1
|
Sales ISL, de Souza AG, Chaves Filho AJM, Sampaio TL, da Silva DMA, Valentim JT, Chaves RDC, Soares MVR, Costa Júnior DC, Barbosa Filho JM, Macêdo DS, de Sousa FCF. Antidepressant-like effect of riparin I and riparin II against CUMS-induced neuroinflammation via astrocytes and microglia modulation in mice. Behav Pharmacol 2024; 35:314-326. [PMID: 39094014 DOI: 10.1097/fbp.0000000000000788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Depression is a common mood disorder and many patients do not respond to conventional pharmacotherapy or experience a variety of adverse effects. This work proposed that riparin I (RIP I) and riparin II (RIP II) present neuroprotective effects through modulation of astrocytes and microglia, resulting in the reversal of depressive-like behaviors. To verify our hypothesis and clarify the pathways underlying the effect of RIP I and RIP II on neuroinflammation, we used the chronic unpredictable mild stress (CUMS) depression model in mice. Male Swiss mice were exposed to stressors for 28 days. From 15 th to the 22 nd day, the animals received RIP I or RIP II (50 mg/kg) or fluoxetine (FLU, 10 mg/kg) or vehicle, by gavage. On the 29 th day, behavioral tests were performed. Expressions of microglia (ionized calcium-binding adaptor molecule-1 - Iba-1) and astrocyte (glial fibrillary acidic protein - GFAP) markers and levels of cytokines tumor necrosis factor alfa (TNF-α) and interleukin 1 beta (IL-1β) were measured in the hippocampus. CUMS induced depressive-like behaviors and cognitive impairment, high TNF-α and IL-1β levels, decreased GFAP, and increased Iba-1 expressions. RIP I and RIP II reversed these alterations. These results contribute to the understanding the mechanisms underlying the antidepressant effect of RIP I and RIP II, which may be related to neuroinflammatory suppression.
Collapse
Affiliation(s)
- Iardja S L Sales
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza
| | - Alana G de Souza
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza
- Brazilian Hospital Services Company (EBSERH) - University Hospital, Federal University of Goias, Goiania
| | - Adriano J M Chaves Filho
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza
| | - Tiago L Sampaio
- Department of Clinical and Toxicological Analysis, Federal University of Ceara, Fortaleza, Ceara
| | - Daniel M A da Silva
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza
| | - José T Valentim
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza
| | - Raquell de C Chaves
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza
| | - Michelle V R Soares
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza
| | - Dilailson C Costa Júnior
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza
| | - José M Barbosa Filho
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutical Science, Federal University of Paraiba, João Pessoa, Brazil
| | - Danielle S Macêdo
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza
| | - Francisca Cléa Florenço de Sousa
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza
| |
Collapse
|
2
|
Conrad CD, Peay DN, Acuña AM, Whittaker K, Donnay ME. Corticosterone disrupts spatial working memory during retention testing when highly taxed, which positively correlates with depressive-like behavior in middle-aged, ovariectomized female rats. Horm Behav 2024; 164:105600. [PMID: 39003890 PMCID: PMC11330725 DOI: 10.1016/j.yhbeh.2024.105600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024]
Abstract
Major Depressive Disorder affects 8.4 % of the U.S. population, particularly women during perimenopause. This study implemented a chronic corticosterone manipulation (CORT, a major rodent stress hormone) using middle-aged, ovariectomized female rats to investigate depressive-like behavior, anxiety-like symptoms, and cognitive ability. CORT (400 μg/ml, in drinking water) was administered for four weeks before behavioral testing began and continued throughout all behavioral assessments. Compared to vehicle-treated rats, CORT significantly intensified depressive-like behaviors: CORT decreased sucrose preference, enhanced immobility on the forced swim test, and decreased sociability on a choice task between a novel conspecific female rat and an inanimate object. Moreover, CORT enhanced anxiety-like behavior on a marble bury task by reducing time investigating tabasco-topped marbles. No effects were observed on novelty suppressed feeding or the elevated plus maze. For spatial working memory using an 8-arm radial arm maze, CORT did not alter acquisition but disrupted performance during retention. CORT enhanced the errors committed during the highest working memory load following a delay and during the last trial requiring the most items to remember; this cognitive metric positively correlated with a composite depressive-like score to reveal that as depressive-like symptoms increased, cognitive performance worsened. This protocol allowed for the inclusion of multiple behavioral assessments without stopping the CORT treatment needed to produce a MDD phenotype and to assess a battery of behaviors. Moreover, that when middle-age was targeted, chronic CORT produced a depressive-like phenotype in ovariectomized females, who also comorbidly expressed aspects of anxiety and cognitive dysfunction.
Collapse
Affiliation(s)
- Cheryl D Conrad
- Arizona State University, Department of Psychology, Box 1104, Tempe 85287, AZ, United States.
| | - Dylan N Peay
- Arizona State University, Department of Psychology, Box 1104, Tempe 85287, AZ, United States
| | - Amanda M Acuña
- Arizona State University, Department of Psychology, Box 1104, Tempe 85287, AZ, United States
| | - Kennedy Whittaker
- Arizona State University, Department of Psychology, Box 1104, Tempe 85287, AZ, United States
| | - Megan E Donnay
- Arizona State University, Department of Psychology, Box 1104, Tempe 85287, AZ, United States
| |
Collapse
|
3
|
Tapp ZM, Ren C, Palmer K, Kumar J, Atluri RR, Fitzgerald J, Velasquez J, Godbout J, Sheridan J, Kokiko-Cochran ON. Divergent Spatial Learning, Enhanced Neuronal Transcription, and Blood-Brain Barrier Disruption Develop During Recovery from Post-Injury Sleep Fragmentation. Neurotrauma Rep 2023; 4:613-626. [PMID: 37752925 PMCID: PMC10518692 DOI: 10.1089/neur.2023.0018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023] Open
Abstract
Traumatic brain injury (TBI) causes pathophysiology that may significantly decrease quality of life over time. A major propagator of this response is chronic, maladaptive neuroinflammation, which can be exacerbated by stressors such as sleep fragmentation (SF). This study determined whether post-TBI SF had lasting behavioral and inflammatory effects even with a period of recovery. To test this, male and female mice received a moderate lateral fluid percussion TBI or sham surgery. Half the mice were left undisturbed, and half were exposed to daily SF for 30 days. All mice were then undisturbed between 30 and 60 days post-injury (DPI), allowing mice to recover from SF (SF-R). SF-R did not impair global Barnes maze performance. Nonetheless, TBI SF-R mice displayed retrogression in latency to reach the goal box within testing days. These nuanced behavioral changes in TBI SF-R mice were associated with enhanced expression of neuronal processing/signaling genes and indicators of blood-brain barrier (BBB) dysfunction. Aquaporin-4 (AQP4) expression, a marker of BBB integrity, was differentially altered by TBI and TBI SF-R. For example, TBI enhanced cortical AQP4 whereas TBI SF-R mice had the lowest cortical expression of perivascular AQP4, dysregulated AQP4 polarization, and the highest number of CD45+ cells in the ipsilateral cortex. Altogether, post-TBI SF caused lasting, divergent behavioral responses associated with enhanced expression of neuronal transcription and BBB disruption even after a period of recovery from SF. Understanding lasting impacts from post-TBI stressors can better inform both acute and chronic post-injury care to improve long-term outcome post-TBI.
