1
|
Liu X, Zhang Z, Gan L, Yu P, Dai J. Medium Spiny Neurons Mediate Timing Perception in Coordination with Prefrontal Neurons in Primates. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412963. [PMID: 39932056 PMCID: PMC12021029 DOI: 10.1002/advs.202412963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/19/2024] [Indexed: 04/26/2025]
Abstract
Timing perception is a fundamental cognitive function that allows organisms to navigate their environment effectively, encompassing both prospective and retrospective timing. Despite significant advancements in understanding how the brain processes temporal information, the neural mechanisms underlying these two forms of timing remain largely unexplored. In this study, it aims to bridge this knowledge gap by elucidating the functional roles of various neuronal populations in the striatum and prefrontal cortex (PFC) in shaping subjective experiences of time. Utilizing a large-scale electrode array, it recorded responses from over 3000 neurons in the striatum and PFC of macaque monkeys during timing tasks. The analysis classified neurons into distinct groups and revealed that retrospective and prospective timings are governed by separate neural processes. Specifically, this study demonstrates that medium spiny neurons (MSNs) in the striatum play a crucial role in facilitating these timing processes. Through cell-type-specific manipulation, it identified D2-MSNs as the primary contributors to both forms of timing. Additionally, the findings indicate that effective processing of timing requires coordination between the PFC and the striatum. In summary, this study advances the understanding of the neural foundations of timing perception and highlights its behavioral implications.
Collapse
Affiliation(s)
- Xinhe Liu
- Shenzhen Technological Research Center for Primate Translational MedicineShenzhen‐Hong Kong Institutes of Brain ScienceShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
- CAS Key Laboratory of Brain Connectome and Manipulationthe Brain Cognition and Brain Disease InstitutesShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
- Guangdong Provincial Key Laboratory of Brain Connectome and BehaviorShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Zhiting Zhang
- Shenzhen Technological Research Center for Primate Translational MedicineShenzhen‐Hong Kong Institutes of Brain ScienceShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
- CAS Key Laboratory of Brain Connectome and Manipulationthe Brain Cognition and Brain Disease InstitutesShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
- Guangdong Provincial Key Laboratory of Brain Connectome and BehaviorShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Lu Gan
- Research Center for Medical Artificial IntelligenceShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Panke Yu
- Shenzhen Technological Research Center for Primate Translational MedicineShenzhen‐Hong Kong Institutes of Brain ScienceShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
- University of Chinese Academy of SciencesBeijing100049China
| | - Ji Dai
- Shenzhen Technological Research Center for Primate Translational MedicineShenzhen‐Hong Kong Institutes of Brain ScienceShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
- CAS Key Laboratory of Brain Connectome and Manipulationthe Brain Cognition and Brain Disease InstitutesShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
- Guangdong Provincial Key Laboratory of Brain Connectome and BehaviorShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
- University of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
2
|
Apicella P, Martel AC, Marche K. Striatal function scrutinized through the PAN-TAN-FSI triumvirate. Front Cell Neurosci 2025; 19:1572657. [PMID: 40201383 PMCID: PMC11975669 DOI: 10.3389/fncel.2025.1572657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 03/11/2025] [Indexed: 04/10/2025] Open
Abstract
Understanding the information encoded by distinct components of the neuronal circuitry in the striatum represents an avenue for elucidating the role of this subcortical region in adaptive behavior and its dysfunction in pathological conditions. In behaving animals, conventional single neuron recordings generally differentiated between three main electrophysiologically identified neuron subtypes in the striatum, referred to as phasically active neurons (PANs), tonically active neurons (TANs), and fast-spiking interneurons (FSIs), assumed to correspond to GABAergic spiny projection neurons, cholinergic interneurons, and parvalbumin-containing GABAergic interneurons, respectively. Considerable research has been devoted to exploring the behavior-related activities of neurons classified electrophysiologically into PANs, TANs, and FSIs in animals engaged in task performance, mostly monkeys. Although precise neuron identification remains a major challenge, such electrophysiological studies have provided insights into the functional properties of presumed distinct striatal neuronal populations. In this review, we will focus on current ideas about the functions subserved by these neuron subtypes, emphasizing their link to specific aspects of behaviors. We will also underline the issues that are yet to be resolved regarding the classification of striatal neurons into distinct subgroups which emphasize the importance of considering the potential overlap among electrophysiological characteristics and the molecular diversity of neuron types in the striatum.
Collapse
Affiliation(s)
- Paul Apicella
- Institut de Neurosciences de la Timone UMR 7289, Aix Marseille Université, Marseille, France
| | | | | |
Collapse
|
3
|
Park J, Polidoro P, Fortunato C, Arnold J, Mensh B, Gallego JA, Dudman JT. Conjoint specification of action by neocortex and striatum. Neuron 2025; 113:620-636.e6. [PMID: 39837325 DOI: 10.1016/j.neuron.2024.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 09/09/2024] [Accepted: 12/19/2024] [Indexed: 01/23/2025]
Abstract
The interplay between two major forebrain structures-cortex and subcortical striatum-is critical for flexible, goal-directed action. Traditionally, it has been proposed that striatum is critical for selecting what type of action is initiated, while the primary motor cortex is involved in specifying the continuous parameters of an upcoming/ongoing movement. Recent data indicate that striatum may also be involved in specification. These alternatives have been difficult to reconcile because comparing very distinct actions, as is often done, makes essentially indistinguishable predictions. Here, we develop quantitative models to reveal a somewhat paradoxical insight: only comparing neural activity across similar actions makes strongly distinguishing predictions. We thus developed a novel reach-to-pull task in which mice reliably selected between two similar but distinct reach targets and pull forces. Simultaneous cortical and subcortical recordings were uniquely consistent with a model in which cortex and striatum jointly specify continuous parameters governing movement execution.
Collapse
Affiliation(s)
- Junchol Park
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| | - Peter Polidoro
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Catia Fortunato
- Department of Bioengineering, Imperial College London, London W12 0BZ, UK
| | - Jon Arnold
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Brett Mensh
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Juan A Gallego
- Department of Bioengineering, Imperial College London, London W12 0BZ, UK
| | - Joshua T Dudman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| |
Collapse
|
4
|
Verdel D, Bruneau O, Sahm G, Vignais N, Berret B. The value of time in the invigoration of human movements when interacting with a robotic exoskeleton. SCIENCE ADVANCES 2023; 9:eadh9533. [PMID: 37729420 PMCID: PMC10511201 DOI: 10.1126/sciadv.adh9533] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/18/2023] [Indexed: 09/22/2023]
Abstract
Time and effort are thought to be subjectively balanced during the planning of goal-directed actions, thereby setting the vigor of volitional movements. Theoretical models predicted that the value of time should then amount to high levels of effort. However, the time-effort trade-off has so far only been studied for a narrow range of efforts. To investigate the extent to which humans can invest in a time-saving effort, we used a robotic exoskeleton to substantially vary the energetic cost associated with a certain vigor during reaching movements. In this situation, minimizing the time-effort trade-off should lead to high and low human efforts for upward and downward movements, respectively. Consistently, all participants expended substantial amounts of energy upward and remained essentially inactive by harnessing the work of gravity downward, while saving time in both cases. A common time-effort trade-off may therefore determine the vigor of reaching movements for a wide range of efforts.
Collapse
Affiliation(s)
- Dorian Verdel
- Université Paris-Saclay, CIAMS, 91405 Orsay, France
- CIAMS, Université d’Orléans, Orléans, France
| | - Olivier Bruneau
- LURPA, Mechanical Engineering Department, ENS Paris-Saclay, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Guillaume Sahm
- Université Paris-Saclay, CIAMS, 91405 Orsay, France
- CIAMS, Université d’Orléans, Orléans, France
| | - Nicolas Vignais
- Université Paris-Saclay, CIAMS, 91405 Orsay, France
- CIAMS, Université d’Orléans, Orléans, France
| | - Bastien Berret
- Université Paris-Saclay, CIAMS, 91405 Orsay, France
- CIAMS, Université d’Orléans, Orléans, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
5
|
Fallon IP, Hughes RN, Severino FPU, Kim N, Lawry CM, Watson GDR, Roshchina M, Yin HH. The role of the parafascicular thalamic nucleus in action initiation and steering. Curr Biol 2023; 33:2941-2951.e4. [PMID: 37390830 PMCID: PMC10528051 DOI: 10.1016/j.cub.2023.06.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/19/2023] [Accepted: 06/08/2023] [Indexed: 07/02/2023]
Abstract
The parafascicular (Pf) nucleus of the thalamus has been implicated in arousal and attention, but its contributions to behavior remain poorly characterized. Here, using in vivo and in vitro electrophysiology, optogenetics, and 3D motion capture, we studied the role of the Pf nucleus in behavior using a continuous reward-tracking task in freely moving mice. We found that many Pf neurons precisely represent vector components of velocity, with a strong preference for ipsiversive movements. Their activity usually leads velocity, suggesting that Pf output is critical for self-initiated orienting behavior. To test this hypothesis, we expressed excitatory or inhibitory opsins in VGlut2+ Pf neurons to manipulate neural activity bidirectionally. We found that selective optogenetic stimulation of these neurons consistently produced ipsiversive head turning, whereas inhibition stopped turning and produced downward movements. Taken together, our results suggest that the Pf nucleus can send continuous top-down commands that specify detailed action parameters (e.g., direction and speed of the head), thus providing guidance for orienting and steering during behavior.
Collapse
Affiliation(s)
- Isabella P Fallon
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27708, USA
| | - Ryan N Hughes
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| | | | - Namsoo Kim
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| | - Clara M Lawry
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| | - Glenn D R Watson
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| | - Marina Roshchina
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| | - Henry H Yin
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA; Department of Neurobiology, Duke University School of Medicine, Durham, NC 27708, USA.
| |
Collapse
|
6
|
Sabzevar FT, Vautrelle N, Zheng Y, Smith PF. Vestibular modulation of the tail of the rat striatum. Sci Rep 2023; 13:4443. [PMID: 36932124 PMCID: PMC10023713 DOI: 10.1038/s41598-023-31289-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/09/2023] [Indexed: 03/19/2023] Open
Abstract
Fragmented and piecemeal evidence from animal and human studies suggests that vestibular information is transmitted to the striatum, a part of the basal ganglia that degenerates in Parkinson's Disease. Nonetheless, surprisingly little is known about the precise effects of activation of the vestibular system on the striatum. Electrophysiological studies have yielded inconsistent results, with many studies reporting only sparse responses to vestibular stimulation in the dorsomedial striatum. In this study, we sought to elucidate the effects of electrical stimulation of the peripheral vestibular system on electrophysiological responses in the tail of the rat striatum, a newly discovered region for sensory input. Rats were anaesthetised with urethane and a bipolar stimulating electrode was placed in the round window in order to activate the peripheral vestibular system. A recording electrode was positioned in the tail of the striatum. Local field potentials (LFPs) were recorded ipsilaterally and contralaterally to the stimulation using a range of current parameters. In order to confirm that the vestibular system was activated, video-oculography was used to monitor vestibular nystagmus. At current amplitudes that evoked vestibular nystagmus, clear triphasic LFPs were evoked in the bilateral tail of the striatum, with the first phase of the waveform exhibiting latencies of less than 22 ms. The LFP amplitude increased with increasing current amplitude (P ≤ 0.0001). In order to exclude the possibility that the LFPs were evoked by the activation of the auditory system, the cochlea was surgically lesioned in some animals. In these animals the LFPs persisted despite the cochlear lesions, which were verified histologically. Overall, the results obtained suggest that there are vestibular projections to the tail of the striatum, which could possibly arise from projections via the vestibular nucleus or cerebellum and the parafasicular nucleus of the thalamus.
