1
|
Fregnan F, Muratori L, Crosio A, Zen F, Fiori C, Tonazzini I, Gambarotta G, Martinelli A, Meziere J, Raimondo S, Manfredi M, Scaccini L, Geuna S, Porpiglia F. A novel rat model for studying bilateral cavernous nerve damage in vivo: exploring the potential of chitosan-blended membranes for nerve regeneration post-radical prostatectomy. Minerva Urol Nephrol 2025; 77:91-110. [PMID: 40183186 DOI: 10.23736/s2724-6051.25.06169-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
BACKGROUND The primary treatment for localized prostate cancer involves radical prostatectomy (RP) often resulting in iatrogenic damage to the periprostatic neurovascular bundles (NVB), leading to erectile dysfunction. The current study devised an experimental model involving bilateral cavernous nerve (CN) lesions in rats to replicate nerve damage close to the injury of the NVB in humans following radical prostatectomy. METHODS Fifteen adult male Wistar rats were divided as follows: control rats without surgery (CTRL group); rats underwent bilateral resection of 2 mm of CN repaired with a glycerol-blended chitosan membranes (CS-MEM group); rats underwent a total resection of both CN and major pelvic ganglion (RES group). Two months after surgery, membranes with regenerated nerves were analyzed morphologically, and for gene and protein expression for the evaluation of nerve regeneration and vascularization. Rat penises were assessed for smooth muscle content, morphology, and tissue arrangement. Primary sensory neuron cultures and DRG explants were cultured on micro-grooved chitosan-blended membranes, to evaluate axonal orientation on different topographies. RESULTS Regenerated nerve fibers and newly formed vessels colonized the whole CS-membrane. The regenerative process was also confirmed by gene and protein expression analyses. The target organ exhibited remodeling of smooth muscle tissue around sinusoidal spaces, indicating potential restoration of cavernous tissue. The quantitative analyses of α-actin smooth muscle (α-SMA) expression in CS-MEM groups displayed α-SMA protein signals comparable to controls. In-vitro experiments on micro-patterned membranes displayed oriented axonal growth, showing valuable insights into the ways in which topographical features can be considered for a more effective performance in vivo. CONCLUSIONS Chitosan-blended membranes promote nerve fiber regeneration in an in-vivo model of nerve lesion that resembles the damage to the NVB occurring in men after radical prostatectomy. These results highlight the promising potential of this device in the clinical urological field, thus suggesting that the application of orientated micro-patterned membranes could further improve nerve regeneration.
Collapse
Affiliation(s)
- Federica Fregnan
- Department of Clinical and Biological Sciences, Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Orbassano, Turin, Italy
| | - Luisa Muratori
- Department of Clinical and Biological Sciences, Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Orbassano, Turin, Italy -
| | - Alessandro Crosio
- Unit of UOC Traumatology-Reconstructive Microsurgery, Department of Orthopedics and Traumatology, CTO Hospital, Turin, Italy
| | - Federica Zen
- Department of Clinical and Biological Sciences, Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Orbassano, Turin, Italy
| | - Cristian Fiori
- Division of Urology, Department of Oncology, San Luigi Gonzaga Hospital, University of Turin, Orbassano, Turin, Italy
| | - Ilaria Tonazzini
- NEST (National Enterprise for nanoScience and nanoTechnology), Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy
| | - Giovanna Gambarotta
- Department of Clinical and Biological Sciences, Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Orbassano, Turin, Italy
| | - Antonello Martinelli
- Department of Clinical and Biological Sciences, Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Orbassano, Turin, Italy
| | - Juliette Meziere
- Department of Urology, Santa Croce e Carle Hospital, Cuneo, Italy
| | - Stefania Raimondo
- Department of Clinical and Biological Sciences, Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Orbassano, Turin, Italy
| | - Matteo Manfredi
- Division of Urology, Department of Oncology, San Luigi Gonzaga Hospital, University of Turin, Orbassano, Turin, Italy
| | - Luca Scaccini
- NEST (National Enterprise for nanoScience and nanoTechnology), Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Orbassano, Turin, Italy
| | - Francesco Porpiglia
- Division of Urology, Department of Oncology, San Luigi Gonzaga Hospital, University of Turin, Orbassano, Turin, Italy
| |
Collapse
|
2
|
Wei Z, Li X, Chen Y, Han Z, Li Y, Gan L, Yang Y, Chen Y, Zhang F, Ye X, Cui W. Programmable DNA‐Peptide Conjugated Hydrogel via Click Chemistry for Sequential Modulation of Peripheral Nerve Regeneration. ADVANCED FUNCTIONAL MATERIALS 2025. [DOI: 10.1002/adfm.202419915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Indexed: 02/02/2025]
Abstract
AbstractDuring peripheral nerve regeneration, current deoxyribonucleic acid (DNA)‐based therapeutic platforms face the challenge of precisely regulating Schwann cells (SCs) fate to sustain their repair phenotype due to their inability to stably and precisely integrate multiple bioactive components. Herein, the strain‐promoted azide–alkyne cycloaddition reaction is utilized to integrate the neurotrophic factor mimetic peptide RGI and the laminin‐derived peptide IKVAV into DNA monomers. Through DNA sequence self‐assembly, a programmable DNA‐peptide conjugated hydrogel is constructed for loading bone marrow mesenchymal stem cell‐derived exosomes. This programmable hydrogel can rapidly, stably, and precisely integrate various bioactive components into the hydrogel network, thereby enabling sequential modulation of peripheral nerve repair. In vitro, studies show that this hydrogel, through sequential modulation mechanisms, can activate the neuregulin‐1 (Nrg1)/ErbB pathway to induce the reprogramming of SCs and promote the recruitment and proliferation of repair SCs. The induced repair SCs promote neuronal axon outgrowth and enhance tube formation in endothelial cells. In vivo, this programmable hydrogel can gelate in situ through intraneural injection in a rat sciatic nerve crush injury model, promoting nerve regeneration and functional recovery. In summary, this work provides an effective and practical strategy for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Zhenyuan Wei
