1
|
Bastos-Gonçalves R, Coimbra B, Rodrigues AJ. The mesopontine tegmentum in reward and aversion: From cellular heterogeneity to behaviour. Neurosci Biobehav Rev 2024; 162:105702. [PMID: 38718986 DOI: 10.1016/j.neubiorev.2024.105702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/06/2024] [Accepted: 05/01/2024] [Indexed: 05/18/2024]
Abstract
The mesopontine tegmentum, comprising the pedunculopontine tegmentum (PPN) and the laterodorsal tegmentum (LDT), is intricately connected to various regions of the basal ganglia, motor systems, and limbic systems. The PPN and LDT can regulate the activity of different brain regions of these target systems, and in this way are in a privileged position to modulate motivated behaviours. Despite recent findings, the PPN and LDT have been largely overlooked in discussions about the neural circuits associated with reward and aversion. This review aims to provide a timely and comprehensive resource on past and current research, highlighting the PPN and LDT's connectivity and influence on basal ganglia and limbic, and motor systems. Seminal studies, including lesion, pharmacological, and optogenetic/chemogenetic approaches, demonstrate their critical roles in modulating reward/aversive behaviours. The review emphasizes the need for further investigation into the associated cellular mechanisms, in order to clarify their role in behaviour and contribution for different neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ricardo Bastos-Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Bárbara Coimbra
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
2
|
Coley AA, Padilla-Coreano N, Patel R, Tye KM. Valence processing in the PFC: Reconciling circuit-level and systems-level views. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 158:171-212. [PMID: 33785145 DOI: 10.1016/bs.irn.2020.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An essential component in animal behavior is the ability to process emotion and dissociate among positive and negative valence in response to a rewarding or aversive stimulus. The medial prefrontal cortex (mPFC)-responsible for higher order executive functions that include cognition, learning, and working memory; and is also involved in sociability-plays a major role in emotional processing and control. Although the amygdala is widely regarded as the "emotional hub," the mPFC encodes for context-specific salience and elicits top-down control over limbic circuitry. The mPFC can then conduct behavioral responses, via cortico-striatal and cortico-brainstem pathways, that correspond to emotional stimuli. Evidence shows that abnormalities within the mPFC lead to sociability deficits, working memory impairments, and drug-seeking behavior that include addiction and compulsive disorders; as well as conditions such as anhedonia. Recent studies investigate the effects of aberrant salience processing on cortical circuitry and neuronal populations associated with these behaviors. In this chapter, we discuss mPFC valence processing, neuroanatomical connections, and physiological substrates involved in mPFC-associated behavior. We review neurocomputational and theoretical models such as "mixed selectivity," that describe cognitive control, attentiveness, and motivational drives. Using this knowledge, we describe the effects of valence imbalances and its influence on mPFC neural pathways that contribute to deficits in social cognition, while understanding the effects in addiction/compulsive behaviors and anhedonia.
Collapse
Affiliation(s)
- Austin A Coley
- Salk Institute for Biological Studies, La Jolla, CA, United States
| | | | - Reesha Patel
- Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Kay M Tye
- Salk Institute for Biological Studies, La Jolla, CA, United States.