Collapse
Affiliation(s)
| | - Nico Vautrelle
- Department of Anatomy, School of Biomedical Sciences, and Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Yiwen Zheng
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
- The Eisdell Moore Centre for Hearing and Balance Research, University of Auckland, Auckland, New Zealand
| | - Paul F Smith
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand.
- The Eisdell Moore Centre for Hearing and Balance Research, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
7
|
Minkowicz S, Mathews MA, Mou FH, Yoon H, Freda SN, Cui ES, Kennedy A, Kozorovitskiy Y. Striatal ensemble activity in an innate naturalistic behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529669. [PMID: 36865109 PMCID: PMC9980072 DOI: 10.1101/2023.02.23.529669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Self-grooming is an innate, naturalistic behavior found in a wide variety of organisms. The control of rodent grooming has been shown to be mediated by the dorsolateral striatum through lesion studies and in-vivo extracellular recordings. Yet, it is unclear how populations of neurons in the striatum encode grooming. We recorded single-unit extracellular activity from populations of neurons in freely moving mice and developed a semi-automated approach to detect self-grooming events from 117 hours of simultaneous multi-camera video recordings of mouse behavior. We first characterized the grooming transition-aligned response profiles of striatal projection neuron and fast spiking interneuron single units. We identified striatal ensembles whose units were more strongly correlated during grooming than during the entire session. These ensembles display varied grooming responses, including transient changes around grooming transitions or sustained changes in activity throughout the duration of grooming. Neural trajectories computed from the identified ensembles retain the grooming related dynamics present in trajectories computed from all units in the session. These results elaborate striatal function in rodent self-grooming and demonstrate that striatal grooming-related activity is organized within functional ensembles, improving our understanding of how the striatum guides action selection in a naturalistic behavior.
Collapse
Affiliation(s)
- Samuel Minkowicz
- Department of Neurobiology, Northwestern University, Evanston, IL, United States
| | | | - Felicia Hoilam Mou
- Department of Neurobiology, Northwestern University, Evanston, IL, United States
| | - Hyoseo Yoon
- Department of Neurobiology, Northwestern University, Evanston, IL, United States
| | - Sara Nicole Freda
- Department of Neurobiology, Northwestern University, Evanston, IL, United States
| | - Ethan S Cui
- Department of Neurobiology, Northwestern University, Evanston, IL, United States
| | - Ann Kennedy
- Department of Neuroscience, Northwestern University, Chicago, IL, United States
| | | |
Collapse
|
8
|
Gao Y. A computational model of learning flexible navigation in a maze by layout-conforming replay of place cells. Front Comput Neurosci 2023; 17:1053097. [PMID: 36846726 PMCID: PMC9947252 DOI: 10.3389/fncom.2023.1053097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 01/16/2023] [Indexed: 02/11/2023] Open
Abstract
Recent experimental observations have shown that the reactivation of hippocampal place cells (PC) during sleep or wakeful immobility depicts trajectories that can go around barriers and can flexibly adapt to a changing maze layout. However, existing computational models of replay fall short of generating such layout-conforming replay, restricting their usage to simple environments, like linear tracks or open fields. In this paper, we propose a computational model that generates layout-conforming replay and explains how such replay drives the learning of flexible navigation in a maze. First, we propose a Hebbian-like rule to learn the inter-PC synaptic strength during exploration. Then we use a continuous attractor network (CAN) with feedback inhibition to model the interaction among place cells and hippocampal interneurons. The activity bump of place cells drifts along paths in the maze, which models layout-conforming replay. During replay in sleep, the synaptic strengths from place cells to striatal medium spiny neurons (MSN) are learned by a novel dopamine-modulated three-factor rule to store place-reward associations. During goal-directed navigation, the CAN periodically generates replay trajectories from the animal's location for path planning, and the trajectory leading to a maximal MSN activity is followed by the animal. We have implemented our model into a high-fidelity virtual rat in the MuJoCo physics simulator. Extensive experiments have demonstrated that its superior flexibility during navigation in a maze is due to a continuous re-learning of inter-PC and PC-MSN synaptic strength.
Collapse
Affiliation(s)
- Yuanxiang Gao
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China,CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, China,*Correspondence: Yuanxiang Gao ✉
| |
Collapse
|
9
|
David FJ, Rivera YM, Entezar TK, Arora R, Drane QH, Munoz MJ, Rosenow JM, Sani SB, Pal GD, Verhagen-Metman L, Corcos DM. Encoding type, medication, and deep brain stimulation differentially affect memory-guided sequential reaching movements in Parkinson's disease. Front Neurol 2022; 13:980935. [PMID: 36324383 PMCID: PMC9618698 DOI: 10.3389/fneur.2022.980935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Memory-guided movements, vital to daily activities, are especially impaired in Parkinson's disease (PD). However, studies examining the effects of how information is encoded in memory and the effects of common treatments of PD, such as medication and subthalamic nucleus deep brain stimulation (STN-DBS), on memory-guided movements are uncommon and their findings are equivocal. We designed two memory-guided sequential reaching tasks, peripheral-vision or proprioception encoded, to investigate the effects of encoding type (peripheral-vision vs. proprioception), medication (on- vs. off-), STN-DBS (on- vs. off-, while off-medication), and compared STN-DBS vs. medication on reaching amplitude, error, and velocity. We collected data from 16 (analyzed n = 7) participants with PD, pre- and post-STN-DBS surgery, and 17 (analyzed n = 14) healthy controls. We had four important findings. First, encoding type differentially affected reaching performance: peripheral-vision reaches were faster and more accurate. Also, encoding type differentially affected reaching deficits in PD compared to healthy controls: peripheral-vision reaches manifested larger deficits in amplitude. Second, the effect of medication depended on encoding type: medication had no effect on amplitude, but reduced error for both encoding types, and increased velocity only during peripheral-vision encoding. Third, the effect of STN-DBS depended on encoding type: STN-DBS increased amplitude for both encoding types, increased error during proprioception encoding, and increased velocity for both encoding types. Fourth, STN-DBS was superior to medication with respect to increasing amplitude and velocity, whereas medication was superior to STN-DBS with respect to reducing error. We discuss our findings in the context of the previous literature and consider mechanisms for the differential effects of medication and STN-DBS.
Collapse
Affiliation(s)
- Fabian J. David
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Yessenia M. Rivera
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Tara K. Entezar
- School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, United States
| | - Rishabh Arora
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Quentin H. Drane
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Miranda J. Munoz
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Joshua M. Rosenow
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Sepehr B. Sani
- Department of Neurosurgery, Rush University Medical Center, Chicago, IL, United States
| | - Gian D. Pal
- Department of Neurology, Rutgers University, New Brunswick, NJ, United States
| | - Leonard Verhagen-Metman
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Daniel M. Corcos
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
10
|
Liang B, Zhang L, Zhang Y, Werner CT, Beacher NJ, Denman AJ, Li Y, Chen R, Gerfen CR, Barbera G, Lin DT. Striatal direct pathway neurons play leading roles in accelerating rotarod motor skill learning. iScience 2022; 25:104245. [PMID: 35494244 PMCID: PMC9046249 DOI: 10.1016/j.isci.2022.104245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/08/2022] [Accepted: 04/07/2022] [Indexed: 10/27/2022] Open
Abstract
Dorsal striatum is important for movement control and motor skill learning. However, it remains unclear how the spatially and temporally distributed striatal medium spiny neuron (MSN) activity in the direct and indirect pathways (D1 and D2 MSNs, respectively) encodes motor skill learning. Combining miniature fluorescence microscopy with an accelerating rotarod procedure, we identified two distinct MSN subpopulations involved in accelerating rotarod learning. In both D1 and D2 MSNs, we observed neurons that displayed activity tuned to acceleration during early stages of trials, as well as movement speed during late stages of trials. We found a distinct evolution trajectory for early-stage neurons during motor skill learning, with the evolution of D1 MSNs correlating strongly with performance improvement. Importantly, optogenetic inhibition of the early-stage neural activity in D1 MSNs, but not D2 MSNs, impaired accelerating rotarod learning. Together, this study provides insight into striatal D1 and D2 MSNs encoding motor skill learning.
Collapse
Affiliation(s)
- Bo Liang
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, USA
- School of Electrical Engineering & Computer Science, College of Engineering & Mines, University of North Dakota, Grand Forks, ND 58202, USA
| | - Lifeng Zhang
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Yan Zhang
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Craig T. Werner
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Nicholas J. Beacher
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Alex J. Denman
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Yun Li
- Department of Zoology and Physiology, University of Wyoming, 1000 E University Avenue, Laramie, WY 82071, USA
| | - Rong Chen
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 100 N Greene St, Baltimore, MD 21201, USA
| | - Charles R. Gerfen
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Building 49, Room 5A60, Bethesda, MD 20814, USA
| | - Giovanni Barbera
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Da-Ting Lin
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| |
Collapse
|
11
|
Callahan JW, Wokosin DL, Bevan MD. Dysregulation of the Basal Ganglia Indirect Pathway in Early Symptomatic Q175 Huntington's Disease Mice. J Neurosci 2022; 42:2080-2102. [PMID: 35058372 PMCID: PMC8916764 DOI: 10.1523/jneurosci.0782-21.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 12/16/2021] [Accepted: 01/11/2022] [Indexed: 11/21/2022] Open
Abstract
The debilitating psychomotor symptoms of Huntington's disease (HD) are linked partly to degeneration of the basal ganglia indirect pathway. At early symptomatic stages, before major cell loss, indirect pathway neurons exhibit numerous cellular and synaptic changes in HD and its models. However, the impact of these alterations on circuit activity remains poorly understood. To address this gap, optogenetic- and reporter-guided electrophysiological interrogation was used in early symptomatic male and female Q175 HD mice. D2 dopamine receptor-expressing striatal projection neurons (D2-SPNs) were hypoactive during synchronous cortical slow-wave activity, consistent with known reductions in dendritic excitability and cortical input strength. Downstream prototypic parvalbumin-expressing external globus pallidus (PV+ GPe) neurons discharged at 2-3 times their normal rate, even during periods of D2-SPN inactivity, arguing that defective striatopallidal inhibition was not the only cause of their hyperactivity. Indeed, PV+ GPe neurons also exhibited abnormally elevated autonomous firing ex vivo Optogenetic inhibition of PV+ GPe neurons in vivo partially and fully ameliorated the abnormal hypoactivity of postsynaptic subthalamic nucleus (STN) and putative PV- GPe neurons, respectively. In contrast to STN neurons whose autonomous firing is impaired in HD mice, putative PV- GPe neuron activity was unaffected ex vivo, implying that excessive inhibition was responsible for their hypoactivity in vivo Together with previous studies, these data demonstrate that (1) indirect pathway nuclei are dysregulated in Q175 mice through changes in presynaptic activity and/or intrinsic cellular and synaptic properties; and (2) prototypic PV+ GPe neuron hyperactivity and excessive target inhibition are prominent features of early HD pathophysiology.SIGNIFICANCE STATEMENT The early symptoms of Huntington's disease (HD) are linked to degenerative changes in the action-suppressing indirect pathway of the basal ganglia. Consistent with this linkage, the intrinsic properties of cells in this pathway exhibit complex alterations in HD and its models. However, the impact of these changes on activity is poorly understood. Using electrophysiological and optogenetic approaches, we demonstrate that the indirect pathway is highly dysregulated in early symptomatic HD mice through changes in upstream activity and/or intrinsic properties. Furthermore, we reveal that hyperactivity of external globus pallidus neurons and excessive inhibition of their targets are key features of early HD pathophysiology. Together, these findings could help to inform the development and targeting of viral-based, gene therapeutic approaches for HD.