Collapse
Affiliation(s)
- Zoe M. Tapp
- Department of Neuroscience, College of Medicine, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| | - Cindy Ren
- Department of Neuroscience, College of Medicine, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| | - Kelsey Palmer
- Department of Neuroscience, College of Medicine, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| | - Julia Kumar
- Department of Neuroscience, College of Medicine, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| | - Ravitej R. Atluri
- Department of Neuroscience, College of Medicine, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| | - Julie Fitzgerald
- Department of Neuroscience, College of Medicine, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| | - John Velasquez
- Department of Neuroscience, College of Medicine, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| | - Jonathan Godbout
- Department of Neuroscience, College of Medicine, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
- Chronic Brain Injury Program, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
- Institute for Behavioral Medicine Research, Neurological Institute, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| | - John Sheridan
- Department of Neuroscience, College of Medicine, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
- Chronic Brain Injury Program, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| | - Olga N. Kokiko-Cochran
- Department of Neuroscience, College of Medicine, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
- Chronic Brain Injury Program, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
- Institute for Behavioral Medicine Research, Neurological Institute, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
4
|
Peay DN, Acuna A, Reynolds CM, Willis C, Takalkar R, Bryce Ortiz J, Conrad CD. Chronic stress leads to persistent and contrasting stellate neuron dendritic hypertrophy in the amygdala of male and female rats, an effect not found in the hippocampus. Neurosci Lett 2023; 812:137403. [PMID: 37473795 DOI: 10.1016/j.neulet.2023.137403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/02/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
In males, chronic stress enhances dendritic complexity in the amygdala, a region important in emotion regulation. An amygdalar subregion, the basolateral amygdala (BLA), is influenced by the hippocampus and prefrontal cortex to coordinate emotional learning and memory. This study quantified changes in dendritic complexity of BLA stellate neurons ten days after an unpredictable chronic stressor ended in both male and female rats. In addition, dendritic complexity of hippocampal neurons in male rats was assessed at a similar timepoint. Following Golgi processing, stressed male and female rats showed enhanced BLA dendritic complexity; increased arborization occurred near the soma in males and distally in females. As the brain was sampled ten days after chronic stress ended, BLA dendritic hypertrophy persisted in both sexes after the stressor had ended. For the hippocampus, CA3 dendritic complexity was similar for control and stressed males when assessed eight days after stress ended, suggesting that any stress-induced changes had resolved. These results show persistent enhancement of BLA dendritic arborization in both sexes following chronic stress, reveal sex differences in how BLA hypertrophy manifests, and suggest a putative neurobiological substrate by which chronic stress may create a vulnerable phenotype for emotional dysfunction.
Collapse
Affiliation(s)
- Dylan N Peay
- Department of Psychology, Arizona State University, Tempe, AZ, 85287-1104, United States
| | - Amanda Acuna
- Department of Psychology, Arizona State University, Tempe, AZ, 85287-1104, United States
| | - Cindy M Reynolds
- Department of Psychology, Arizona State University, Tempe, AZ, 85287-1104, United States
| | - Chris Willis
- Department of Psychology, Arizona State University, Tempe, AZ, 85287-1104, United States
| | - Rujuta Takalkar
- Department of Psychology, Arizona State University, Tempe, AZ, 85287-1104, United States
| | - J Bryce Ortiz
- Department of Psychology, Arizona State University, Tempe, AZ, 85287-1104, United States
| | - Cheryl D Conrad
- Department of Psychology, Arizona State University, Tempe, AZ, 85287-1104, United States.
| |
Collapse
|
5
|
Mohamadzadeh O, Hajinouri M, Moammer F, Tamehri Zadeh SS, Omid Shafiei G, Jafari A, Ostadian A, Talaei Zavareh SA, Hamblin MR, Yazdi AJ, Sheida A, Mirzaei H. Non-coding RNAs and Exosomal Non-coding RNAs in Traumatic Brain Injury: the Small Player with Big Actions. Mol Neurobiol 2023; 60:4064-4083. [PMID: 37020123 DOI: 10.1007/s12035-023-03321-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/14/2023] [Indexed: 04/07/2023]
Abstract
Nowadays, there is an increasing concern regarding traumatic brain injury (TBI) worldwide since substantial morbidity is observed after it, and the long-term consequences that are not yet fully recognized. A number of cellular pathways related to the secondary injury in brain have been identified, including free radical production (owing to mitochondrial dysfunction), excitotoxicity (regulated by excitatory neurotransmitters), apoptosis, and neuroinflammatory responses (as a result of activation of the immune system and central nervous system). In this context, non-coding RNAs (ncRNAs) maintain a fundamental contribution to post-transcriptional regulation. It has been shown that mammalian brains express high levels of ncRNAs that are involved in several brain physiological processes. Furthermore, altered levels of ncRNA expression have been found in those with traumatic as well non-traumatic brain injuries. The current review highlights the primary molecular mechanisms participated in TBI that describes the latest and novel results about changes and role of ncRNAs in TBI in both clinical and experimental research.
Collapse
Affiliation(s)
- Omid Mohamadzadeh
- Department of Neurological Surgery, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsasadat Hajinouri
- Department of Psychiatry, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Moammer
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | | | | | - Ameneh Jafari
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirreza Ostadian
- Department of Laboratory Medicine, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | | | - Amirhossein Sheida
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| |
Collapse
|
6
|
Calpe-López C, Martínez-Caballero MA, García-Pardo MP, Aguilar MA. Resilience to the effects of social stress on vulnerability to developing drug addiction. World J Psychiatry 2022; 12:24-58. [PMID: 35111578 PMCID: PMC8783163 DOI: 10.5498/wjp.v12.i1.24] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/01/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Abstract
We review the still scarce but growing literature on resilience to the effects of social stress on the rewarding properties of drugs of abuse. We define the concept of resilience and how it is applied to the field of drug addiction research. We also describe the internal and external protective factors associated with resilience, such as individual behavioral traits and social support. We then explain the physiological response to stress and how it is modulated by resilience factors. In the subsequent section, we describe the animal models commonly used in the study of resilience to social stress, and we focus on the effects of chronic social defeat (SD), a kind of stress induced by repeated experience of defeat in an agonistic encounter, on different animal behaviors (depression- and anxiety-like behavior, cognitive impairment and addiction-like symptoms). We then summarize the current knowledge on the neurobiological substrates of resilience derived from studies of resilience to the effects of chronic SD stress on depression- and anxiety-related behaviors in rodents. Finally, we focus on the limited studies carried out to explore resilience to the effects of SD stress on the rewarding properties of drugs of abuse, describing the current state of knowledge and suggesting future research directions.
Collapse
Affiliation(s)
| | | | - Maria P García-Pardo
- Faculty of Social and Human Sciences, University of Zaragoza, Teruel 44003, Spain
| | - Maria A Aguilar
- Department of Psychobiology, University of Valencia, Valencia 46010, Spain
| |
Collapse
|
7
|
Azadirachta indica A. Juss flower extract attenuates memory deficit - induced by restraint stress in male rats. PHYSIOLOGY AND PHARMACOLOGY 2021. [DOI: 10.52547/phypha.27.1.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
8
|
Brouillard C, Carrive P, Sévoz-Couche C. Social defeat: Vagal reduction and vulnerability to ventricular arrhythmias. Neurobiol Stress 2020; 13:100245. [PMID: 33344701 PMCID: PMC7739042 DOI: 10.1016/j.ynstr.2020.100245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 12/13/2022] Open
Abstract
Previously, a sub-population of defeated anesthetized rats (Dlow) was characterized by persistent low blood levels of brain-derived neurotrophic factor (BDNF) at day 29 and autonomic alteration at day 30 after social challenge, while the other population (Dhigh) was similar to non-defeated (ND) animals. The aims of this study were to determine the time-course of autonomic dysfunction in awake animals, and whether Dhigh and/or Dlow were vulnerable to cardiac events. Defeated animals were exposed to four daily episodes of social defeats from day 1 to day 4. At day 30, anesthetized Dlow displayed decreased experimental and spontaneous reflex responses reflecting lower parasympathetic efficiency. In addition, Dlow but not Dhigh were characterized by left ventricular hypertrophy at day 30. Telemetric recordings revealed that Dlow had increased low frequency-to-high frequency ratio (LF/HF) and diastolic (DBP) and systolic (SBP) blood pressure, associated with decreased HF and spontaneous baroreflex responses (BRS) from day 3 to day 29. LF/HF, DBP and SBP recovered at day 5, and HF and BRS recovered at day 15 in Dhigh. Ventricular premature beats (VPBs) occurred in Dlow and Dhigh animals from day 5. Time course of VBP fluctuations in Dhigh mirrored that of HF and BRS, but not that of LF/HF, DBP and SBP. These results suggest that a psychosocial stress associated to low serum BDNF levels can lead to vulnerability to persistent autonomic dysfunction, cardiac hypertrophy and ventricular ectopic beats. The parasympathetic recovery seen in Dhigh may provide protection against cardiac events in this population.