| |
Collapse
|
3
|
Kohlmeier KA, Polli FS. Plasticity in the Brainstem: Prenatal and Postnatal Experience Can Alter Laterodorsal Tegmental (LDT) Structure and Function. Front Synaptic Neurosci 2020; 12:3. [PMID: 32116639 PMCID: PMC7019863 DOI: 10.3389/fnsyn.2020.00003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/14/2020] [Indexed: 12/16/2022] Open
Abstract
The brainstem has traditionally been considered an area of the brain with autonomous control of mostly homeostatic functions such as heart rate, respiration, and the sleep and wakefulness state, which would preclude the necessity to exhibit the high degree of synaptic or cellular mechanisms of plasticity typical of regions of the brain responsible for flexible, executive control, such as the medial prefrontal cortex or the hippocampus. The perception that the brainstem does not share the same degree of flexibility to alter synaptic strength and/or wiring within local circuits makes intuitive sense, as it is not easy to understand how "soft wiring" would be an advantage when considering the importance of faithful and consistent performance of the homeostatic, autonomic functions that are controlled by the brainstem. However, many of the molecular and cellular requirements which underlie strengthening of synapses seen in brain regions involved in higher-level processing are present in brainstem nuclei, and recent research suggest that the view of the brainstem as "hard wired," with rigid and static connectivity and with unchanging synaptic strength, is outdated. In fact, information from studies within the last decades, including work conducted in our group, leads us to propose that the brainstem can dynamically alter synaptic proteins, and change synaptic connections in response to prenatal or postnatal stimuli, and this would likely alter functionality and output. This article reviews recent research that has provided information resulting in our revision of the view of the brainstem as static and non-changing by using as example recent information gleaned from a brainstem pontine nucleus, the laterodorsal tegmentum (LDT). The LDT has demonstrated mechanisms underlying synaptic plasticity, and plasticity has been exhibited in the postnatal LDT following exposure to drugs of abuse. Further, exposure of the brain during gestation to drugs of abuse results in alterations in development of signaling pathways in the LDT. As the LDT provides a high degree of innervation of mesoaccumbal and mesocortical circuits involved in salience, as well as thalamocortical circuits involved in control of arousal and orientation, changes in synaptic strength would be expected to alter output, which would significantly impact behavioral state, motivated behavior and directed attention. Further, alterations in developmental trajectory within the LDT following prenatal exposure to drugs of abuse would be expected to impact on later life expression of motivation and arousal.
Collapse
Affiliation(s)
- Kristi A. Kohlmeier
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
4
|
Ethanol-induced conditioned place preference and aversion differentially alter plasticity in the bed nucleus of stria terminalis. Neuropsychopharmacology 2019; 44:1843-1854. [PMID: 30795004 PMCID: PMC6785142 DOI: 10.1038/s41386-019-0349-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 01/11/2023]
Abstract
Contextual cues associated with drugs of abuse, such as ethanol, can trigger craving and drug-seeking behavior. Pavlovian procedures, such as place conditioning, have been widely used to study the rewarding/aversive properties of drugs and the association between environmental cues and drug seeking. Previous research has shown that ethanol as an unconditioned stimulus can induce a strong conditioned place preference (CPP) or aversion (CPA) in rodents. However, the neural mechanisms underlying ethanol-induced reward and aversion have not been thoroughly investigated. The bed nucleus of the stria terminalis (BNST), an integral part of the extended amygdala, is engaged by both rewarding and aversive stimuli and plays a role in ethanol-seeking behavior. Here, we used ex-vivo slice physiology to probe learning-induced synaptic plasticity in the BNST following ethanol-induced CPP and CPA. Male DBA/2 J mice (2-3 months old) were conditioned using previously reported ethanol-induced CPP/CPA procedures. Ethanol-induced CPP was associated with increased neuronal excitability in the ventral BNST (vBNST). Conversely, ethanol-induced CPA resulted in a significant decrease in spontaneous glutamatergic transmission without alterations in GABAergic signaling. Ethanol-CPA also led to a significant increase in the paired-pulse ratio at excitatory synapses, suggestive of a decrease in presynaptic glutamate release. Collectively, these data demonstrate that the vBNST is involved in the modulation of contextual learning associated with both the rewarding and the aversive properties of ethanol in mice.
Collapse
|
5
|
Coimbra B, Soares-Cunha C, Vasconcelos NAP, Domingues AV, Borges S, Sousa N, Rodrigues AJ. Role of laterodorsal tegmentum projections to nucleus accumbens in reward-related behaviors. Nat Commun 2019; 10:4138. [PMID: 31515512 PMCID: PMC6742663 DOI: 10.1038/s41467-019-11557-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 07/15/2019] [Indexed: 11/13/2022] Open
Abstract
The laterodorsal tegmentum (LDT) is associated with reward considering that it modulates VTA neuronal activity, but recent anatomical evidence shows that the LDT also directly projects to nucleus accumbens (NAc). We show that the majority of LDT-NAc inputs are cholinergic, but there is also GABAergic and glutamatergic innervation; activation of LDT induces a predominantly excitatory response in the NAc. Non-selective optogenetic activation of LDT-NAc projections in rats enhances motivational drive and shifts preference to an otherwise equal reward; whereas inhibition of these projections induces the opposite. Activation of these projections also induces robust place preference. In mice, specific activation of LDT-NAc cholinergic inputs (but not glutamatergic or GABAergic) is sufficient to shift preference, increase motivation, and drive positive reinforcement in different behavioral paradigms. These results provide evidence that LDT-NAc projections play an important role in motivated behaviors and positive reinforcement, and that distinct neuronal populations differentially contribute for these behaviors.