Collapse
Affiliation(s)
- Joshua W Callahan
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - David L Wokosin
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Mark D Bevan
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| |
Collapse
|
12
|
Lee S, Smith PF, Lee WH, McKeown MJ. Frequency-Specific Effects of Galvanic Vestibular Stimulation on Response-Time Performance in Parkinson's Disease. Front Neurol 2021; 12:758122. [PMID: 34795633 PMCID: PMC8593161 DOI: 10.3389/fneur.2021.758122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/11/2021] [Indexed: 12/28/2022] Open
Abstract
Background: Galvanic vestibular stimulation (GVS) is being increasingly explored as a non-invasive brain stimulation technique to treat symptoms in Parkinson's disease (PD). To date, behavioral GVS effects in PD have been explored with only two stimulus types, direct current and random noise (RN). The interaction between GVS effects and anti-parkinsonian medication is unknown. In the present study, we designed multisine (ms) stimuli and investigated the effects of ms and RN GVS on motor response time. In comparison to the RN stimulus, the ms stimuli contained sinusoidal components only at a set of desired frequencies and the phases were optimized to improve participants' comfort. We hypothesized GVS motor effects were a function of stimulation frequency, and specifically, that band-limited ms-GVS would result in better motor performance than conventionally used broadband RN-GVS. Materials and Methods: Eighteen PD patients (PDMOFF/PDMON: off-/on-levodopa medication) and 20 healthy controls (HC) performed a simple reaction time task while receiving sub-threshold GVS. Each participant underwent nine stimulation conditions: off-stimulation, RN (4–200 Hz), ms-θ (4–8 Hz), ms-α (8–13 Hz), ms-β (13–30 Hz), ms-γ (30–50 Hz), ms-h1 (50–100 Hz), ms-h2 (100–150 Hz), and ms-h3 (150–200 Hz). Results: The ms-γ resulted in shorter response time (RPT) in both PDMOFF and HC groups compared with the RN. In addition, the RPT of the PDMOFF group decreased during the ms-β while the RPT of the HC group decreased during the ms-α, ms-h1, ms-h2, and ms-h3. There was considerable inter-subject variability in the optimum stimulus type, although the frequency range tended to fall within 8–100 Hz. Levodopa medication significantly reduced the baseline RPT of the PD patients. In contrast to the off-medication state, GVS did not significantly change RPT of the PD patients in the on-medication state. Conclusions: Using band-limited ms-GVS, we demonstrated that the GVS frequency for the best RPT varied considerably across participants and was >30 Hz for half of the PDMOFF patients. Moreover, dopaminergic medication was found to influence GVS effects in PD patients. Our results indicate the common “one-size-fits-all” RN approach is suboptimal for PD, and therefore personalized stimuli aiming to address this variability is warranted to improve GVS effects.
Collapse
Affiliation(s)
- Soojin Lee
- Pacific Parkinson's Research Centre, University of British Columbia, Vancouver, BC, Canada.,Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Paul F Smith
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Won Hee Lee
- Department of Software Convergence, Kyung Hee University, Yongin, South Korea
| | - Martin J McKeown
- Pacific Parkinson's Research Centre, University of British Columbia, Vancouver, BC, Canada.,Faculty of Medicine (Neurology), University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
13
|
Mizumori SJY. The brain from inside out. GyörgyBuzsáki. New York, NY: Oxford University Press, 2019. Hippocampus 2021. [DOI: 10.1002/hipo.23328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sheri J. Y. Mizumori
- Department of Psychology, Program in Neuroscience University of Washington Seattle Washington USA
| |
Collapse
|
14
|
Fischer P. Mechanisms of Network Interactions for Flexible Cortico-Basal Ganglia-Mediated Action Control. eNeuro 2021; 8:ENEURO.0009-21.2021. [PMID: 33883192 PMCID: PMC8205496 DOI: 10.1523/eneuro.0009-21.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 01/28/2023] Open
Abstract
In humans, finely tuned γ synchronization (60-90 Hz) rapidly appears at movement onset in a motor control network involving primary motor cortex, the basal ganglia and motor thalamus. Yet the functional consequences of brief movement-related synchronization are still unclear. Distinct synchronization phenomena have also been linked to different forms of motor inhibition, including relaxing antagonist muscles, rapid movement interruption and stabilizing network dynamics for sustained contractions. Here, I will introduce detailed hypotheses about how intrasite and intersite synchronization could interact with firing rate changes in different parts of the network to enable flexible action control. The here proposed cause-and-effect relationships shine a spotlight on potential key mechanisms of cortico-basal ganglia-thalamo-cortical (CBGTC) communication. Confirming or revising these hypotheses will be critical in understanding the neuronal basis of flexible movement initiation, invigoration and inhibition. Ultimately, the study of more complex cognitive phenomena will also become more tractable once we understand the neuronal mechanisms underlying behavioral readouts.
Collapse
Affiliation(s)
- Petra Fischer
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU Oxford, United Kingdom
| |
Collapse
|
15
|
Lee S, Liu A, McKeown MJ. Current perspectives on galvanic vestibular stimulation in the treatment of Parkinson's disease. Expert Rev Neurother 2021; 21:405-418. [PMID: 33621149 DOI: 10.1080/14737175.2021.1894928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Galvanic vestibular stimulation (GVS) is a noninvasive technique that activates vestibular afferents, influencing activity and oscillations in a broad network of brain regions. Several studies have suggested beneficial effects of GVS on motor symptoms in Parkinson's Disease (PD).Areas covered: A comprehensive overview of the stimulation techniques, potential mechanisms of action, challenges, and future research directions.Expert opinion: This emerging technology is not currently a viable therapy. However, a complementary therapy that is inexpensive, easily disseminated, customizable, and portable is sufficiently enticing that continued research and development is warranted. Future work utilizing biomedical engineering approaches, including concomitant functional neuroimaging, have the potential to significantly increase efficacy. GVS could be explored for other PD symptoms including orthostatic hypotension, dyskinesia, and sleep disorders.
Collapse
Affiliation(s)
- Soojin Lee
- Pacific Parkinson's Research Centre, University of British Columbia, Vancouver, Canada.,Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford UK
| | - Aiping Liu
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, China
| | - Martin J McKeown
- Pacific Parkinson's Research Centre, University of British Columbia, Vancouver, Canada.,Department of Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
16
|
Marche K, Apicella P. Activity of fast-spiking interneurons in the monkey striatum during reaching movements guided by external cues or by a free choice. Eur J Neurosci 2020; 53:1752-1768. [PMID: 33314343 DOI: 10.1111/ejn.15081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/14/2020] [Accepted: 12/04/2020] [Indexed: 10/22/2022]
Abstract
Parvalbumin-containing GABAergic interneurons in the striatum, electrophysiologically identified as fast-spiking interneurons (FSIs), exert inhibitory control over striatal output to drive appropriate behavior. While a number of studies have emphasized their importance in motor control, it is unknown how these putative interneurons adapt their functional properties to different modes of movement selection. Here, we tested whether FSIs are sensitive to externally versus internally selected movements by recording their activity while two male rhesus monkeys performed reaching movements to visual targets. Two variants were used: an external condition, in which movements were instructed via external cues, and an internal condition, in which movements were guided by an internal representation of the target location. These conditions allowed to contrast the FSI activity associated with either externally cued or internally driven movement selection. After extensive training, reaching performance was only marginally affected by the type of movement, albeit with some differences between the monkeys. Over two-thirds of the FSIs were modulated around movement onset, regardless of the condition, and consisting mostly of increased activity. We found that a subset of FSIs showed stronger activation related to the initiation of movements in the external condition than in the internal condition, suggesting a dependence on movement selection mode. Moreover, this difference in the strength of FSI activation was predominant in the motor striatum. These data indicate that changes in FSI activity carry information that is scaled by constraints on action selection reflecting the involvement of local striatal inhibitory circuits in adaptation of behavior according to task demands.
Collapse
Affiliation(s)
- Kévin Marche
- Institut de Neurosciences de la Timone UMR 7289, Aix Marseille Université, CNRS, Marseille, France
| | - Paul Apicella
- Institut de Neurosciences de la Timone UMR 7289, Aix Marseille Université, CNRS, Marseille, France
| |
Collapse
|
17
|
The Dorsal Striatum Energizes Motor Routines. Curr Biol 2020; 30:4362-4372.e6. [PMID: 32946750 DOI: 10.1016/j.cub.2020.08.049] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/22/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022]
Abstract
The dorsal striatum (dS) has been implicated in storing procedural memories and controlling movement kinematics. Since procedural memories are expressed through movements, the exact nature of the dS function has proven difficult to delineate. Here, we challenged rats in complementary locomotion-based tasks designed to alleviate this confound. Surprisingly, dS lesions did not impair the rats' ability to remember the procedure for the successful completion of motor routines. However, the speed and initiation of the reward-oriented phase of the routines were irreversibly altered by the dS lesion. Further behavioral analyses, combined with modeling in the optimal control framework, indicated that these kinematic alterations were well explained by an increased sensitivity to effort. Our work provides evidence supporting a primary role of the dS in modulating the kinematics of reward-oriented actions, a function that may be related to the optimization of the energetic costs of moving.
Collapse
|
18
|
Phillips RS, Rosner I, Gittis AH, Rubin JE. The effects of chloride dynamics on substantia nigra pars reticulata responses to pallidal and striatal inputs. eLife 2020; 9:e55592. [PMID: 32894224 PMCID: PMC7476764 DOI: 10.7554/elife.55592] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 08/14/2020] [Indexed: 11/20/2022] Open
Abstract
As a rodent basal ganglia (BG) output nucleus, the substantia nigra pars reticulata (SNr) is well positioned to impact behavior. SNr neurons receive GABAergic inputs from the striatum (direct pathway) and globus pallidus (GPe, indirect pathway). Dominant theories of action selection rely on these pathways' inhibitory actions. Yet, experimental results on SNr responses to these inputs are limited and include excitatory effects. Our study combines experimental and computational work to characterize, explain, and make predictions about these pathways. We observe diverse SNr responses to stimulation of SNr-projecting striatal and GPe neurons, including biphasic and excitatory effects, which our modeling shows can be explained by intracellular chloride processing. Our work predicts that ongoing GPe activity could tune the SNr operating mode, including its responses in decision-making scenarios, and GPe output may modulate synchrony and low-frequency oscillations of SNr neurons, which we confirm using optogenetic stimulation of GPe terminals within the SNr.