Collapse
Affiliation(s)
- Charly Brouillard
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, F-75005, Paris, France
| | - Pascal Carrive
- Blood Pressure, Brain and Behavior Laboratory, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Caroline Sévoz-Couche
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, F-75005, Paris, France
| |
Collapse
|
9
|
Zhang B, Zhao J, Wang Z, Xu L, Liu A, Du G. DL0410 attenuates oxidative stress and neuroinflammation via BDNF/TrkB/ERK/CREB and Nrf2/HO-1 activation. Int Immunopharmacol 2020; 86:106729. [PMID: 32645628 DOI: 10.1016/j.intimp.2020.106729] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/02/2020] [Accepted: 06/19/2020] [Indexed: 12/11/2022]
Abstract
Oxidative stress and neuroinflammation have been deeply associated with Alzheimer's disease. DL0410 is a novel acetylcholinesterase inhibitor with potential anti-oxidative effects in AD-related animal models, while the specific mechanism has not been fully clarified. In this study, DL0410 was predicted to be related to the modification of cell apoptosis, oxidation-reduction process, inflammatory response and ERK1/ERK2 cascade by in silico target fishing and GO enrichment analysis. Then the possible protective effects of DL0410 were evaluated by hydrogen peroxide (H2O2)-induced oxidative stress model and lipopolysaccharides (LPS)-induced neuroinflammation model H2O2 decreased the viability of SH-SY5Y cells, induced malondialdehyde (MDA) accumulation, mitochondrial membrane potential (Δψm) loss and cell apoptosis, which could be reversed by DL0410 dose-dependently, indicating that DL0410 protected SH-SY5Y cells against H2O2-mediated oxidative stress. Western blot analysis showed that DL0410 increased the H2O2-triggered down-regulated TrkB, ERK and CREB phosphorylation and the expression of BDNF. In addition, TrkB inhibitor ANA-12, ERK inhibitor SCH772984 and CREB inhibitor 666-15 eliminated the inhibition of DL0410 on MDA accumulation and Δψm loss. Furthermore, DL0410 attenuates inflammatory responses and ROS production in LPS-treated BV2 cells, which is responsible for Nrf2 and HO-1 up-regulation. The present study demonstrates that DL0410 is a potential activator of the BDNF/TrkB/ERK/CREB and Nrf2/HO-1 pathway and may be a potential candidate for regulating oxidative stress and neuroinflammatory response in the brain. Together, the results showed that DL0410 is a promising drug candidate for treating AD and possibly other nervous system diseases associated with oxidative stress and neuroinflammation.
Collapse
Affiliation(s)
- Baoyue Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jun Zhao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhe Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Lvjie Xu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ailin Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Guanhua Du
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
10
|
Florentino D, Della Giustina A, de Souza Goldim MP, Danielski LG, de Oliveira Junior AN, Joaquim L, Bonfante S, Biehl E, da Rosa N, Fernandes D, Gava FF, Michels M, Fortunato JJ, Réus GZ, S Valvassori S, Quevedo J, Dal-Pizzol F, Barichello T, Petronilho F. Early life neuroimmune challenge protects the brain after sepsis in adult rats. Neurochem Int 2020; 135:104712. [DOI: 10.1016/j.neuint.2020.104712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/24/2020] [Accepted: 02/27/2020] [Indexed: 12/20/2022]
|
11
|
Xu H, Jia Z, Ma K, Zhang J, Dai C, Yao Z, Deng W, Su J, Wang R, Chen X. Protective effect of BMSCs-derived exosomes mediated by BDNF on TBI via miR-216a-5p. Med Sci Monit 2020; 26:e920855. [PMID: 32150531 PMCID: PMC7081927 DOI: 10.12659/msm.920855] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Transplantation of exosomes derived from mesenchymal stem cells (MSCs-Exo) can improve the recovery of neurological function in rats after traumatic brain injury (TBI). We tested a new hypothesis that brain-derived neurotrophic factor (BDNF)-induced MSCs-Exo can effectively promote functional recovery and neurogenesis in rats after TBI. Material/Methods BM-MSCs of rats were extracted by whole bone marrow culture, BDNF was added to BM-MSCs as an intervention, supernatant was collected, and exosomes were separated and purified by ultracentrifugation. Exosomes were identified by Western blot (WB), transmission electron microscopy (TEM), and particle size analysis and were subsequently used in cell and animal experiments. The experimental animals were divided into a sham group, a PBS group, an MSCs-Exo group, and a BDNF-induced MSCs-Exo group (n=12). An electric cortical contusion impactor (eCCI) was used to cause TBI in all rats except the sham group. We investigated the recovery of sensorimotor function and spatial learning ability, inflammation inhibition, and neuron regeneration in rats after TBI. Results Compared with the MSCs-Exo group, the BDNF-induced MSCs-Exo group showed better effects in promoting the recovery of sensorimotor function and spatial learning ability. BDNF-induced MSCs-Exo successfully inhibited inflammation and promoted neuronal regeneration in vivo and in vitro. We further analyzed miRNAs in BDNF-induced MSCs-Exo and MSCs-Exo and found that the expression of miR-216a-5p in BDNF-induced MSCs-Exo was significantly higher than that in MSCs-Exo as determined by qRT-PCR. Rescue experiments indicated that miR-216a-5p had a similar function as BDNF-induced MSCs-Exo. Conclusions We found that BDNF-induced MSCs-Exo can improve cell migration and inhibit apoptosis better than MSCs-Exo in rats after TBI, and the mechanism may be related to the high expression of miR-216a-5p.