Collapse
Affiliation(s)
- Bárbara Coimbra
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Carina Soares-Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nivaldo A P Vasconcelos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Department of Biomedical Engineering, Federal University of Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | - Ana Verónica Domingues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sónia Borges
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
- Clinical Academic Center (2CA-Braga), Braga, Portugal.
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
- Clinical Academic Center (2CA-Braga), Braga, Portugal.
| |
Collapse
|
6
|
Shinohara F, Asaoka Y, Kamii H, Minami M, Kaneda K. Stress augments the rewarding memory of cocaine via the activation of brainstem-reward circuitry. Addict Biol 2019; 24:509-521. [PMID: 29480583 DOI: 10.1111/adb.12617] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 01/09/2018] [Accepted: 02/06/2018] [Indexed: 12/31/2022]
Abstract
Effects of stress on the reward system are well established in the literature. Although previous studies have revealed that stress can reinstate extinguished addictive behaviors related to cocaine, the effects of stress on the rewarding memory of cocaine are not fully understood. Here, we provide evidence that stress potentiates the expression of rewarding memory of cocaine via the activation of brainstem-reward circuitry using a cocaine-induced conditioned place preference (CPP) paradigm combined with restraint stress in rats. The rats exposed to 30-minute restraint stress immediately before posttest exhibited significantly larger CPP scores compared with non-stressed rats. Intra-laterodorsal tegmental nucleus (LDT) microinjection of a β or α2 adrenoceptor antagonist attenuated the stress-induced enhancement of cocaine CPP. Consistent with this observation, intra-LDT microinjection of a β or α2 adrenoceptor agonist before posttest increased cocaine CPP. Additionally, intra-ventral tegmental area (VTA) microinjection of antagonists for the muscarinic acetylcholine, nicotinic acetylcholine or glutamate receptors attenuated the stress-induced enhancement of cocaine CPP. Finally, intra-medial prefrontal cortex (mPFC) microinjection of a D1 receptor antagonist also reduced the stress-induced enhancement of cocaine CPP. These findings suggest a mechanism wherein the LDT is activated by noradrenergic input from the locus coeruleus, leading to the activation of VTA dopamine neurons via both cholinergic and glutamatergic transmission and the subsequent excitation of the mPFC to enhance the memory of cocaine-induced reward value.
Collapse
Affiliation(s)
- Fumiya Shinohara
- Department of Pharmacology, Graduate School of Pharmaceutical SciencesHokkaido University Sapporo Japan
| | - Yuta Asaoka
- Department of Pharmacology, Graduate School of Pharmaceutical SciencesHokkaido University Sapporo Japan
| | - Hironori Kamii
- Department of Pharmacology, Graduate School of Pharmaceutical SciencesHokkaido University Sapporo Japan
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health SciencesKanazawa University Kanazawa Japan
| | - Masabumi Minami
- Department of Pharmacology, Graduate School of Pharmaceutical SciencesHokkaido University Sapporo Japan
| | - Katsuyuki Kaneda
- Department of Pharmacology, Graduate School of Pharmaceutical SciencesHokkaido University Sapporo Japan
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health SciencesKanazawa University Kanazawa Japan
| |
Collapse
|
7
|
Perez PD, Hall G, Zubcevic J, Febo M. Cocaine differentially affects synaptic activity in memory and midbrain areas of female and male rats: an in vivo MEMRI study. Brain Imaging Behav 2018; 12:201-216. [PMID: 28236167 DOI: 10.1007/s11682-017-9691-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Manganese enhanced magnetic resonance imaging (MEMRI) has been previously used to determine the effect of acute cocaine on calcium-dependent synaptic activity in male rats. However, there have been no MEMRI studies examining sex differences in the functional neural circuits affected by repeated cocaine. In the present study, we used MEMRI to investigate the effects of repeated cocaine on brain activation in female and