Collapse
Affiliation(s)
- Ryan S Phillips
- Department of Mathematics, University of PittsburghPittsburghUnited States
- Center for the Neural Basis of CognitionPittsburghUnited States
| | - Ian Rosner
- Center for the Neural Basis of CognitionPittsburghUnited States
- Department of Biological Sciences, Carnegie Mellon UniversityPittsburghUnited States
| | - Aryn H Gittis
- Center for the Neural Basis of CognitionPittsburghUnited States
- Department of Biological Sciences, Carnegie Mellon UniversityPittsburghUnited States
| | - Jonathan E Rubin
- Department of Mathematics, University of PittsburghPittsburghUnited States
- Center for the Neural Basis of CognitionPittsburghUnited States
| |
Collapse
|
19
|
Dorsal Striatum Dynamically Incorporates Velocity Adjustments during Locomotion. J Neurosci 2020; 40:6822-6824. [PMID: 32878975 DOI: 10.1523/jneurosci.0905-20.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/16/2020] [Accepted: 07/29/2020] [Indexed: 11/21/2022] Open
|
20
|
Hughes RN, Bakhurin KI, Petter EA, Watson GDR, Kim N, Friedman AD, Yin HH. Ventral Tegmental Dopamine Neurons Control the Impulse Vector during Motivated Behavior. Curr Biol 2020; 30:2681-2694.e5. [PMID: 32470362 PMCID: PMC7590264 DOI: 10.1016/j.cub.2020.05.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/11/2020] [Accepted: 05/01/2020] [Indexed: 01/11/2023]
Abstract
The ventral tegmental area (VTA) is a major source of dopamine, especially to the limbic brain regions. Despite decades of research, the function of VTA dopamine neurons remains controversial. Here, using a novel head-fixed behavioral system with five orthogonal force sensors, we show for the first time that the activity of dopamine neurons precisely represents the impulse vector (force exerted over time) generated by the animal. Distinct populations of VTA dopamine neurons contribute to components of the impulse vector in different directions. Optogenetic excitation of these neurons shows a linear relationship between signal injected and impulse generated. Optogenetic inhibition paused force generation or produced force in the backward direction. At the same time, these neurons also regulate the initiation and execution of anticipatory licking. Our results indicate that VTA dopamine controls the magnitude, direction, and duration of force used to move toward or away from any motivationally relevant stimuli.
Collapse
Affiliation(s)
- Ryan N Hughes
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| | | | - Elijah A Petter
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| | - Glenn D R Watson
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| | - Namsoo Kim
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| | - Alexander D Friedman
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| | - Henry H Yin
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA; Department of Neurobiology, Duke University School of Medicine, Durham, NC 27708, USA.
| |
Collapse
|
21
|
Ponzi A, Barton SJ, Bunner KD, Rangel-Barajas C, Zhang ES, Miller BR, Rebec GV, Kozloski J. Striatal network modeling in Huntington's Disease. PLoS Comput Biol 2020; 16:e1007648. [PMID: 32302302 PMCID: PMC7197869 DOI: 10.1371/journal.pcbi.1007648] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 05/04/2020] [Accepted: 01/09/2020] [Indexed: 12/26/2022] Open
Abstract
Medium spiny neurons (MSNs) comprise over 90% of cells in the striatum. In vivo MSNs display coherent burst firing cell assembly activity patterns, even though isolated MSNs do not burst fire intrinsically. This activity is important for the learning and execution of action sequences and is characteristically dysregulated in Huntington's Disease (HD). However, how dysregulation is caused by the various neural pathologies affecting MSNs in HD is unknown. Previous modeling work using simple cell models has shown that cell assembly activity patterns can emerge as a result of MSN inhibitory network interactions. Here, by directly estimating MSN network model parameters from single unit spiking data, we show that a network composed of much more physiologically detailed MSNs provides an excellent quantitative fit to wild type (WT) mouse spiking data, but only when network parameters are appropriate for the striatum. We find the WT MSN network is situated in a regime close to a transition from stable to strongly fluctuating network dynamics. This regime facilitates the generation of low-dimensional slowly varying coherent activity patterns and confers high sensitivity to variations in cortical driving. By re-estimating the model on HD spiking data we discover network parameter modifications are consistent across three very different types of HD mutant mouse models (YAC128, Q175, R6/2). In striking agreement with the known pathophysiology we find feedforward excitatory drive is reduced in HD compared to WT mice, while recurrent inhibition also shows phenotype dependency. We show that these modifications shift the HD MSN network to a sub-optimal regime where higher dimensional incoherent rapidly fluctuating activity predominates. Our results provide insight into a diverse range of experimental findings in HD, including cognitive and motor symptoms, and may suggest new avenues for treatment.
Collapse
Affiliation(s)
- Adam Ponzi
- IBM Research, Computational Biology Center, Thomas J. Watson Research Laboratories, Yorktown Heights, New York, United States of America
- * E-mail:
| | - Scott J. Barton
- Program in Neuroscience, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
| | - Kendra D. Bunner
- Program in Neuroscience, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
| | - Claudia Rangel-Barajas
- Program in Neuroscience, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
| | - Emily S. Zhang
- Program in Neuroscience, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
| | - Benjamin R. Miller
- Program in Neuroscience, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
| | - George V. Rebec
- Program in Neuroscience, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
| | - James Kozloski
- IBM Research, Computational Biology Center, Thomas J. Watson Research Laboratories, Yorktown Heights, New York, United States of America
| |
Collapse
|
22
|
Abstract
Behavior is readily classified into patterns of movements with inferred common goals-actions. Goals may be discrete; movements are continuous. Through the careful study of isolated movements in laboratory settings, or via introspection, it has become clear that animals can exhibit exquisite graded specification to their movements. Moreover, graded control can be as fundamental to success as the selection of which action to perform under many naturalistic scenarios: a predator adjusting its speed to intercept moving prey, or a tool-user exerting the perfect amount of force to complete a delicate task. The basal ganglia are a collection of nuclei in vertebrates that extend from the forebrain (telencephalon) to the midbrain (mesencephalon), constituting a major descending extrapyramidal pathway for control over midbrain and brainstem premotor structures. Here we discuss how this pathway contributes to the continuous specification of movements that endows our voluntary actions with vigor and grace.
Collapse
Affiliation(s)
- Junchol Park
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA;
| | - Luke T Coddington
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA;
| | - Joshua T Dudman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA;
| |
Collapse
|
23
|
Halperin O, Israeli‐Korn S, Yakubovich S, Hassin‐Baer S, Zaidel A. Self‐motion perception in Parkinson's disease. Eur J Neurosci 2020; 53:2376-2387. [DOI: 10.1111/ejn.14716] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Orly Halperin
- Gonda Multidisciplinary Brain Research Center Bar Ilan University Ramat Gan Israel
| | - Simon Israeli‐Korn
- Department of Neurology Movement Disorders Institute Sheba Medical Center Ramat Gan Israel
- The Sackler School of Medicine Tel Aviv University Tel Aviv Israel
| | - Sol Yakubovich
- Gonda Multidisciplinary Brain Research Center Bar Ilan University Ramat Gan Israel
| | - Sharon Hassin‐Baer
- Department of Neurology Movement Disorders Institute Sheba Medical Center Ramat Gan Israel
- The Sackler School of Medicine Tel Aviv University Tel Aviv Israel
| | - Adam Zaidel
- Gonda Multidisciplinary Brain Research Center Bar Ilan University Ramat Gan Israel
| |
Collapse
|
24
|
Hughes RN, Bakhurin KI, Barter JW, Zhang J, Yin HH. A Head-Fixation System for Continuous Monitoring of Force Generated During Behavior. Front Integr Neurosci 2020; 14:11. [PMID: 32210772 PMCID: PMC7076082 DOI: 10.3389/fnint.2020.00011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 02/20/2020] [Indexed: 11/28/2022] Open
Abstract
Many studies in neuroscience use head-fixed behavioral preparations, which confer a number of advantages, including the ability to limit the behavioral repertoire and use techniques for large-scale monitoring of neural activity. But traditional studies using this approach use extremely limited behavioral measures, in part because it is difficult to detect the subtle movements and postural adjustments that animals naturally exhibit during head fixation. Here we report a new head-fixed setup with analog load cells capable of precisely monitoring the continuous forces exerted by mice. The load cells reveal the dynamic nature of movements generated not only around the time of task-relevant events, such as presentation of stimuli and rewards, but also during periods in between these events, when there is no apparent overt behavior. It generates a new and rich set of behavioral measures that have been neglected in previous experiments. We detail the construction of the system, which can be 3D-printed and assembled at low cost, show behavioral results collected from head-fixed mice, and demonstrate that neural activity can be highly correlated with the subtle, whole-body movements continuously produced during head restraint.
Collapse
Affiliation(s)
- Ryan N Hughes
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| | - Konstantin I Bakhurin
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| | - Joseph W Barter
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| | - Jinyong Zhang
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| | - Henry H Yin
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States.,Department of Neurobiology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
25
|
Continuous Representations of Speed by Striatal Medium Spiny Neurons. J Neurosci 2020; 40:1679-1688. [PMID: 31953369 DOI: 10.1523/jneurosci.1407-19.2020] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 12/20/2019] [Accepted: 01/02/2020] [Indexed: 12/22/2022] Open
Abstract
The striatum is critical for controlling motor output. However, it remains unclear how striatal output neurons encode and facilitate movement. A prominent theory suggests that striatal units encode movements in bursts of activity near specific events, such as the start or end of actions. These bursts are theorized to gate or permit specific motor actions, thereby encoding and facilitating complex sequences of actions. An alternative theory has suggested that striatal neurons encode continuous changes in sensory or motor information with graded changes in firing rate. Supporting this theory, many striatal neurons exhibit such graded changes without bursting near specific actions. Here, we evaluated these two theories in the same recordings of mice (both male and female). We recorded single-unit and multiunit activity from the dorsomedial striatum of mice as they spontaneously explored an arena. We observed both types of encoding, although continuous encoding was more prevalent than bursting near movement initiation or termination. The majority of recorded units did not exhibit positive linear relationships with speed but instead exhibited nonlinear relationships that peaked at a range of locomotor speeds. Bulk calcium recordings of identified direct and indirect pathway neurons revealed similar speed tuning profiles, indicating that the heterogeneity in response profiles was not due to this genetic distinction. We conclude that continuous encoding of speed is a central component of movement encoding in the striatum.SIGNIFICANCE STATEMENT The striatum is a structure that is linked to volitional movements and is a primary site of pathology in movement disorders. It remains unclear how striatal neurons encode motor parameters and use them to facilitate movement. Here, we evaluated two models for this: a "discrete encoding model" in which striatal neurons facilitate movements with brief burst of activity near the start and end of movements, and a "continuous encoding model," in which striatal neurons encode the sensory or motor state of the animal with continuous changes in firing. We found evidence primarily in support of the continuous encoding model. This may have implications for understanding the striatal control of movement, as well as informing therapeutic approaches for treating movement disorders.
