s)
- Zhenyu Liu
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming; and
| | | | - Ali S Hamodi
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming; and
| | - Carlos D Aizenman
- Department of Neuroscience, Brown University, Providence, Rhode Island
| | - Kara G Pratt
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming; and
| |
Collapse
|
35
|
Ciarleglio CM, Khakhalin AS, Wang AF, Constantino AC, Yip SP, Aizenman CD. Multivariate analysis of electrophysiological diversity of Xenopus visual neurons during development and plasticity. eLife 2015; 4. [PMID: 26568314 PMCID: PMC4728129 DOI: 10.7554/elife.11351] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/12/2015] [Indexed: 12/26/2022] Open
Abstract
Biophysical properties of neurons become increasingly diverse over development, but mechanisms underlying and constraining this diversity are not fully understood. Here we investigate electrophysiological characteristics of Xenopus tadpole midbrain neurons across development and during homeostatic plasticity induced by patterned visual stimulation. We show that in development tectal neuron properties not only change on average, but also become increasingly diverse. After sensory stimulation, both electrophysiological diversity and functional differentiation of cells are reduced. At the same time, the amount of cross-correlations between cell properties increase after patterned stimulation as a result of homeostatic plasticity. We show that tectal neurons with similar spiking profiles often have strikingly different electrophysiological properties, and demonstrate that changes in intrinsic excitability during development and in response to sensory stimulation are mediated by different underlying mechanisms. Overall, this analysis and the accompanying dataset provide a unique framework for further studies of network maturation in Xenopus tadpoles.
Collapse
Affiliation(s)
- Christopher M Ciarleglio
- Biology Program, Brown University, Annandale-on-Hudson, United States.,Department of Neuroscience, Brown University, Providence, United States
| | - Arseny S Khakhalin
- Biology Program, Bard College, Annandale-on-Hudson, United States.,Department of Neuroscience, Brown University, Providence, United States
| | - Angelia F Wang
- Biology Program, Bard College, Annandale-on-Hudson, United States.,Department of Neuroscience, Brown University, Providence, United States
| | - Alexander C Constantino
- Biology Program, Bard College, Annandale-on-Hudson, United States.,Department of Neuroscience, Brown University, Providence, United States
| | - Sarah P Yip
- Biology Program, Bard College, Annandale-on-Hudson, United States.,Department of Neuroscience, Brown University, Providence, United States
| | - Carlos D Aizenman
- Biology Program, Bard College, Annandale-on-Hudson, United States.,Department of Neuroscience, Brown University, Providence, United States
| |
Collapse
|
36
|
Abstract
Autism spectrum disorder (ASD) is increasingly thought to result from low-level deficits in synaptic development and neural circuit formation that cascade into more complex cognitive symptoms. However, the link between synaptic dysfunction and behavior is not well understood. By comparing the effects of abnormal circuit formation and behavioral outcomes across different species, it should be possible to pinpoint the conserved fundamental processes that result in disease. Here we use a novel model for neurodevelopmental disorders in which we expose Xenopus laevis tadpoles to valproic acid (VPA) during a critical time point in brain development at which neurogenesis and neural circuit formation required for sensory processing are occurring. VPA is a commonly prescribed antiepileptic drug with known teratogenic effects. In utero exposure to VPA in humans or rodents results in a higher incidence of ASD or ASD-like behavior later in life. We find that tadpoles exposed to VPA have abnormal sensorimotor and schooling behavior that is accompanied by hyperconnected neural networks in the optic tectum, increased excitatory and inhibitory synaptic drive, elevated levels of spontaneous synaptic activity, and decreased neuronal intrinsic excitability. Consistent with these findings, VPA-treated tadpoles also have increased seizure susceptibility and decreased acoustic startle habituation. These findings indicate that the effects of VPA are remarkably conserved across vertebrate species and that changes in neural circuitry resulting from abnormal developmental pruning can cascade into higher-level behavioral deficits.
Collapse
|