male rats. Adult female and male rats were scanned at 4.7 Tesla three days after final treatment with saline, a single cocaine injection (15 mg kg-1, i.p. × 1 day) or repeated cocaine injections (15 mg kg-1, i.p. × 10 days). A day before imaging rats were provided with an i.p. injection of manganese chloride (70 mg kg-1). Cocaine produced effects on MEMRI activity that were dependent on sex. In females, we observed that a single cocaine injection reduced MEMRI activity in hippocampal CA3, ventral tegmental area (VTA), and median Raphé, whereas repeated cocaine increased MEMRI activity in dentate gyrus and interpeduncular nucleus. In males, repeated cocaine reduced MEMRI activity in VTA. Overall, it appeared that female rats showed a general trend towards increase MEMRI activity with single cocaine and reduced activity with repeated exposure, while male rats showed a trend towards opposite effects. Our results provide evidence for sex differences in the in vivo neural response to cocaine, which involves primarily hippocampal, amygdala and midbrain areas.
Collapse
Affiliation(s)
- Pablo D Perez
- Department of Psychiatry, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Gabrielle Hall
- Department of Psychiatry, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Jasenka Zubcevic
- Department of Physiological Sciences, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Marcelo Febo
- Department of Psychiatry, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
- Center for Addiction Research and Education (CARE), University of Florida, Gainesville, FL, USA.
| |
Collapse
|
8
|
Kaneda K. Neuroplasticity in cholinergic neurons of the laterodorsal tegmental nucleus contributes to the development of cocaine addiction. Eur J Neurosci 2018; 50:2239-2246. [DOI: 10.1111/ejn.13962] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/20/2018] [Accepted: 05/04/2018] [Indexed: 11/27/2022]
Affiliation(s)
- Katsuyuki Kaneda
- Laboratory of Molecular Pharmacology Institute of Medical, Pharmaceutical and Health Sciences Kanazawa University Kanazawa 920‐1192 Japan
| |
Collapse
|
9
|
Riluzole Impairs Cocaine Reinstatement and Restores Adaptations in Intrinsic Excitability and GLT-1 Expression. Neuropsychopharmacology 2018; 43:1212-1223. [PMID: 28990593 PMCID: PMC5916346 DOI: 10.1038/npp.2017.244] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/29/2017] [Accepted: 10/01/2017] [Indexed: 01/01/2023]
Abstract
Adaptations in glutamate signaling within the brain's reward circuitry are observed following withdrawal from several abused drugs, including cocaine. These include changes in intrinsic cellular excitability, glutamate release, and glutamate uptake. Pharmacological or optogenetic reversal of these adaptations have been shown to reduce measures of cocaine craving and seeking, raising the hypothesis that regulation of glutamatergic signaling represents a viable target for the treatment of substance use disorders. Here, we tested the hypothesis that administration of the compound riluzole, which regulates glutamate dynamics in several ways, would reduce cocaine seeking in the rat self-administration and reinstatement model of addiction. Riluzole dose-dependently inhibited cue- and cocaine-primed reinstatement to cocaine, but did not affect locomotor activity or reinstatement to sucrose seeking. Moreover, riluzole reversed bidirectional cocaine-induced adaptations in intrinsic excitability of prelimbic (PL) and infralimbic (IL) pyramidal neurons; a cocaine-induced increase in PL excitability was decreased by riluzole, and a cocaine-induced decrease in IL excitability was increased to normal levels. Riluzole also reversed the cocaine-induced suppression of the high-affinity glutamate transporter 1 (EAAT2/GLT-1) in the nucleus accumbens (NAc). GLT-1 is responsible for the majority of glutamate uptake in the brain, and has been previously reported to be downregulated by cocaine. These results demonstrate that riluzole impairs cocaine reinstatement while rectifying several cellular adaptations in glutamatergic signaling within the brain's reward circuitry, and support the hypothesis that regulators of glutamate homeostasis represent viable candidates for pharmacotherapeutic treatment of psychostimulant relapse.