Collapse
|
26
|
Sheeran WM, Ahmed OJ. The neural circuitry supporting successful spatial navigation despite variable movement speeds. Neurosci Biobehav Rev 2019; 108:821-833. [PMID: 31760048 DOI: 10.1016/j.neubiorev.2019.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/30/2019] [Accepted: 11/18/2019] [Indexed: 12/18/2022]
Abstract
Ants who have successfully navigated the long distance between their foraging spot and their nest dozens of times will drastically overshoot their destination if the size of their legs is doubled by the addition of stilts. This observation reflects a navigational strategy called path integration, a strategy also utilized by mammals. Path integration necessitates that animals keep track of their movement speed and use it to precisely and instantly modify where they think they are and where they want to go. Here we review the neural circuitry that has evolved to integrate speed and space. We start with the rate and temporal codes for speed in the hippocampus and work backwards towards the motor and sensory systems. We highlight the need for experiments designed to differentiate the respective contributions of motor efference copy versus sensory inputs. In particular, we discuss the importance of high-resolution tracking of the latency of speed-encoding as a precise way to disentangle the sensory versus motor computations that enable successful spatial navigation at very different speeds.
Collapse
Affiliation(s)
- William M Sheeran
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular, Cellular & Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Omar J Ahmed
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA; Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
27
|
Vandaele Y, Mahajan NR, Ottenheimer DJ, Richard JM, Mysore SP, Janak PH. Distinct recruitment of dorsomedial and dorsolateral striatum erodes with extended training. eLife 2019; 8:49536. [PMID: 31621583 PMCID: PMC6822989 DOI: 10.7554/elife.49536] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/16/2019] [Indexed: 12/20/2022] Open
Abstract
Hypotheses of striatal orchestration of behavior ascribe distinct functions to striatal subregions, with the dorsolateral striatum (DLS) especially implicated in habitual and skilled performance. Thus neural activity patterns recorded from the DLS, but not the dorsomedial striatum (DMS), should be correlated with habitual and automatized performance. Here, we recorded DMS and DLS neural activity in rats during training in a task promoting habitual lever pressing. Despite improving performance across sessions, clear changes in corresponding neural activity patterns were not evident in DMS or DLS during early training. Although DMS and DLS activity patterns were distinct during early training, their activity was similar following extended training. Finally, performance after extended training was not associated with DMS disengagement, as would be predicted from prior work. These results suggest that behavioral sequences may continue to engage both striatal regions long after initial acquisition, when skilled performance is consolidated.
Collapse
Affiliation(s)
- Youna Vandaele
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, United States
| | - Nagaraj R Mahajan
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, United States
| | - David J Ottenheimer
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, United States
| | - Jocelyn M Richard
- Department of Neuroscience, University of Minnesota, Minneapolis, United States
| | - Shreesh P Mysore
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, United States.,The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, United States
| | - Patricia H Janak
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, United States.,The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, United States.,Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, United States
| |
Collapse
|
28
|
A striatal interneuron circuit for continuous target pursuit. Nat Commun 2019; 10:2715. [PMID: 31222009 PMCID: PMC6586681 DOI: 10.1038/s41467-019-10716-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 05/28/2019] [Indexed: 12/19/2022] Open
Abstract
Most adaptive behaviors require precise tracking of targets in space. In pursuit behavior with a moving target, mice use distance to target to guide their own movement continuously. Here, we show that in the sensorimotor striatum, parvalbumin-positive fast-spiking interneurons (FSIs) can represent the distance between self and target during pursuit behavior, while striatal projection neurons (SPNs), which receive FSI projections, can represent self-velocity. FSIs are shown to regulate velocity-related SPN activity during pursuit, so that movement velocity is continuously modulated by distance to target. Moreover, bidirectional manipulation of FSI activity can selectively disrupt performance by increasing or decreasing the self-target distance. Our results reveal a key role of the FSI-SPN interneuron circuit in pursuit behavior and elucidate how this circuit implements distance to velocity transformation required for the critical underlying computation. Many natural behaviours involve tracking of a target in space. Here, the authors describe a task to assess this behaviour in mice and use in vivo electrophysiology, calcium imaging, optogenetics, and chemogenetics to investigate the role of the striatum in target pursuit.
Collapse
|
29
|
Abstract
For decades it has been speculated that Parkinson's Disease (PD) is associated with dysfunction of the vestibular system, especially given that postural instability is one of the major symptoms of the disorder. Nonetheless, clear evidence of such a connection has been slow to emerge. There are still relatively few studies of the vestibulo-ocular reflexes (VORs) in PD. However, substantial evidence of vestibulo-spinal reflex deficits, in the form of abnormal vestibular-evoked myogenic potentials (VEMPs), now exists. The evidence for abnormalities in the subjective visual vertical is less consistent. However, some studies suggest that the integration of visual and vestibular information may be abnormal in PD. In the last few years, a number of studies have been published which demonstrate that the neuropathology associated with PD, such as Lewy bodies, is present in the central vestibular system. Increasingly, stochastic or noisy galvanic vestibular stimulation (nGVS) is being investigated as a potential treatment for PD, and a number of studies have presented evidence in support of this idea. The aim of this review is to summarize and critically evaluate the human and animal evidence relating to the connection between the vestibular system and PD.
Collapse
Affiliation(s)
- Paul F Smith
- Department of Pharmacology and Toxicology, School of Biomedical Sciences and The Brain Health Research Centre, University of Otago, Dunedin, New Zealand.,Brain Research New Zealand Centre of Research Excellence, Eisdell Moore Centre for Hearing and Balance Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
30
|
Mehlman ML, Winter SS, Valerio S, Taube JS. Functional and anatomical relationships between the medial precentral cortex, dorsal striatum, and head direction cell circuitry. I. Recording studies. J Neurophysiol 2018; 121:350-370. [PMID: 30427767 DOI: 10.1152/jn.00143.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Head direction (HD) cells fire as a function of the animal's directional heading and provide the animal with a sense of direction. In rodents, these neurons are located primarily within the limbic system, but small populations of HD cells are found in two extralimbic areas: the medial precentral cortex (PrCM) and dorsal striatum (DS). HD cell activity in these structures could be driven by output from the limbic HD circuit or generated intrinsically. We examined these possibilities by recording the activity of PrCM and DS neurons in control rats and in rats with anterodorsal thalamic nucleus (ADN) lesions, a manipulation that disrupts the limbic HD signal. HD cells in the PrCM and DS of control animals displayed characteristics similar to those of limbic HD cells, and these extralimbic HD signals were eliminated in animals with complete ADN lesions, suggesting that the PrCM and DS HD signals are conveyed from the limbic HD circuit. Angular head velocity cells recorded in the PrCM and DS were unaffected by ADN lesions. Next, we determined if the PrCM and DS convey necessary self-motion signals to the limbic HD circuit. Limbic HD cell activity recorded in the ADN remained intact following combined lesions of the PrCM and DS. Collectively, these experiments reveal a unidirectional functional relationship between the limbic HD circuit and the PrCM and DS; the limbic system generates the HD signal and transmits it to the PrCM and DS, but these extralimbic areas do not provide critical input or feedback to limbic HD cells. NEW & NOTEWORTHY Head direction (HD) cells have been extensively studied within the limbic system. The lesion and recording experiments reported here examined two relatively understudied populations of HD cells located outside of the canonical limbic HD circuit in the medial precentral cortex and dorsal striatum. We found that HD cell activity in these two extralimbic areas is driven by output from the limbic HD circuit, revealing that HD cell circuitry functionally extends beyond the limbic system.
Collapse
Affiliation(s)
- Max L Mehlman
- Department of Psychological and Brain Sciences, Dartmouth College , Hanover, New Hampshire
| | - Shawn S Winter
- Department of Psychological and Brain Sciences, Dartmouth College , Hanover, New Hampshire
| | - Stephane Valerio
- Department of Psychological and Brain Sciences, Dartmouth College , Hanover, New Hampshire
| | - Jeffrey S Taube
- Department of Psychological and Brain Sciences, Dartmouth College , Hanover, New Hampshire
| |
Collapse
|
31
|
To move or to sense? Incorporating somatosensory representation into striatal functions. Curr Opin Neurobiol 2018; 52:123-130. [DOI: 10.1016/j.conb.2018.04.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/22/2018] [Accepted: 04/07/2018] [Indexed: 12/14/2022]
|
32
|
Sales-Carbonell C, Taouali W, Khalki L, Pasquet MO, Petit LF, Moreau T, Rueda-Orozco PE, Robbe D. No Discrete Start/Stop Signals in the Dorsal Striatum of Mice Performing a Learned Action. Curr Biol 2018; 28:3044-3055.e5. [PMID: 30270180 DOI: 10.1016/j.cub.2018.07.038] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 06/15/2018] [Accepted: 07/11/2018] [Indexed: 10/28/2022]
Abstract
A popular hypothesis is that the dorsal striatum generates discrete "traffic light" signals that initiate, maintain, and terminate the execution of learned actions. Alternatively, the striatum may continuously monitor the dynamics of movements associated with action execution by processing inputs from somatosensory and motor cortices. Here, we recorded the activity of striatal neurons in mice performing a run-and-stop task and characterized the diversity of firing rate modulations relative to run performance (tuning curves) across neurons. We found that the tuning curves could not be statistically clustered in discrete functional groups (start or stop neurons). Rather, their shape varied continuously according to the movement dynamics of the task. Moreover, striatal spiking activity correlated with running speed on a run-by-run basis and was modulated by task-related non-locomotor movements, such as licking. We hypothesize that such moment-to-moment movement monitoring by the dorsal striatum contributes to the learning of adaptive actions and/or updating their kinematics.