Collapse
Affiliation(s)
- Huiyou Xu
- Department of Neurosurgery, Characteristic Medical Center of Chinese People's Armed Police Force; Institution of Brain Trauma and Neurology Disease of People's Armed Police Forces; Tianjin Key Laboratory of Neurotrauma Repair, Tianjin, China (mainland).,Logistics University of Chinese People's Armed Police Force, Tianjin, China (mainland)
| | - Zhilong Jia
- Department of Neurosurgery, Characteristic Medical Center of Chinese People's Armed Police Force; Institution of Brain Trauma and Neurology Disease of People's Armed Police Forces; Tianjin Key Laboratory of Neurotrauma Repair, Tianjin, China (mainland)
| | - Ke Ma
- Department of Neurosurgery, Characteristic Medical Center of Chinese People's Armed Police Force; Institution of Brain Trauma and Neurology Disease of People's Armed Police Forces; Tianjin Key Laboratory of Neurotrauma Repair, Tianjin, China (mainland).,Logistics University of Chinese People's Armed Police Force, Tianjin, China (mainland)
| | - Jian Zhang
- Department of Neurosurgery, Characteristic Medical Center of Chinese People's Armed Police Force; Institution of Brain Trauma and Neurology Disease of People's Armed Police Forces; Tianjin Key Laboratory of Neurotrauma Repair, Tianjin, China (mainland).,Logistics University of Chinese People's Armed Police Force, Tianjin, China (mainland)
| | - Chen Dai
- Department of Neurosurgery, Characteristic Medical Center of Chinese People's Armed Police Force; Institution of Brain Trauma and Neurology Disease of People's Armed Police Forces; Tianjin Key Laboratory of Neurotrauma Repair, Tianjin, China (mainland).,Logistics University of Chinese People's Armed Police Force, Tianjin, China (mainland)
| | - Zitong Yao
- Department of Neurosurgery, Characteristic Medical Center of Chinese People's Armed Police Force; Institution of Brain Trauma and Neurology Disease of People's Armed Police Forces; Tianjin Key Laboratory of Neurotrauma Repair, Tianjin, China (mainland).,Logistics University of Chinese People's Armed Police Force, Tianjin, China (mainland)
| | - Wusheng Deng
- Department of Neurosurgery, Characteristic Medical Center of Chinese People's Armed Police Force; Institution of Brain Trauma and Neurology Disease of People's Armed Police Forces; Tianjin Key Laboratory of Neurotrauma Repair, Tianjin, China (mainland).,Logistics University of Chinese People's Armed Police Force, Tianjin, China (mainland)
| | - Jianzhong Su
- Department of Neurosurgery, Characteristic Medical Center of Chinese People's Armed Police Force; Institution of Brain Trauma and Neurology Disease of People's Armed Police Forces; Tianjin Key Laboratory of Neurotrauma Repair, Tianjin, China (mainland)
| | - Renjie Wang
- Department of Neurosurgery, Characteristic Medical Center of Chinese People's Armed Police Force; Institution of Brain Trauma and Neurology Disease of People's Armed Police Forces; Tianjin Key Laboratory of Neurotrauma Repair, Tianjin, China (mainland)
| | - Xuyi Chen
- Department of Neurosurgery, Characteristic Medical Center of Chinese People's Armed Police Force; Institution of Brain Trauma and Neurology Disease of People's Armed Police Forces; Tianjin Key Laboratory of Neurotrauma Repair, Tianjin, China (mainland)
| |
Collapse
|
12
|
Huang J, Zhu Y, Fan F, Chen S, Hong Y, Cui Y, Luo X, Tan S, Wang Z, Shang L, Yuan Y, Zhang J, Yang F, Li CSR, Rowland LM, Kochunov P, Zhang F, Hong LE, Tan Y. Hippocampus and cognitive domain deficits in treatment-resistant schizophrenia: A comparison with matched treatment-responsive patients and healthy controls ✰,✰✰,★,★★. Psychiatry Res Neuroimaging 2020; 297:111043. [PMID: 32062167 PMCID: PMC7490244 DOI: 10.1016/j.pscychresns.2020.111043] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 01/27/2023]
Abstract
Some patients with schizophrenia do not respond to pharmacotherapy. More severe cognitive dysfunctions have been associated with treatment-resistant schizophrenia (TRS). This study examines cognitive functions and hippocampal volumes in 43 patients with TRS and compared them to 43 treatment-responsive patients (NTRS), matched on age, sex and education, as well as 53 healthy controls (HC). The results showed that there were significant deficits in all domains of cognition and hippocampal volumes in TRS as compared to HC group. However, TRS specific deficits, as indicated by comparisons with matched NTRS, were limited to poorer performance in working memory (p = 0.003) and smaller total hippocampal volume (p = 0.01). Logistic regression analysis showed that working memory deficits [OR 0.94 (95% CI 0.89-0.98), p = 0.005] and smaller hippocampal volume [OR 0.89 (95% CI 0.81-0.97), p = 0.01], but not their interactions (p = 0.68), contributed to higher risk of treatment resistance. The findings suggest that treatment-resistance to currently available antipsychotic medications may not be due to global cognitive deficits in these patients, but be associated with specific deficits in working memory and hippocampus deficits in the subgroup of schizophrenia.
Collapse
Affiliation(s)
- Junchao Huang
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, P. R. China
| | - Yu Zhu
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, P. R. China
| | - Fengmei Fan
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, P. R. China
| | - Song Chen
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, P. R. China
| | - Yuan Hong
- Department of Epidemiology and Biostatistics, University of South Carolina Arnold School of Public Health, Columbia, SC, United States
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, Beijing, P.R. China
| | - Xingguang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Shuping Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, P. R. China
| | - Zhiren Wang
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, P. R. China
| | - Lan Shang
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, P. R. China
| | - Ying Yuan
- School of Foreign Languages and Literature, Tianjin University, Tianjin, P. R. China
| | - Jianxin Zhang
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, P. R. China
| | - Fude Yang
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, P. R. China
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Laura M Rowland
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, United States
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, United States
| | - Fengyu Zhang
- Global Clinical and Translational Research Institute, Bethesda, United States
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, United States
| | - Yunlong Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, P. R. China.
| |
Collapse
|
13
|
Chronic unpredictable intermittent restraint stress disrupts spatial memory in male, but not female rats. Behav Brain Res 2020; 383:112519. [PMID: 32006567 DOI: 10.1016/j.bbr.2020.112519] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/11/2020] [Accepted: 01/28/2020] [Indexed: 12/12/2022]
Abstract
Chronic stress leads to sex-dependent outcomes on spatial memory by producing deficits in males, but not in females. Recently it was reported that compared to daily restraint, intermittent restraint (IR) produced more robust stress and anxiety responses in male rats. Whether IR would be sufficiently robust to impair hippocampal-dependent spatial memory in both male and female rats was investigated. IR involved mixing restraint with non-restraint days over weeks before assessing spatial memory and anxiety profile on the radial arm water maze, object placement, novel object recognition, Y-maze, open field and novelty suppressed feeding. Experiments 1 and 2 used Sprague-Dawley male rats only and determined that IR for 6 h/d (IR6), but not 2 h/d, impaired spatial memory and that task order was important. In experiment 3, IR6 was extended for 6wks before spatial memory testing commenced using both sexes. Unexpectedly, an extended IR6 paradigm failed to impair spatial memory in either sex, suggesting that by 6wks IR6 may have become predictable. In experiment 4, an unpredictable IR (UIR) paradigm was implemented, in which restraint duration (30 or 60-min) combined with orbital shaking, time of day, and the days off from UIR were varied. UIR impaired spatial memory in males, but not in females. Together with other reports, these findings support the interpretation that chronic stress negatively impairs hippocampal-dependent function in males, but not in females. We interpret these findings to show that females are more resilient to chronic stress than are males as it pertains to spatial ability.
Collapse
|
14
|
Moench KM, Breach MR, Wellman CL. Prior stress followed by a novel stress challenge results in sex-specific deficits in behavioral flexibility and changes in gene expression in rat medial prefrontal cortex. Horm Behav 2020; 117:104615. [PMID: 31634476 PMCID: PMC6980662 DOI: 10.1016/j.yhbeh.2019.104615] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 12/19/2022]
Abstract
Chronic stress leads to sex-specific changes in the structure and function of rat medial prefrontal cortex (mPFC). Little is known about whether these effects persist following the cessation of chronic stress, or how these initial effects may impact responses to future stressors. Here we examined attentional set-shifting in male and female rats following chronic restraint stress, a post-chronic stress rest period, and an acute novel stress challenge. Chronic stress resulted in a reversible impairment in extradimensional set-shifting in males, but had no effect on attentional set-shifting in females. Surprisingly, chronically stressed female, but not male, rats had impaired extradimensional set-shifting following a novel stress challenge. Alterations in the balance of excitation and inhibition of mPFC have been implicated in behavioral deficits following chronic stress. Thus, in a separate group of rats, we examined changes in the expression of genes related to glutamatergic (NR1, NR2A, NR2B, GluR1) and GABAergic (Gad67, parvalbumin, somatostatin) neurotransmission in mPFC after acute and chronic stress, rest, and their combination. Stress significantly altered the expression of NR1, GluR1, Gad67, and parvalbumin. Notably, the pattern of stress effects on NR1, Gad67, and parvalbumin expression differed between males and females. In males, these genes were upregulated following the post-chronic stress rest period, while minimal changes were found in females. In contrast, both males and females had greater GluR1 expression following a rest period. These findings suggest that chronic stress leads to sex-specific stress adaptation mechanisms that may contribute to sex differences in response to subsequent stress exposure.