Collapse
|
10
|
Pregabalin induces conditioned place preference in the rat during the early, but not late, stage of neuropathic pain. Neurosci Lett 2018; 668:133-137. [PMID: 29355692 DOI: 10.1016/j.neulet.2018.01.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/13/2018] [Accepted: 01/15/2018] [Indexed: 11/24/2022]
Abstract
The present study aimed to examine the rewarding effects of pain relief during the early and late stages of neuropathic pain using a conditioned place preference (CPP) test. Animal models of neuropathic pain were prepared by spinal nerve ligation in male Sprague-Dawley rats. Intraperitoneal and intrathecal injections of pregabalin (300 mg/kg and 100 μg/10 μL, respectively) suppressed allodynia in the von Frey test both 2 weeks (early stage) and 4 weeks (late stage) after nerve injury. Intraperitoneal and intrathecal injections of pregabalin induced CPP during the early stage of neuropathic pain, suggesting that the CPP test serves as an objective and quantifiable behavioral assay to assess the emotional aspect of pain relief. In contrast with the early stage of neuropathic pain, intraperitoneal or intrathecal injection of pregabalin did not induce CPP during the late stage of neuropathic pain. The extinguishment of the rewarding effects of pregabalin during the late stage of neuropathic pain is likely due to dysfunction of the mesolimbic reward system, although the possibility that neuronal mechanisms other than dysfunction of the mesolimbic reward system are involved in the extinguishment of pregabalin-induced CPP cannot be excluded. We previously reported that not only the dopamine release in the nucleus accumbens induced by intrathecal pregabalin injection but also that induced by sucrose intake were extinguished during the late stage of neuropathic pain. These findings, combined with the results of this study, suggest that pain chronification leads to dysfunction of the mesolimbic reward system.
Collapse
|
11
|
Nitric oxide in the medial prefrontal cortex contributes to the acquisition of cocaine place preference and synaptic plasticity in the laterodorsal tegmental nucleus. Neurosci Lett 2017; 660:39-44. [PMID: 28893594 DOI: 10.1016/j.neulet.2017.09.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/04/2017] [Accepted: 09/07/2017] [Indexed: 11/23/2022]
Abstract
Nitric oxide (NO), a gaseous neurotransmitter, is involved in a variety of brain functions, including drug addiction. Although previous studies have suggested that NO plays an important role in the development of cocaine addiction, the brain region(s) in which NO acts and how it contributes to cocaine addiction remain unclear. In this study, we examined these issues using a cocaine-induced conditioned place preference (CPP) paradigm and ex vivo electrophysiological recordings in rats. Specifically, we focused on the medial prefrontal cortex (mPFC) and laterodorsal tegmental nucleus (LDT), brain regions associated with cocaine CPP development and cocaine-induced plasticity. Intra-mPFC injection of the non-selective NO synthase (NOS) inhibitor L-NAME or the neuronal NOS (nNOS) selective inhibitor L-NPA during the conditioning phase disrupted cocaine CPP. Additionally, intra-mPFC injection of L-NPA prior to each cocaine injection prevented the induction of presynaptic plasticity, induced by repeated cocaine administration, in LDT cholinergic neurons. These findings indicate that NO generated in the mPFC contributes to the acquisition of cocaine CPP and the induction of neuroplasticity in LDT cholinergic neurons. Together with previous studies showing that NO induces membrane plasticity in mPFC neurons, that mPFC neurons project to the LDT, and that LDT activity is critical for the acquisition of cocaine CPP, the present findings suggest that NO-mediated neuroplasticity induced in the mPFC-LDT circuitry is critical for the development of cocaine addiction.