Collapse
Affiliation(s)
- Carola Sales-Carbonell
- Département de Biologie, Aix-Marseille University, Parc Scientifique de Luminy, 13273 Marseille, France; INSERM, Unité 1249, Marseille, Parc Scientifique de Luminy, 13273 Marseille, France; INMED-Institut de Neurobiologie de la Méditerranée, Parc Scientifique de Luminy, 13273 Marseille, France
| | - Wahiba Taouali
- Département de Biologie, Aix-Marseille University, Parc Scientifique de Luminy, 13273 Marseille, France; INSERM, Unité 1249, Marseille, Parc Scientifique de Luminy, 13273 Marseille, France; INMED-Institut de Neurobiologie de la Méditerranée, Parc Scientifique de Luminy, 13273 Marseille, France
| | - Loubna Khalki
- Département de Biologie, Aix-Marseille University, Parc Scientifique de Luminy, 13273 Marseille, France; INSERM, Unité 1249, Marseille, Parc Scientifique de Luminy, 13273 Marseille, France; INMED-Institut de Neurobiologie de la Méditerranée, Parc Scientifique de Luminy, 13273 Marseille, France
| | - Matthieu O Pasquet
- Département de Biologie, Aix-Marseille University, Parc Scientifique de Luminy, 13273 Marseille, France; INSERM, Unité 1249, Marseille, Parc Scientifique de Luminy, 13273 Marseille, France; INMED-Institut de Neurobiologie de la Méditerranée, Parc Scientifique de Luminy, 13273 Marseille, France
| | - Ludovic F Petit
- Département de Biologie, Aix-Marseille University, Parc Scientifique de Luminy, 13273 Marseille, France; INSERM, Unité 1249, Marseille, Parc Scientifique de Luminy, 13273 Marseille, France; INMED-Institut de Neurobiologie de la Méditerranée, Parc Scientifique de Luminy, 13273 Marseille, France
| | - Typhaine Moreau
- Département de Biologie, Aix-Marseille University, Parc Scientifique de Luminy, 13273 Marseille, France; INSERM, Unité 1249, Marseille, Parc Scientifique de Luminy, 13273 Marseille, France; INMED-Institut de Neurobiologie de la Méditerranée, Parc Scientifique de Luminy, 13273 Marseille, France
| | - Pavel E Rueda-Orozco
- Département de Biologie, Aix-Marseille University, Parc Scientifique de Luminy, 13273 Marseille, France; INSERM, Unité 1249, Marseille, Parc Scientifique de Luminy, 13273 Marseille, France; INMED-Institut de Neurobiologie de la Méditerranée, Parc Scientifique de Luminy, 13273 Marseille, France
| | - David Robbe
- Département de Biologie, Aix-Marseille University, Parc Scientifique de Luminy, 13273 Marseille, France; INSERM, Unité 1249, Marseille, Parc Scientifique de Luminy, 13273 Marseille, France; INMED-Institut de Neurobiologie de la Méditerranée, Parc Scientifique de Luminy, 13273 Marseille, France.
| |
Collapse
|
33
|
Stiles L, Reynolds JN, Napper R, Zheng Y, Smith PF. Single neuron activity and c-Fos expression in the rat striatum following electrical stimulation of the peripheral vestibular system. Physiol Rep 2018; 6:e13791. [PMID: 30003674 PMCID: PMC6043475 DOI: 10.14814/phy2.13791] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 06/14/2018] [Indexed: 01/09/2023] Open
Abstract
Connections between the vestibular system and the basal ganglia have been postulated since the early 20th century. However, the results of electrophysiological studies investigating neuronal responses to electrical stimulation of the vestibular system have been inconsistent. The aim of this study was to investigate the effects of electrical stimulation of the vestibular labyrinth on single neuron activity and c-Fos expression in the rat striatum. We used electrical stimulation of the vestibular labyrinth (various intensities delivered to the round window) to examine the electrophysiological response of striatal neurons and c-Fos expression. From 507 single neurons recorded (n = 20 rats), no vestibular-responsive neuron was found at 1× and 2× the nystagmus threshold; however, 6 neurons were found at 3× the threshold. These neurons were found bilaterally, with a response latency of ~50 msec from the end of the stimulus. For the c-Fos study, the number of neurons expressing c-Fos was quantified using stereological methods. Stimulation at 2× the threshold for nystagmus (n = 5 rats) resulted in a significant decrease in the number of neurons expressing c-Fos in the bilateral striatum compared to both the sham control group (n = 5) and the lower stimulus intensity group (n = 5) (P ≤ 0.0001 for both). The results of this study demonstrate that: (1) some single striatal neurons respond to electrical vestibular stimulation, however, these responses are circumscribed and infrequent; (2) electrical stimulation of the vestibular labyrinth results in a decrease in the number of striatal neurons expressing c-Fos, in a current-dependent manner.
Collapse
Affiliation(s)
- Lucy Stiles
- Department of Pharmacology and ToxicologyUniversity of OtagoDunedinNew Zealand
- Brain Health Research CentreUniversity of OtagoDunedinNew Zealand
| | - John N. Reynolds
- Department of AnatomySchool of Biomedical SciencesUniversity of OtagoDunedinNew Zealand
- Brain Health Research CentreUniversity of OtagoDunedinNew Zealand
- Brain Research New Zealand Centre of Research ExcellenceUniversity of AucklandAucklandNew Zealand
| | - Ruth Napper
- Department of AnatomySchool of Biomedical SciencesUniversity of OtagoDunedinNew Zealand
- Brain Health Research CentreUniversity of OtagoDunedinNew Zealand
| | - Yiwen Zheng
- Department of Pharmacology and ToxicologyUniversity of OtagoDunedinNew Zealand
- Brain Health Research CentreUniversity of OtagoDunedinNew Zealand
- Brain Research New Zealand Centre of Research ExcellenceUniversity of AucklandAucklandNew Zealand
- Eisdell Moore Centre for Hearing and Balance ResearchUniversity of AucklandAucklandNew Zealand
| | - Paul F. Smith
- Department of Pharmacology and ToxicologyUniversity of OtagoDunedinNew Zealand
- Brain Health Research CentreUniversity of OtagoDunedinNew Zealand
- Brain Research New Zealand Centre of Research ExcellenceUniversity of AucklandAucklandNew Zealand
- Eisdell Moore Centre for Hearing and Balance ResearchUniversity of AucklandAucklandNew Zealand
| |
Collapse
|
34
|
Markowitz JE, Gillis WF, Beron CC, Neufeld SQ, Robertson K, Bhagat ND, Peterson RE, Peterson E, Hyun M, Linderman SW, Sabatini BL, Datta SR. The Striatum Organizes 3D Behavior via Moment-to-Moment Action Selection. Cell 2018; 174:44-58.e17. [PMID: 29779950 PMCID: PMC6026065 DOI: 10.1016/j.cell.2018.04.019] [Citation(s) in RCA: 246] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/19/2018] [Accepted: 04/16/2018] [Indexed: 10/16/2022]
Abstract
Many naturalistic behaviors are built from modular components that are expressed sequentially. Although striatal circuits have been implicated in action selection and implementation, the neural mechanisms that compose behavior in unrestrained animals are not well understood. Here, we record bulk and cellular neural activity in the direct and indirect pathways of dorsolateral striatum (DLS) as mice spontaneously express action sequences. These experiments reveal that DLS neurons systematically encode information about the identity and ordering of sub-second 3D behavioral motifs; this encoding is facilitated by fast-timescale decorrelations between the direct and indirect pathways. Furthermore, lesioning the DLS prevents appropriate sequence assembly during exploratory or odor-evoked behaviors. By characterizing naturalistic behavior at neural timescales, these experiments identify a code for elemental 3D pose dynamics built from complementary pathway dynamics, support a role for DLS in constructing meaningful behavioral sequences, and suggest models for how actions are sculpted over time.
Collapse
Affiliation(s)
- Jeffrey E Markowitz
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | | | - Celia C Beron
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Shay Q Neufeld
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Keiramarie Robertson
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Neha D Bhagat
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Ralph E Peterson
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Emalee Peterson
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Minsuk Hyun
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Scott W Linderman
- Grossman Center for the Statistics of Mind, Columbia University, New York, NY, USA; Departments of Statistics and Computer Science, Columbia University, New York, NY, USA
| | - Bernardo L Sabatini
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
35
|
Bouabid S, Zhou FM. Cyclic AMP-producing chemogenetic activation of indirect pathway striatal projection neurons and the downstream effects on the globus pallidus and subthalamic nucleus in freely moving mice. J Neurochem 2018; 145:436-448. [PMID: 29500819 DOI: 10.1111/jnc.14331] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/19/2018] [Accepted: 02/26/2018] [Indexed: 01/11/2023]
Abstract
The indirect pathway striatal medium spiny projection neurons (iMSNs) are critical to motor and cognitive brain functions. These neurons express a high level of cAMP-increasing adenosine A2a receptors. However, the potential effects of cAMP production on iMSN spiking activity have not been established, and recording identified iMSNs in freely moving animals is challenging. Here, we show that in the transgenic mice expressing cAMP-producing G protein Gs -coupled designer receptor exclusively activated by designer drug (Gs-DREADD) in iMSNs, the baseline spike firing in MSNs is normal, indicating DREADD expression does not affect the normal physiology of these neurons. Intraperitoneal injection of the DREADD agonist clozapine-N-oxide (CNO; 2.5 mg/kg) increased the spike firing in 50% of the recorded MSNs. However, CNO did not affect MSN firing in Gs-DREADD-negative mice. We also found that CNO injection inhibited the spike firing of globus pallidus external segment (GPe) neurons in Gs-DREADD-positive mice, further indicating CNO excitation of iMSNs. Temporally coincident with these effects on spiking firing in the indirect pathway, CNO injection selectively inhibited locomotion in D2 Gs-DREADD mice. Taken together, our results strongly suggest that cAMP production in iMSNs can increase iMSN spiking activity and cause motor inhibition, thus addressing a long-standing question about the cellular functions of the cAMP-producing adenosine A2a receptors in iMSNs. Cover Image for this issue: doi: 10.1111/jnc.14181.
Collapse
Affiliation(s)
- Safa Bouabid
- Department of Pharmacology, University of Tennessee College of Medicine, Memphis, Tennessee, USA
| | - Fu-Ming Zhou
- Department of Pharmacology, University of Tennessee College of Medicine, Memphis, Tennessee, USA
| |
Collapse
|
36
|
O’Hare J, Calakos N, Yin HH. Recent Insights into Corticostriatal Circuit Mechanisms underlying Habits: Invited review for Current Opinions in Behavioral Sciences. Curr Opin Behav Sci 2018; 20:40-46. [PMID: 29450220 PMCID: PMC5808988 DOI: 10.1016/j.cobeha.2017.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Habits have been studied for decades, but it was not until recent years that experiments began to elucidate the underlying cellular and circuit mechanisms. The latest experiments have been enabled by advances in cell-type specific monitoring and manipulation of activity in large neuronal populations. Here we will review recent efforts to understand the neural substrates underlying habit formation, focusing on rodent studies on corticostriatal circuits.