Collapse
Affiliation(s)
- Kelly M Moench
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA; Program in Neuroscience, Indiana University, Bloomington, IN, USA; Center for the Integrative Study of Animal Behavior, Bloomington, IN, USA; Indiana University, Bloomington, IN, USA
| | - Michaela R Breach
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Cara L Wellman
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA; Program in Neuroscience, Indiana University, Bloomington, IN, USA; Center for the Integrative Study of Animal Behavior, Bloomington, IN, USA; Indiana University, Bloomington, IN, USA.
| |
Collapse
|
15
|
Brouillard C, Carrive P, Camus F, Bénoliel JJ, Sévoz-Couche C. Vulnerability to stress consequences induced by repeated social defeat in rats: Contribution of the angiotensin II type 1 receptor in cardiovascular alterations associated to low brain derived neurotrophic factor. Eur J Pharmacol 2019; 861:172595. [DOI: 10.1016/j.ejphar.2019.172595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 08/02/2019] [Accepted: 08/07/2019] [Indexed: 01/17/2023]
|
16
|
Yang Y, Yang S, Liu J, Feng Y, Qi F, Zhao R. DNA Hypomethylation of GR Promoters is Associated with GR Activation and BDNF/AKT/ERK1/2-Induced Hippocampal Neurogenesis in Mice Derived From Folic-Acid-Supplemented Dams. Mol Nutr Food Res 2019; 63:e1801334. [PMID: 30920123 DOI: 10.1002/mnfr.201801334] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/20/2019] [Indexed: 12/20/2022]
Abstract
SCOPE Glucocorticoid receptor (GR) mediates the nutritional programing of offspring performance. Maternal folic acid has been shown to regulate hippocampal neurogenesis and affect cognitive function in offspring, yet it remains unclear whether and how GR is involved in such effects. METHODS AND RESULTS Adult male mice derived from dams fed basal or folic-acid-supplemented diet (5 mg folic acid/kg) throughout gestation and lactation are used in this study. Maternal folic acid significantly enhances offspring learning and memory with less fear-related behavior. Concurrently, hippocampal neurogenesis is improved with upregulation of brain-derived neurotrophic factor and its downstream AKT/ERK1/2 signaling pathway. More GR immune-positive cells are observed in hippocampus of folic acid group, which are in line with higher GR protein and mRNA abundances. Differential expression of GR exon 1 transcript variants is detected, which is inversely associated with modified DNA methylation on their alternate promoters. CONCLUSION The results indicate that maternal folic acid supplementation promotes hippocampal neurogenesis and improves learning and memory behavior in mouse offspring. The mechanisms involve modification of DNA methylation on GR alternate promoters and GR upregulation in the hippocampus, which is associated with activation of BDNF/AKT/ERK1/2 signaling.
Collapse
Affiliation(s)
- Yang Yang
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095, P. R. China.,Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Shu Yang
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095, P. R. China.,Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Jie Liu
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095, P. R. China.,Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Yue Feng
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095, P. R. China.,Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Fulei Qi
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095, P. R. China.,Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Ruqian Zhao
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095, P. R. China.,Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| |
Collapse
|
17
|
Ortiz JB, Anglin JM, Daas EJ, Paode PR, Nishimura K, Conrad CD. BDNF and TrkB Mediate the Improvement from Chronic Stress-induced Spatial Memory Deficits and CA3 Dendritic Retraction. Neuroscience 2018; 388:330-346. [DOI: 10.1016/j.neuroscience.2018.07.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 02/07/2023]
|
18
|
Effects of Antipsychotic Drugs on the Epigenetic Modification of Brain-Derived Neurotrophic Factor Gene Expression in the Hippocampi of Chronic Restraint Stress Rats. Neural Plast 2018; 2018:2682037. [PMID: 29991943 PMCID: PMC6016229 DOI: 10.1155/2018/2682037] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 03/19/2018] [Accepted: 04/01/2018] [Indexed: 01/23/2023] Open
Abstract
Recent studies have shown that antipsychotic drugs have epigenetic effects. However, the effects of antipsychotic drugs on histone modification remain unclear. Therefore, we investigated the effects of antipsychotic drugs on the epigenetic modification of the BDNF gene in the rat hippocampus. Rats were subjected to chronic restraint stress (6 h/d for 21 d) and then were administered with either olanzapine (2 mg/kg) or haloperidol (1 mg/kg). The levels of histone H3 acetylation and MeCP2 binding at BDNF promoter IV were assessed with chromatin immunoprecipitation assays. The mRNA levels of total BDNF with exon IV, HDAC5, DNMT1, and DNMT3a were assessed with a quantitative RT-PCR procedure. Chronic restraint stress resulted in the downregulation of total and exon IV BDNF mRNA levels and a decrease in histone H3 acetylation and an increase in MeCP2 binding at BDNF promoter IV. Furthermore, there were robust increases in the expression of HDAC5 and DNMTs. Olanzapine administration largely prevented these changes. The administration of haloperidol had no effect. These findings suggest that the antipsychotic drug olanzapine induced histone modification of BDNF gene expression in the hippocampus and that these epigenetic alterations may represent one of the mechanisms underlying the actions of antipsychotic drugs.
Collapse
|
19
|
Ortiz JB, Conrad CD. The impact from the aftermath of chronic stress on hippocampal structure and function: Is there a recovery? Front Neuroendocrinol 2018; 49:114-123. [PMID: 29428548 DOI: 10.1016/j.yfrne.2018.02.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 12/18/2022]
Abstract
Chronic stress results in functional and structural changes to the brain and especially the hippocampus. Decades of research have provided insights into the mechanisms by which chronic stress impairs hippocampal-mediated cognition and the corresponding reduction of hippocampal CA3 apical dendritic complexity. Yet, when chronic stress ends and time passes, which we refer to as a "post-stress rest period," hippocampal-mediated spatial memory deficits begin to improve and CA3 apical dendritic arbors increase in complexity. The processes by which the hippocampus improves from a chronically stressed state are not simply the reversal of the mechanisms that produced spatial memory deficits and CA3 apical dendritic retraction. This review will discuss our current understanding of how a chronically stressed hippocampus improves after a post-stress rest period. Untangling the mechanisms that allow for this post-stress plasticity is a critical next step in understanding how to promote resilience in the face of stressors.
Collapse
Affiliation(s)
- J Bryce Ortiz
- Department of Psychology, Arizona State University, Box 1104, Tempe, AZ 85287-1104, United States.
| | - Cheryl D Conrad
- Department of Psychology, Arizona State University, Box 1104, Tempe, AZ 85287-1104, United States
| |
Collapse
|
20
|
Flanagan JC, Fischer MS, Nietert PJ, Back SE, Maria MMS, Snead A, Brady KT. Effects of oxytocin on cortisol reactivity and conflict resolution behaviors among couples with substance misuse. Psychiatry Res 2018; 260:346-352. [PMID: 29232576 PMCID: PMC5988859 DOI: 10.1016/j.psychres.2017.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 12/02/2017] [Accepted: 12/02/2017] [Indexed: 11/15/2022]
Abstract
Social stress, particularly in the form of dyadic conflict, is a well-established correlate of substance use disorders (SUD). The neuropeptide oxytocin can enhance prosocial behavior and mitigate addictive behaviors. These effects may be, in part, a result of oxytocin's ability to attenuate hypothalamic-pituitary-adrenal (HPA) axis dysregulation. However, only one study to date has examined the effects of oxytocin on neuroendocrine reactivity or conflict resolution behavior among couples. Participants (N = 33 couples or 66 total participants) were heterosexual couples in which one or both partners endorsed substance misuse. Using a double-blind, placebo-controlled, repeated-measures design and an evidence-based behavioral coding system, we compared the impact of oxytocin (40 IU) vs. placebo on cortisol reactivity and conflict resolution behaviors. Among women, oxytocin attenuated cortisol response following the task. Oxytocin was also associated with increased Distress Maintaining Attributions and decreased Relationship Enhancing Attributions. Among men, oxytocin was associated with decreased Distress Maintaining Attributions, and both oxytocin and placebo yielded declines in Relationship Enhancing Attributions. The findings support emerging hypotheses that oxytocin may have differential effects in men and women, and indicate the need for future efforts to translate oxytocin's positive neurobiological effects into therapeutic behavioral changes.