Collapse
|
12
|
Shinohara F, Kamii H, Minami M, Kaneda K. The Role of Dopaminergic Signaling in the Medial Prefrontal Cortex for the Expression of Cocaine-Induced Conditioned Place Preference in Rats. Biol Pharm Bull 2017; 40:1983-1989. [DOI: 10.1248/bpb.b17-00614] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Fumiya Shinohara
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University
| | - Hironori Kamii
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Masabumi Minami
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University
| | - Katsuyuki Kaneda
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| |
Collapse
|
13
|
Lambert MØ, Ipsen TH, Kohlmeier KA. Acute cocaine exposure elicits rises in calcium in arousal-related laterodorsal tegmental neurons. Pharmacol Res Perspect 2016; 5:e00282. [PMID: 28596834 PMCID: PMC5461641 DOI: 10.1002/prp2.282] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 10/25/2016] [Indexed: 12/17/2022] Open
Abstract
Cocaine has strong reinforcing properties, which underlie its high addiction potential. Reinforcement of use of addictive drugs is associated with rises in dopamine (DA) in mesoaccumbal circuitry. Excitatory afferent input to mesoaccumbal circuitry sources from the laterodorsal tegmental nucleus (LDT). Chronic, systemic cocaine exposure has been shown to have cellular effects on LDT cells, but acute actions of local application have never been demonstrated. Using calcium imaging, we show that acute application of cocaine to mouse brain slices induces calcium spiking in cells of the LDT. Spiking was attenuated by tetrodotoxin (TTX) and low calcium solutions, and abolished by prior exhaustion of intracellular calcium stores. Further, DA receptor antagonists reduced these transients, whereas DA induced rises with similar spiking kinetics. Amphetamine, which also results in elevated levels of synaptic DA, but via a different pharmacological action than cocaine, induced calcium spiking with similar profiles. Although large differences in spiking were not noted in an animal model associated with a heightened proclivity of acquiring addiction‐related behavior, the prenatal nicotine exposed mouse (PNE), subtle differences in cocaine's effect on calcium spiking were noted, indicative of a reduction in action of cocaine in the LDT associated with exposure to nicotine during gestation. When taken together, our data indicate that acute actions of cocaine do include effects on LDT cells. Considering the role of intracellular calcium in cellular excitability, and of the LDT in addiction circuitry, our data suggest that cocaine effects in this nucleus may contribute to the high addiction potential of this drug.
Collapse
Affiliation(s)
- Mads Ødum Lambert
- Department of Drug Design and Pharmacology Faculty of Health Sciences Universitetsparken 2 University of Copenhagen Copenhagen 2100 Denmark
| | - Theis Højland Ipsen
- Department of Drug Design and Pharmacology Faculty of Health Sciences Universitetsparken 2 University of Copenhagen Copenhagen 2100 Denmark
| | - Kristi Anne Kohlmeier
- Department of Drug Design and Pharmacology Faculty of Health Sciences Universitetsparken 2 University of Copenhagen Copenhagen 2100 Denmark
| |
Collapse
|
14
|
Taoka N, Kamiizawa R, Wada S, Minami M, Kaneda K. Chronic cocaine exposure induces noradrenergic modulation of inhibitory synaptic transmission to cholinergic neurons of the laterodorsal tegmental nucleus. Eur J Neurosci 2016; 44:3035-3045. [DOI: 10.1111/ejn.13405] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/23/2016] [Accepted: 09/16/2016] [Indexed: 01/30/2023]
Affiliation(s)
- Naofumi Taoka
- Department of Pharmacology; Graduate School of Pharmaceutical Sciences; Hokkaido University; Sapporo Japan
| | - Ryota Kamiizawa
- Department of Pharmacology; Graduate School of Pharmaceutical Sciences; Hokkaido University; Sapporo Japan
| | - Shintaro Wada
- Laboratory of Molecular Pharmacology; Institute of Medical, Pharmaceutical and Health Sciences; Kanazawa University; Kakuma-machi Kanazawa 920-1192 Japan
| | - Masabumi Minami
- Department of Pharmacology; Graduate School of Pharmaceutical Sciences; Hokkaido University; Sapporo Japan
| | - Katsuyuki Kaneda
- Department of Pharmacology; Graduate School of Pharmaceutical Sciences; Hokkaido University; Sapporo Japan
- Laboratory of Molecular Pharmacology; Institute of Medical, Pharmaceutical and Health Sciences; Kanazawa University; Kakuma-machi Kanazawa 920-1192 Japan
| |
Collapse
|