Collapse
Affiliation(s)
| | - Nicole Calakos
- Department of Neurobiology, Duke University
- Department of Neurology, Duke University
| | - Henry H. Yin
- Department of Neurobiology, Duke University
- Department of Psychology and Neuroscience, Duke University
| |
Collapse
|
37
|
Martiros N, Burgess AA, Graybiel AM. Inversely Active Striatal Projection Neurons and Interneurons Selectively Delimit Useful Behavioral Sequences. Curr Biol 2018; 28:560-573.e5. [PMID: 29429614 DOI: 10.1016/j.cub.2018.01.031] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/15/2017] [Accepted: 01/11/2018] [Indexed: 11/24/2022]
Abstract
Understanding neural representations of behavioral routines is critical for understanding complex behavior in health and disease. We demonstrate here that accentuated activity of striatal projection neurons (SPNs) at the beginning and end of such behavioral repertoires is a supraordinate representation specifically marking previously rewarded behavioral sequences independent of the individual movements making up the behavior. We recorded spike activity in the striatum and primary motor cortex as individual rats learned specific rewarded lever-press sequences, each one unique to a given rat. Motor cortical neurons mainly responded in relation to specific movements regardless of their sequence of occurrence. By contrast, striatal SPN populations in each rat fired preferentially at the initiation and termination of its acquired sequence. Critically, the SPNs did not exhibit this bracketing signal when the same rats performed unreinforced sequences containing the same sub-movements that were present in their acquired sequence. Thus, the SPN activity was specifically related to a given repetitively reinforced movement sequence. This striatal beginning-and-end activity did not appear to be dependent on motor cortical inputs. However, strikingly, simultaneously recorded fast-spiking striatal interneurons (FSIs) showed equally selective but inverse firing patterns: they fired in between the initiation and termination of the acquired sequences. These findings suggest that the striatum contains networks of neurons representing acquired sequences of behavior at a level of abstraction higher than that of the individual movements making up the sequence. We propose that such SPN-FSI networks of the striatum could underlie the acquisition of chunked behavioral units.
Collapse
Affiliation(s)
- Nuné Martiros
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, 43 Vassar Street, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar Street, Cambridge, MA 02139, USA
| | - Alexandra A Burgess
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, 43 Vassar Street, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar Street, Cambridge, MA 02139, USA
| | - Ann M Graybiel
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, 43 Vassar Street, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar Street, Cambridge, MA 02139, USA.
| |
Collapse
|
38
|
Salimi-Badr A, Ebadzadeh MM, Darlot C. A system-level mathematical model of Basal Ganglia motor-circuit for kinematic planning of arm movements. Comput Biol Med 2018; 92:78-89. [PMID: 29156412 DOI: 10.1016/j.compbiomed.2017.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 01/01/2023]
Abstract
In this paper, a novel system-level mathematical model of the Basal Ganglia (BG) for kinematic planning, is proposed. An arm composed of several segments presents a geometric redundancy. Thus, selecting one trajectory among an infinite number of possible ones requires overcoming redundancy, according to some kinds of optimization. Solving this optimization is assumed to be the function of BG in planning. In the proposed model, first, a mathematical solution of kinematic planning is proposed for movements of a redundant arm in a plane, based on minimizing energy consumption. Next, the function of each part in the model is interpreted as a possible role of a nucleus of BG. Since the kinematic variables are considered as vectors, the proposed model is presented based on the vector calculus. This vector model predicts different neuronal populations in BG which is in accordance with some recent experimental studies. According to the proposed model, the function of the direct pathway is to calculate the necessary rotation of each joint, and the function of the indirect pathway is to control each joint rotation considering the movement of the other joints. In the proposed model, the local feedback loop between Subthalamic Nucleus and Globus Pallidus externus is interpreted as a local memory to store the previous amounts of movements of the other joints, which are utilized by the indirect pathway. In this model, activities of dopaminergic neurons would encode, at short-term, the error between the desired and actual positions of the end-effector. The short-term modulating effect of dopamine on Striatum is also modeled as cross product. The model is simulated to generate the commands of a redundant manipulator. The performance of the model is studied for different reaching movements between 8 points in a plane. Finally, some symptoms of Parkinson's disease such as bradykinesia and akinesia are simulated by modifying the model parameters, inspired by the dopamine depletion.
Collapse
Affiliation(s)
- Armin Salimi-Badr
- Department of Computer Engineering and Information Technology, Amirkabir University of Technology, Tehran, Iran; INSERM-U1093 Cognition, Action, et Plasticité Sensorimotrice, Université de Bourgogne, Dijon, France
| | - Mohammad Mehdi Ebadzadeh
- Department of Computer Engineering and Information Technology, Amirkabir University of Technology, Tehran, Iran.
| | - Christian Darlot
- INSERM-U1093 Cognition, Action, et Plasticité Sensorimotrice, Université de Bourgogne, Dijon, France
| |
Collapse
|
39
|
A possible correlation between the basal ganglia motor function and the inverse kinematics calculation. J Comput Neurosci 2017; 43:295-318. [DOI: 10.1007/s10827-017-0665-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 09/24/2017] [Accepted: 10/02/2017] [Indexed: 10/18/2022]
|
40
|
O'Hare JK, Li H, Kim N, Gaidis E, Ade K, Beck J, Yin H, Calakos N. Striatal fast-spiking interneurons selectively modulate circuit output and are required for habitual behavior. eLife 2017; 6:26231. [PMID: 28871960 PMCID: PMC5584985 DOI: 10.7554/elife.26231] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 08/08/2017] [Indexed: 12/31/2022] Open
Abstract
Habit formation is a behavioral adaptation that automates routine actions. Habitual behavior correlates with broad reconfigurations of dorsolateral striatal (DLS) circuit properties that increase gain and shift pathway timing. The mechanism(s) for these circuit adaptations are unknown and could be responsible for habitual behavior. Here we find that a single class of interneuron, fast-spiking interneurons (FSIs), modulates all of these habit-predictive properties. Consistent with a role in habits, FSIs are more excitable in habitual mice compared to goal-directed and acute chemogenetic inhibition of FSIs in DLS prevents the expression of habitual lever pressing. In vivo recordings further reveal a previously unappreciated selective modulation of SPNs based on their firing patterns; FSIs inhibit most SPNs but paradoxically promote the activity of a subset displaying high fractions of gamma-frequency spiking. These results establish a microcircuit mechanism for habits and provide a new example of how interneurons mediate experience-dependent behavior. From biting fingernails to the daily commute, habits are sets of actions that can be completed almost without thinking and that are difficult to change or stop. Behavioral neuroscientists refer to habits as “stimulus-response” behaviors, and know that forming a new habit requires a region deep within the brain called the dorsolateral striatum. Indeed, in this region, the outgoing neurons – which make up 95% of the cells - respond differently to incoming signals in mice that have learned habits compared to non-habitual mice. However a question remained: what exactly was producing these differences? O’Hare et al. have now found, unexpectedly, that the answer resides not in the 95% of outgoing neurons, but rather in a rare type of cell known as the fast-spiking interneuron. This cell is connected to many others and it appears to act like a conductor, orchestrating the previously identified changes in the output neurons. These findings were made using mice that had been trained to press a lever for a sugar pellet reward. Habit was measured by how long mice kept pressing even if they had just been allowed to eat their fill of pellets and the test lever was no longer dispensing pellets. Habitual mice continue to press the lever in this circumstance, while other mice do not. O’Hare et al. found that inactivating the “conductor” cell made the output neurons respond in the opposite way to how they normally respond in habitual mice. Further experiments showed that fast-spiking interneurons were also more easily activated in habitual mice. To test whether this putative “conductor” cell was necessary for habitual behaviors, a technique known as chemogenetics was used to turn down its activity in habitual mice. Indeed, reducing activity in the conductor cell blocked the habitual behavior. While some habits are a helpful and economical way to get through daily life, habits are also thought to be corrupted in a number of diseases such as neurodegenerative diseases, addictions and compulsions. Identifying this specific, yet rare, cell as a critical part of maintaining habits points out a new target to consider for therapies. Further work is needed before such treatments might become available to treat habit-related disorders; though O'Hare et al. are now taking steps in this direction by trying to work out how the fast-spiking interneuron changes its own activity when a habit is formed.
Collapse
Affiliation(s)
- Justin K O'Hare
- Department of Neurobiology, Duke University Medical Center, Durham, United States.,Department of Neurology, Duke University Medical Center, Durham, United States
| | - Haofang Li
- Department of Psychology and Neuroscience, Duke University, Durham, United States
| | - Namsoo Kim
- Department of Psychology and Neuroscience, Duke University, Durham, United States
| | - Erin Gaidis
- Department of Psychology and Neuroscience, Duke University, Durham, United States
| | - Kristen Ade
- Department of Neurobiology, Duke University Medical Center, Durham, United States.,Department of Neurology, Duke University Medical Center, Durham, United States
| | - Jeff Beck
- Department of Neurobiology, Duke University Medical Center, Durham, United States
| | - Henry Yin
- Department of Psychology and Neuroscience, Duke University, Durham, United States
| | - Nicole Calakos
- Department of Neurobiology, Duke University Medical Center, Durham, United States.,Department of Neurology, Duke University Medical Center, Durham, United States
| |
Collapse
|
41
|
Fiore VG, Kottler B, Gu X, Hirth F. In silico Interrogation of Insect Central Complex Suggests Computational Roles for the Ellipsoid Body in Spatial Navigation. Front Behav Neurosci 2017; 11:142. [PMID: 28824390 PMCID: PMC5540904 DOI: 10.3389/fnbeh.2017.00142] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 07/18/2017] [Indexed: 11/13/2022] Open
Abstract
The central complex in the insect brain is a composite of midline neuropils involved in processing sensory cues and mediating behavioral outputs to orchestrate spatial navigation. Despite recent advances, however, the neural mechanisms underlying sensory integration and motor action selections have remained largely elusive. In particular, it is not yet understood how the central complex exploits sensory inputs to realize motor functions associated with spatial navigation. Here we report an in silico interrogation of central complex-mediated spatial navigation with a special emphasis on the ellipsoid body. Based on known connectivity and function, we developed a computational model to test how the local connectome of the central complex can mediate sensorimotor integration to guide different forms of behavioral outputs. Our simulations show integration of multiple sensory sources can be effectively performed in the ellipsoid body. This processed information is used to trigger continuous sequences of action selections resulting in self-motion, obstacle avoidance and the navigation of simulated environments of varying complexity. The motor responses to perceived sensory stimuli can be stored in the neural structure of the central complex to simulate navigation relying on a collective of guidance cues, akin to sensory-driven innate or habitual behaviors. By comparing behaviors under different conditions of accessible sources of input information, we show the simulated insect computes visual inputs and body posture to estimate its position in space. Finally, we tested whether the local connectome of the central complex might also allow the flexibility required to recall an intentional behavioral sequence, among different courses of actions. Our simulations suggest that the central complex can encode combined representations of motor and spatial information to pursue a goal and thus successfully guide orientation behavior. Together, the observed computational features identify central complex circuitry, and especially the ellipsoid body, as a key neural correlate involved in spatial navigation.
Collapse
Affiliation(s)
- Vincenzo G Fiore
- School of Behavioral and Brain Sciences, University of Texas at DallasDallas, TX, United States
| | - Benjamin Kottler
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College LondonLondon, United Kingdom
| | - Xiaosi Gu
- School of Behavioral and Brain Sciences, University of Texas at DallasDallas, TX, United States
| | - Frank Hirth
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College LondonLondon, United Kingdom
| |
Collapse
|
42
|
Abstract
The basal ganglia (BG) are the major subcortical nuclei in the brain. Disorders implicating the BG are characterized by diverse symptoms, but it remains unclear what these symptoms have in common or how they can be explained by changes in the BG circuits. This review summarizes recent findings that not only question traditional assumptions about the role of the BG in movement but also elucidate general computations performed by these circuits. To explain these findings, a new conceptual framework is introduced for understanding the role of the BG in behavior. According to this framework, the cortico-BG networks implement transition control in an extended hierarchy of closed loop negative feedback control systems. The transition control model provides a solution to the posture/movement problem, by postulating that BG outputs send descending signals to alter the reference states of downstream position control systems for orientation and body configuration. It also explains major neurological symptoms associated with BG pathology as a result of changes in system parameters such as multiplicative gain and damping.