Collapse
Affiliation(s)
| | | | - Paul J Nietert
- Medical University of South Carolina, Charleston, SC, USA
| | - Sudie E Back
- Medical University of South Carolina, Charleston, SC, USA; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA
| | | | | | - Kathleen T Brady
- Medical University of South Carolina, Charleston, SC, USA; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA
| |
Collapse
|
21
|
Sadeghi M, Reisi P, Radahmadi M. The effects of CCK-8S on spatial memory and long-term potentiation at CA1 during induction of stress in rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2017; 20:1368-1376. [PMID: 29238473 PMCID: PMC5722998 DOI: 10.22038/ijbms.2017.9619] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Objectives Cholecystokinin (CCK) has been proposed as a mediator in stress. However, it is still not fully documented what are its effects. We aimed to evaluate the effects of systemic administration of CCK exactly before induction of stress on spatial memory and synaptic plasticity at CA1 in rats. Materials and Methods Male Wistar rats were divided into 4 groups: the control, the control-CCK, the stress and the stress-CCK. Restraint stress was induced 6 hr per day, for 24 days. Cholecystokinin sulfated octapeptide (CCK-8S) was injected (1.6 µg/kg, IP) before each session of stress induction. Spatial memory was evaluated by Morris water maze test. Long-term potentiation (LTP) in Schaffer collateral-CA1 synapses was assessed (by 100 Hz tetanization) in order to investigate synaptic plasticity. Results Stress impaired spatial memory significantly (P<0.01). CCK in the control rats improved memory (P<0.05), and prevented the impairments in the stress group. With respect to the control group, both fEPSP amplitude and slope were significantly (P<0.05) decreased in the stress group. However, there were no differences between responses of the control-CCK and Stress-CCK groups compared to the control group. Conclusion The present results suggest that high levels of CCK-8S during induction of stress can modulate the destructive effects of stress on hippocampal synaptic plasticity and memory. Therefore, the mediatory effects of CCK in stress are likely as compensatory responses.
Collapse
Affiliation(s)
- Malihe Sadeghi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parham Reisi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Radahmadi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
22
|
Li XN, Chen L, Luo B, Li X, Wang CY, Zou W, Zhang P, You Y, Tang XQ. Hydrogen sulfide attenuates chronic restrain stress-induced cognitive impairment by upreglulation of Sirt1 in hippocampus. Oncotarget 2017; 8:100396-100410. [PMID: 29245987 PMCID: PMC5725029 DOI: 10.18632/oncotarget.22237] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/05/2017] [Indexed: 12/22/2022] Open
Abstract
Chronic restraint stress (CRS) has detrimental effects on cognitive function. Hydrogen sulfide (H2S), as a neuromodulator, regulates learning and memory. Hippocampus is a key structure in learning and memory. Sirt1 (silence signal regulating factor 1) plays an important role in modulating cognitive function. Therefore, our present work was to investigate whether H2S meliorates CRS-induced damage in hippocampus and impairment in cognition, and further to explore whether the underlying mechanism is via upreglulating Sirt1. In our present work, the behavior experiments [Y-maze test, Novel object recognition (NOR) test, Morris water maze (MWM) test] showed that sodium hydrosulfide (NaHS, a donor of H2S) blocked CRS-induced cognitive impairments in rats. NaHS inhibited CRS-induced hippocampal oxidative stress as evidenced by decrease in MDA level as well as increases in GSH content and SOD activity. NaHS rescued CRS-generated ER stress as evidenced by downregulations of CPR78, CHOP, and cleaved caspase-12. NaHS reduced CRS-exerted apoptosis as evidenced by decreases in the number of TUNEL-positive cells and Bax expression as well as increase in Bcl-2 expression. NaHS upregulated the expression of Sirt1 in the hippocampus of CRS-exposed rats. Furthermore, inhibited Sirt1 by Sirtinol reversed the protective effects of NaHS against CRS-produced cognitive dysfunction and oxidative stress, ER stress as well as apoptosis in hippocampus. Together, these results suggest that H2S meliorates CRS-induced hippocampal damage and cognitive impairment by upregulation of hippocampal Sirt1.
Collapse
Affiliation(s)
- Xiao-Na Li
- Institute of Neuroscience, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Medical College, University of South China, Hengyang 421001, Hunan, P. R. China.,Department of Physiology, Medical College, University of South China, Hengyang 421001, Hunan, P. R. China
| | - Lei Chen
- Institute of Neuroscience, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Medical College, University of South China, Hengyang 421001, Hunan, P. R. China.,Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang 421001, Hunan, P. R. China
| | - Bang Luo
- Institute of Neuroscience, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Medical College, University of South China, Hengyang 421001, Hunan, P. R. China.,Department of Neurology, The First Affiliated Hospital, University of South China, Hengyang 421001, Hunan, P. R. China
| | - Xiang Li
- Institute of Neuroscience, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Medical College, University of South China, Hengyang 421001, Hunan, P. R. China.,Department of Anaesthesiology, The First Affiliated Hospital, University of South China, Hengyang 421001, Hunan, P. R. China
| | - Chun-Yan Wang
- Institute of Neuroscience, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Medical College, University of South China, Hengyang 421001, Hunan, P. R. China.,Department of Pathophysiology, Medical College, University of South China, Hengyang 421001, Hunan, P. R. China
| | - Wei Zou
- Institute of Neuroscience, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Medical College, University of South China, Hengyang 421001, Hunan, P. R. China.,Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang 421001, Hunan, P. R. China
| | - Ping Zhang
- Institute of Neuroscience, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Medical College, University of South China, Hengyang 421001, Hunan, P. R. China.,Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang 421001, Hunan, P. R. China
| | - Yong You
- Institute of Neuroscience, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Medical College, University of South China, Hengyang 421001, Hunan, P. R. China.,Department of Neurology, The First Affiliated Hospital, University of South China, Hengyang 421001, Hunan, P. R. China
| | - Xiao-Qing Tang
- Institute of Neuroscience, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Medical College, University of South China, Hengyang 421001, Hunan, P. R. China.,Department of Physiology, Medical College, University of South China, Hengyang 421001, Hunan, P. R. China
| |
Collapse
|
23
|
Alzoubi KH, Rawashdeh NQ, Khabour OF, El-Elimat T, Albataineh H, Al-Zghool HM, Alali FQ. Evaluation of the Effect of Moringa peregrina Extract on Learning and Memory: Role of Oxidative Stress. J Mol Neurosci 2017; 63:355-363. [DOI: 10.1007/s12031-017-0986-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 10/05/2017] [Indexed: 12/11/2022]
|
24
|
Othman H, Ammari M, Sakly M, Abdelmelek H. Effects of repeated restraint stress and WiFi signal exposure on behavior and oxidative stress in rats. Metab Brain Dis 2017; 32:1459-1469. [PMID: 28451780 DOI: 10.1007/s11011-017-0016-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/17/2017] [Indexed: 12/14/2022]
Abstract
Today, due to technology development and aversive events of daily life, Human exposure to both radiofrequency and stress is unavoidable. This study investigated the co-exposure to repeated restraint stress and WiFi signal on cognitive function and oxidative stress in brain of male rats. Animals were divided into four groups: Control, WiFi-exposed, restrained and both WiFi-exposed and restrained groups. Each of WiFi exposure and restraint stress occurred 2 h (h)/day during 20 days. Subsequently, various tests were carried out for each group, such as anxiety in elevated plus maze, spatial learning abilities in the water maze, cerebral oxidative stress response and cholinesterase activity in brain and serum. Results showed that WiFi exposure and restraint stress, alone and especially if combined, induced an anxiety-like behavior without impairing spatial learning and memory abilities in rats. At cerebral level, we found an oxidative stress response triggered by WiFi and restraint, per se and especially when combined as well as WiFi-induced increase in acetylcholinesterase activity. Our results reveal that there is an impact of WiFi signal and restraint stress on the brain and cognitive processes especially in elevated plus maze task. In contrast, there are no synergistic effects between WiFi signal and restraint stress on the brain.