Collapse
Affiliation(s)
- Henry H Yin
- 1 Department of Psychology and Neuroscience and Department of Neurobiology, Center for Cognitive Neuroscience, Duke University, NC, USA
| |
Collapse
|
43
|
Lovinger DM, Alvarez VA. Alcohol and basal ganglia circuitry: Animal models. Neuropharmacology 2017; 122:46-55. [PMID: 28341206 DOI: 10.1016/j.neuropharm.2017.03.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/16/2017] [Accepted: 03/20/2017] [Indexed: 01/18/2023]
Abstract
Brain circuits that include the cortex and basal ganglia make up the bulk of the forebrain, and influence behaviors related to almost all aspects of affective, cognitive and sensorimotor functions. The learning of new actions as well as association of existing action repertoires with environmental events are key functions of this circuitry. Unfortunately, the cortico-basal ganglia circuitry is also the target for all drugs of abuse, including alcohol. This makes the circuitry susceptible to the actions of chronic alcohol exposure that impairs circuit function in ways that contribute to cognitive dysfunction and drug use disorders. In the present review, we describe the connectivity and functions of the associative, limbic and sensorimotor cortico-basal ganglia circuits. We then review the effects of acute and chronic alcohol exposure on circuit function. Finally, we review studies examining the roles of the different circuits and circuit elements in alcohol use and abuse. We attempt to synthesize information from a variety of studies in laboratory animals and humans to generate hypotheses about how the three circuits interact with each other and with the other brain circuits during exposure to alcohol and during the development of alcohol use disorders. This article is part of the Special Issue entitled "Alcoholism".
Collapse
Affiliation(s)
- David M Lovinger
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, United States.
| | - Veronica A Alvarez
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, United States
| |
Collapse
|
44
|
|
45
|
Fiore VG, Dolan RJ, Strausfeld NJ, Hirth F. Evolutionarily conserved mechanisms for the selection and maintenance of behavioural activity. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2015.0053. [PMID: 26554043 PMCID: PMC4650127 DOI: 10.1098/rstb.2015.0053] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Survival and reproduction entail the selection of adaptive behavioural repertoires. This selection manifests as phylogenetically acquired activities that depend on evolved nervous system circuitries. Lorenz and Tinbergen already postulated that heritable behaviours and their reliable performance are specified by genetically determined programs. Here we compare the functional anatomy of the insect central complex and vertebrate basal ganglia to illustrate their role in mediating selection and maintenance of adaptive behaviours. Comparative analyses reveal that central complex and basal ganglia circuitries share comparable lineage relationships within clusters of functionally integrated neurons. These clusters are specified by genetic mechanisms that link birth time and order to their neuronal identities and functions. Their subsequent connections and associated functions are characterized by similar mechanisms that implement dimensionality reduction and transition through attractor states, whereby spatially organized parallel-projecting loops integrate and convey sensorimotor representations that select and maintain behavioural activity. In both taxa, these neural systems are modulated by dopamine signalling that also mediates memory-like processes. The multiplicity of similarities between central complex and basal ganglia suggests evolutionarily conserved computational mechanisms for action selection. We speculate that these may have originated from ancestral ground pattern circuitries present in the brain of the last common ancestor of insects and vertebrates.
Collapse
Affiliation(s)
- Vincenzo G Fiore
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, UK
| | - Raymond J Dolan
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, UK Max Planck UCL Centre for Computational Psychiatry and Ageing Research, London, UK
| | | | - Frank Hirth
- Institute of Psychiatry, Psychology & Neuroscience, Department of Basic & Clinical Neuroscience, King's College London, London, UK
| |
Collapse
|
46
|
Abstract
This review is an attempt to explain the role of basal ganglia (BG) outputs in generating movements. Recent work showed that opponent outputs from the BG represent instantaneous body position coordinates during behavior. On the other hand, projection neurons in the striatum, the major input nucleus, as well as dopaminergic neurons that form the nigrostriatal pathway, can represent movement velocity. To explain these findings, a new model is proposed, in which the BG implement the level of transition control in an extended control hierarchy. BG outputs represent descending reference signals that command diverse lower-level position controllers. This model not only explains major neurological symptoms but also makes quantitative and testable predictions.
Collapse
Affiliation(s)
- Henry H Yin
- Department of Psychology & Neuroscience, Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, USA
- Department of Neurobiology, Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, USA
| |
Collapse
|
47
|
Dudman JT, Krakauer JW. The basal ganglia: from motor commands to the control of vigor. Curr Opin Neurobiol 2016; 37:158-166. [DOI: 10.1016/j.conb.2016.02.005] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 02/17/2016] [Accepted: 02/22/2016] [Indexed: 01/20/2023]
|
48
|
Bartholomew RA, Li H, Gaidis EJ, Stackmann M, Shoemaker CT, Rossi MA, Yin HH. Striatonigral control of movement velocity in mice. Eur J Neurosci 2016; 43:1097-110. [PMID: 27091436 DOI: 10.1111/ejn.13187] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 01/21/2016] [Indexed: 11/28/2022]
Abstract
The basal ganglia have long been implicated in action initiation. Using three-dimensional motion capture, we quantified the effects of optogenetic stimulation of the striatonigral (direct) pathway on movement kinematics. We generated transgenic mice with channelrhodopsin-2 expression in striatal neurons that express the D1-like dopamine receptor. With optic fibres placed in the sensorimotor striatum, an area known to contain movement velocity-related single units, photo-stimulation reliably produced movements that could be precisely quantified with our motion capture programme. A single light pulse was sufficient to elicit movements with short latencies (< 30 ms). Increasing stimulation frequency increased movement speed, with a highly linear relationship. These findings support the hypothesis that the sensorimotor striatum is part of a velocity controller that controls rate of change in body configurations.
Collapse
Affiliation(s)
- Ryan A Bartholomew
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Haofang Li
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Erin J Gaidis
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Michelle Stackmann
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | | | - Mark A Rossi
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Henry H Yin
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA.,Department of Neurobiology, Duke University, Durham, NC, USA.,Center for Cognitive Neuroscience, Duke University, Durham, NC, USA
| |
Collapse
|
49
|
Barter JW, Li S, Lu D, Bartholomew RA, Rossi MA, Shoemaker CT, Salas-Meza D, Gaidis E, Yin HH. Beyond reward prediction errors: the role of dopamine in movement kinematics. Front Integr Neurosci 2015; 9:39. [PMID: 26074791 PMCID: PMC4444742 DOI: 10.3389/fnint.2015.00039] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 05/06/2015] [Indexed: 11/13/2022] Open
Abstract
We recorded activity of dopamine (DA) neurons in the substantia nigra pars compacta in unrestrained mice while monitoring their movements with video tracking. Our approach allows an unbiased examination of the continuous relationship between single unit activity and behavior. Although DA neurons show characteristic burst firing following cue or reward presentation, as previously reported, their activity can be explained by the representation of actual movement kinematics. Unlike neighboring pars reticulata GABAergic output neurons, which can represent vector components of position, DA neurons represent vector components of velocity or acceleration. We found neurons related to movements in four directions-up, down, left, right. For horizontal movements, there is significant lateralization of neurons: the left nigra contains more rightward neurons, whereas the right nigra contains more leftward neurons. The relationship between DA activity and movement kinematics was found on both appetitive trials using sucrose and aversive trials using air puff, showing that these neurons belong to a velocity control circuit that can be used for any number of purposes, whether to seek reward or to avoid harm. In support of this conclusion, mimicry of the phasic activation of DA neurons with selective optogenetic stimulation could also generate movements. Contrary to the popular hypothesis that DA neurons encode reward prediction errors, our results suggest that nigrostriatal DA plays an essential role in controlling the kinematics of voluntary movements. We hypothesize that DA signaling implements gain adjustment for adaptive transition control, and describe a new model of the basal ganglia (BG) in which DA functions to adjust the gain of the transition controller. This model has significant implications for our understanding of movement disorders implicating DA and the BG.
Collapse
Affiliation(s)
- Joseph W Barter
- Department of Psychology and Neuroscience, Department of Neurobiology, Center for Cognitive Neuroscience, Duke University Durham, NC, USA
| | - Suellen Li
- Department of Psychology and Neuroscience, Department of Neurobiology, Center for Cognitive Neuroscience, Duke University Durham, NC, USA
| | - Dongye Lu
- Department of Psychology and Neuroscience, Department of Neurobiology, Center for Cognitive Neuroscience, Duke University Durham, NC, USA
| | - Ryan A Bartholomew
- Department of Psychology and Neuroscience, Department of Neurobiology, Center for Cognitive Neuroscience, Duke University Durham, NC, USA
| | - Mark A Rossi
- Department of Psychology and Neuroscience, Department of Neurobiology, Center for Cognitive Neuroscience, Duke University Durham, NC, USA
| | - Charles T Shoemaker
- Department of Psychology and Neuroscience, Department of Neurobiology, Center for Cognitive Neuroscience, Duke University Durham, NC, USA
| | - Daniel Salas-Meza
- Department of Psychology and Neuroscience, Department of Neurobiology, Center for Cognitive Neuroscience, Duke University Durham, NC, USA
| | - Erin Gaidis
- Department of Psychology and Neuroscience, Department of Neurobiology, Center for Cognitive Neuroscience, Duke University Durham, NC, USA
| | - Henry H Yin
- Department of Psychology and Neuroscience, Department of Neurobiology, Center for Cognitive Neuroscience, Duke University Durham, NC, USA
| |
Collapse
|
50
|
Abstract
The basal ganglia (BG) are implicated in many movement disorders, yet how they contribute to movement remains unclear. Using wireless in vivo recording, we measured BG output from the substantia nigra pars reticulata (SNr) in mice while monitoring their movements with video tracking. The firing rate of most nigral neurons reflected Cartesian coordinates (either x- or y-coordinates) of the animal's head position during movement. The firing rates of SNr neurons are either positively or negatively correlated with the coordinates. Using an egocentric reference frame, four types of neurons can be classified: each type increases firing during movement in a particular direction (left, right, up, down), and decreases firing during movement in the opposite direction. Given the high correlation between the firing rate and the x and y components of the position vector, the movement trajectory can be reconstructed from neural activity. Our results therefore demonstrate a quantitative and continuous relationship between BG output and behavior. Thus, a steady BG output signal from the SNr (i.e., constant firing rate) is associated with the lack of overt movement, when a stable posture is maintained by structures downstream of the BG. Any change in SNr firing rate is associated with a change in position (i.e., movement). We hypothesize that the SNr output quantitatively determines the direction, velocity, and amplitude of voluntary movements. By changing the reference signals to downstream position control systems, the BG can produce transitions in body configurations and initiate actions.
Collapse
|