Collapse
Affiliation(s)
- Haifa Othman
- Faculty of Sciences of Bizerte, Laboratory of Integrative Physiology, University of Carthage, 7021, Jarzouna, Tunisia
| | - Mohamed Ammari
- Faculty of Sciences of Bizerte, Laboratory of Integrative Physiology, University of Carthage, 7021, Jarzouna, Tunisia.
- Higher Institute of Applied Biological Sciences of Tunis, University of Tunis El Manar, 9, Rue Zouhair Essafi, 1006, Tunis, Tunisia.
| | - Mohsen Sakly
- Faculty of Sciences of Bizerte, Laboratory of Integrative Physiology, University of Carthage, 7021, Jarzouna, Tunisia
| | - Hafedh Abdelmelek
- Faculty of Sciences of Bizerte, Laboratory of Integrative Physiology, University of Carthage, 7021, Jarzouna, Tunisia
| |
Collapse
|
25
|
Nishimura KJ, Ortiz JB, Conrad CD. Antagonizing the GABA A receptor during behavioral training improves spatial memory at different doses in control and chronically stressed rats. Neurobiol Learn Mem 2017; 145:114-118. [PMID: 28890150 DOI: 10.1016/j.nlm.2017.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/27/2017] [Accepted: 09/06/2017] [Indexed: 01/05/2023]
Abstract
Chronic stress leads to a dysregulated inhibitory tone that could impact hippocampal-dependent spatial learning and memory. The present study examined whether spatial memory deficits resulting from chronic stress could be overcome by antagonizing the GABAA receptor, a prominent inhibitory receptor of GABA in the hippocampus. Young adult male Sprague-Dawley rats were chronically stressed (STR, wire mesh restraint, 6h/d/21d) or placed in a no-stress control group (CON). When chronic restraint ended, rats were tested on a 2-trial object placement (OP) task at a delay (3h) that would result in chance performance without intervention and then on novel object recognition (NOR) and the elevated plus maze (EPM) to assess non-spatial memory and anxiety profile. In CON rats, Bicuculline (BIC, 0, 0.25, 0.5mg/kg), a GABAA antagonist, injected 30min prior to training led to facilitated OP performance with 0.25 and 0.5mg/kg doses. In contrast, STR rats required BIC at the highest dose (0.5mg/kg) to improve OP performance. While overall object exploration was decreased by chronic stress, motivation or anxiety profile were unlikely to explain these results. These findings reveal two different dose response functions for BIC in control and chronically stressed rats, with the dose response function of BIC being shifted to the right for chronically stressed rats compared to controls in order to improve spatial memory. While the literature demonstrates that chronic stress disrupts hippocampal inhibitory tone, the current study reveals that a single injection to antagonize the GABAA receptor can restore hippocampal-dependent spatial memory in chronically stressed subjects.
Collapse
Affiliation(s)
- Kenji J Nishimura
- Department of Psychology, Arizona State University, Tempe, AZ 85287, United States
| | - J Bryce Ortiz
- Department of Psychology, Arizona State University, Tempe, AZ 85287, United States
| | - Cheryl D Conrad
- Department of Psychology, Arizona State University, Tempe, AZ 85287, United States.
| |
Collapse
|
26
|
Zhang Q, Wang X, Bai X, Xie Y, Zhang T, Bo S, Chen X. Resveratrol reversed chronic restraint stress-induced impaired cognitive function in rats. Mol Med Rep 2017; 16:2095-2100. [PMID: 28656303 DOI: 10.3892/mmr.2017.6851] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 05/02/2017] [Indexed: 11/05/2022] Open
Abstract
Chronic stress occurs in everyday life, and often results in memory impairments and depressive symptoms. Resveratrol is a natural polyphenol that possesses numerous biological properties, including potent antidepressant‑like effects. The present study aimed to examine the effects of resveratrol treatment on chronic restraint stress (CRS)‑induced cognitive impairment and to explore the underlying molecular mechanisms. Male Wistar rats were exposed to CRS for 21 days in order to induce depressive‑like behavior. The results demonstrated that CRS (6 h/day, 21 days) was able to induce cognitive deficits in rats, as evidenced by Morris water maze and novel object recognition tests. In addition, CRS exposure significantly decreased the mRNA and protein expression levels of hippocampal brain‑derived neurotrophic factor (BDNF) in the rats. Conversely, chronic treatment with resveratrol (80 mg/kg, i.p.; 21 days) significantly prevented the behavioral and biochemical alterations induced by CRS. The effects of resveratrol were nearly identical to those observed with fluoxetine treatment. In conclusion, the present study demonstrated that resveratrol may be a potential therapeutic agent for the treatment of chronic stress‑induced cognitive impairments, and its underlying molecular mechanism may be associated with the increased levels of hippocampal BDNF.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Medical Psychology, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Xueer Wang
- Department of Medical Psychology, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Xuemei Bai
- Department of Medical Psychology, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Yunkai Xie
- Department of Medical Psychology, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Tiantian Zhang
- Department of Medical Psychology, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Shishi Bo
- Department of Medical Psychology, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Xiaoyang Chen
- Humanities Medical Research Center, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
27
|
Conrad CD, Ortiz JB, Judd JM. Chronic stress and hippocampal dendritic complexity: Methodological and functional considerations. Physiol Behav 2016; 178:66-81. [PMID: 27887995 DOI: 10.1016/j.physbeh.2016.11.017] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/16/2016] [Accepted: 11/18/2016] [Indexed: 12/30/2022]
Abstract
The current understanding of how chronic stress impacts hippocampal dendritic arbor complexity and the subsequent relationship to hippocampal-dependent spatial memory is reviewed. A surge in reports investigating hippocampal dendritic morphology is occurring, but with wide variations in methodological detail being reported. Consequently, this review systematically outlines the basic neuroanatomy of relevant hippocampal features to help clarify how chronic stress or glucocorticoids impact hippocampal dendritic complexity and how these changes occur in parallel with spatial cognition. Chronic stress often leads to hippocampal CA3 apical dendritic retraction first with other hippocampal regions (CA3 basal dendrites, CA1, dentate gyrus, DG) showing dendritic retraction when chronic stress is sufficiently robust or long lasting. The stress-induced reduction in hippocampal CA3 apical dendritic arbor complexity often coincides with impaired hippocampal function, such as spatial learning and memory. Yet, when chronic stress ends and a post-stress recovery period ensues, the atrophied dendritic arbors and poor spatial abilities often improve. However, this process differs from a simple reversal of chronic stress-induced deficits. Recent reports suggest that this return to baseline-like functioning is uniquely different from non-stressed controls, emphasizing the need for further studies to enhance our understanding of how a history of stress subsequently alters an organism's spatial abilities. To provide a consistent framework for future studies, this review concludes with an outline for a quick and easy reference on points to consider when planning chronic stress studies with the goal of measuring hippocampal dendritic complexity and spatial ability.
Collapse
Affiliation(s)
- Cheryl D Conrad
- Department of Psychology, Arizona State University, Box 1104, Tempe, AZ 85287-1104, United States.
| | - J Bryce Ortiz
- Department of Psychology, Arizona State University, Box 1104, Tempe, AZ 85287-1104, United States
| | - Jessica M Judd
- Department of Psychology, Arizona State University, Box 1104, Tempe, AZ 85287-1104, United States
| |
Collapse
|
28
|
Dendritic Spines in Depression: What We Learned from Animal Models. Neural Plast 2016; 2016:8056370. [PMID: 26881133 PMCID: PMC4736982 DOI: 10.1155/2016/8056370] [Citation(s) in RCA: 301] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 11/26/2015] [Indexed: 02/07/2023] Open
Abstract
Depression, a severe psychiatric disorder, has been studied for decades, but the underlying mechanisms still remain largely unknown. Depression is closely associated with alterations in dendritic spine morphology and spine density. Therefore, understanding dendritic spines is vital for uncovering the mechanisms underlying depression. Several chronic stress models, including chronic restraint stress (CRS), chronic unpredictable mild stress (CUMS), and chronic social defeat stress (CSDS), have been used to recapitulate depression-like behaviors in rodents and study the underlying mechanisms. In comparison with CRS, CUMS overcomes the stress habituation and has been widely used to model depression-like behaviors. CSDS is one of the most frequently used models for depression, but it is limited to the study of male mice. Generally, chronic stress causes dendritic atrophy and spine loss in the neurons of the hippocampus and prefrontal cortex. Meanwhile, neurons of the amygdala and nucleus accumbens exhibit an increase in spine density. These alterations induced by chronic stress are often accompanied by depression-like behaviors. However, the underlying mechanisms are poorly understood. This review summarizes our current understanding of the chronic stress-induced remodeling of dendritic spines in the hippocampus, prefrontal cortex, orbitofrontal cortex, amygdala, and nucleus accumbens and also discusses the putative underlying mechanisms.
Collapse
|
29
|
Acute and chronic stress differentially regulate cyclin-dependent kinase 5 in mouse brain: implications to glucocorticoid actions and major depression. Transl Psychiatry 2015; 5:e578. [PMID: 26057048 PMCID: PMC4490283 DOI: 10.1038/tp.2015.72] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 04/23/2015] [Indexed: 12/19/2022] Open
Abstract
Stress activates the hypothalamic-pituitary-adrenal axis, which in turn increases circulating glucocorticoid concentrations and stimulates the glucocorticoid receptor (GR). Chronically elevated glucocorticoids by repetitive exposure to stress are implicated in major depression and anxiety disorders. Cyclin-dependent kinase 5 (CDK5), a molecule essential for nervous system development, function and pathogenesis of neurodegenerative disorders, can modulate GR activity through phosphorylation. We examined potential contribution of CDK5 to stress response and pathophysiology of major depression. In mice, acute immobilized stress (AS) caused a biphasic effect on CDK5 activity, initially reducing but increasing afterwards in prefrontal cortex (PFC) and hippocampus (HIPPO), whereas chronic unpredictable stress (CS) strongly increased it in these brain areas, indicating that AS and CS differentially regulate this kinase activity in a brain region-specific fashion. GR phosphorylation contemporaneously followed the observed changes of CDK5 activity after AS, thus CDK5 may in part alter GR phosphorylation upon this stress. In the postmortem brains of subjects with major depression, CDK5 activity was elevated in Brodmann's area 25, but not in entire PFC and HIPPO. Messenger RNA expression of glucocorticoid-regulated/stress-related genes showed distinct expression profiles in several brain areas of these stressed mice or depressive subjects in which CDK5-mediated changes in GR phosphorylation may have some regulatory roles. Taken together, these results indicate that CDK5 is an integral component of stress response and major depression with regulatory means specific to different stressors, brain areas and diseases in part through changing phosphorylation of GR.
Collapse
|
30
|
Ortiz JB, Taylor SB, Hoffman AN, Campbell AN, Lucas LR, Conrad CD. Sex-specific impairment and recovery of spatial learning following the end of chronic unpredictable restraint stress: potential relevance of limbic GAD. Behav Brain Res 2015; 282:176-84. [PMID: 25591480 DOI: 10.1016/j.bbr.2014.12.051] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/19/2014] [Accepted: 12/23/2014] [Indexed: 12/26/2022]
Abstract
Chronic restraint stress alters hippocampal-dependent spatial learning and memory in a sex-dependent manner, impairing spatial performance in male rats and leaving intact or facilitating performance in female rats. Moreover, these stress-induced spatial memory deficits improve following post-stress recovery in males. The current study examined whether restraint administered in an unpredictable manner would eliminate these sex differences and impact a post-stress period on spatial ability and limbic glutamic acid decarboxylase (GAD65) expression. Male (n=30) and female (n=30) adult Sprague-Dawley rats were assigned to non-stressed control (Con), chronic stress (Str-Imm), or chronic stress given a post-stress recovery period (Str-Rec). Stressed rats were unpredictably restrained for 21 days using daily non-repeated combinations of physical context, duration, and time of day. Then, all rats were tested on the radial arm water maze (RAWM) for 2 days and given one retention trial on the third day, with brains removed 30min later to assess GAD65 mRNA. In Str-Imm males, deficits occurred on day 1 of RAWM acquisition, an impairment that was not evident in the Str-Rec group. In contrast, females did not show significant outcomes following chronic stress or post-stress recovery. In males, amygdalar GAD65 expression negatively correlated with RAWM performance on day 1. In females, hippocampal CA1 GAD65 positively correlated with RAWM performance on day 1. These results demonstrate that GABAergic function may contribute to the sex differences observed following chronic stress. Furthermore, unpredictable restraint and a recovery period failed to eliminate the sex differences on spatial learning and memory.
Collapse
Affiliation(s)
- J Bryce Ortiz
- Department of Psychology, Arizona State University, Box 1104, Tempe, AZ 85287-1104, United States.
| | - Sara B Taylor
- Department of Psychology, Arizona State University, Box 1104, Tempe, AZ 85287-1104, United States.
| | - Ann N Hoffman
- Department of Psychology, Arizona State University, Box 1104, Tempe, AZ 85287-1104, United States.
| | - Alyssa N Campbell
- Department of Psychology, Arizona State University, Box 1104, Tempe, AZ 85287-1104, United States.
| | - Louis R Lucas
- Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065-6307, United States.
| | - Cheryl D Conrad
- Department of Psychology, Arizona State University, Box 1104, Tempe, AZ 85287-1104, United States.
| |
Collapse
|
31
|
Dayi A, Cetin F, Sisman AR, Aksu I, Tas A, Gönenc S, Uysal N. The effects of oxytocin on cognitive defect caused by chronic restraint stress applied to adolescent rats and on hippocampal VEGF and BDNF levels. Med Sci Monit 2015; 21:69-75. [PMID: 25559382 PMCID: PMC4294596 DOI: 10.12659/msm.893159] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Background Because brain development continues during adolescence, the effects of chronic stress on hippocampal changes that occur during that period are permanent. Oxytocin, which is synthesized in the hypothalamus and has many receptors in brain regions, including the hippocampus, may affect learning-memory. This study aimed to investigate chronic restraint stress on hippocampal functions, and hippocampal vascular endothelial growth factor (VEGF) and brain-derived neurotrophic factor (BDNF) levels in adolescent male and female rats and the role of oxytocin in these effects. Material/Methods Experimental groups included control, stress+oxytocin, and stress+saline groups. Restraint stress was applied to all the stress groups for 1 h/day, for 7 days. Learning-memory tests were performed after the 7th day. Results In the stress+oxytocin groups, the process of finding the platform was shorter than in others groups. The stress+saline groups spent less time, whereas the stress+oxytocin groups spent more time, on the target quadrant in the probe trial. In the stress+oxytocin groups thigmotaxis time (indicating anxiety) decreased, but VEGF and BDNF levels increased. A positive correlation was found between VEGF and BDNF levels and the time spent within the target quadrant. Conclusions The results indicate that impaired hippocampal learning and memory loss due to chronic restraint stress can be positively affected by intranasal oxytocin.
Collapse
Affiliation(s)
- Ayfer Dayi
- Department of Physiology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Ferihan Cetin
- Department of Physiology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Ali Riza Sisman
- Department of Biochemistry, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Ilkay Aksu
- Department of Physiology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Aysegul Tas
- Department of Physiology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Sevil Gönenc
- Department of Physiology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Nazan Uysal
- Department of Physiology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|