- Department of Orthopaedics Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery Center for Spinal Minimally Invasive Research Hongqiao International Institute of Medicine, Tongren Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200336 P. R. China
| | - Xiaoxiao Li
- Department of Orthopaedics Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery Center for Spinal Minimally Invasive Research Hongqiao International Institute of Medicine, Tongren Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200336 P. R. China
| | - Yicheng Chen
- Department of Orthopaedics Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery Center for Spinal Minimally Invasive Research Hongqiao International Institute of Medicine, Tongren Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200336 P. R. China
| | - Zhaopu Han
- Department of Orthopaedics Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery Center for Spinal Minimally Invasive Research Hongqiao International Institute of Medicine, Tongren Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200336 P. R. China
| | - Yan Li
- Department of Rehabilitation Medicine, Tongren Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200336 P. R. China
| | - Lin Gan
- Department of Rehabilitation Medicine, Tongren Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200336 P. R. China
| | - Yang Yang
- Department of Rehabilitation Medicine, Tongren Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200336 P. R. China
| | - Yujie Chen
- Department of Orthopaedics Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery Center for Spinal Minimally Invasive Research Hongqiao International Institute of Medicine, Tongren Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200336 P. R. China
| | - Feng Zhang
- Eye Institute and Department of Ophthalmology Eye & ENT Hospital Fudan University Shanghai 200031 P. R. China
- NHC Key Laboratory of Myopia (Fudan University) Key Laboratory of Myopia Chinese Academy of Medical Sciences Shanghai 200031 P. R. China
| | - Xiaojian Ye
- Department of Orthopaedics Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery Center for Spinal Minimally Invasive Research Hongqiao International Institute of Medicine, Tongren Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200336 P. R. China
| | - Wenguo Cui
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| |
Collapse
|
3
|
Chen Y, Shang T, Sun J, Ji Y, Gong L, Li A, Ding F, Shen M, Zhang Q. Characterization of sciatic nerve myelin sheath during development in C57BL/6 mice. Eur J Neurosci 2024; 60:4503-4517. [PMID: 38951719 DOI: 10.1111/ejn.16457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 06/05/2024] [Accepted: 06/16/2024] [Indexed: 07/03/2024]
Abstract
Myelin sheath plays important roles in information conduction and nerve injury repair in the peripheral nerve system (PNS). Enhancing comprehension of the structure and components of the myelin sheath in the PNS during development would contribute to a more comprehensive understanding of the developmental and regenerative processes. In this research, the structure of sciatic nerve myelin sheath in C57BL/6 mice from embryonic day 14 (E14) to postnatal 12 months (12M) was observed with transmission electron microscopy. Myelin structure appeared in the sciatic nerve as early as E14, and the number and thickness of myelin lamellar gradually increased with the development until 12M. Transcriptome analysis was performed to show the expressions of myelin-associated genes and transcriptional factors involved in myelin formation. The genes encoding myelin proteins (Mag, Pmp22, Mpz, Mbp, Cnp and Prx) showed the same expression pattern, peaking at postnatal day 7 (P7) and P28 after birth, whereas the negative regulators of myelination (c-Jun, Tgfb1, Tnc, Cyr61, Ngf, Egr1, Hgf and Bcl11a) showed an opposite expression pattern. In addition, the expression of myelin-associated proteins and transcriptional factors was measured by Western blot and immunofluorescence staining. The protein expressions of MAG, PMP22, MPZ, CNPase and PRX increased from E20 to P14. The key transcriptional factor c-Jun co-localized with the Schwann cells Marker S100β and decreased after birth, whereas Krox20/Egr2 increased during development. Our data characterized the structure and components of myelin sheath during the early developmental stages, providing insights for further understanding of PNS development.
Collapse
Affiliation(s)
- Yuhan Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Medical School, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Tongxin Shang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Medical School, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Junjie Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Medical School, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Yuhua Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Medical School, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Leilei Gong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Medical School, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
- Research and Development Center for E-Learning, Ministry of Education, Beijing, China
| | - Aihong Li
- Department of Neurology, Affiliated Hospital of Nantong University, Medical School, Nantong University, Nantong, China
| | - Fei Ding
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Medical School, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Mi Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Medical School, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Qi Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Medical School, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| |
Collapse
|
4
|
Gordon T. Brief Electrical Stimulation Promotes Recovery after Surgical Repair of Injured Peripheral Nerves. Int J Mol Sci 2024; 25:665. [PMID: 38203836 PMCID: PMC10779324 DOI: 10.3390/ijms25010665] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024] Open
Abstract
Injured peripheral nerves regenerate their axons in contrast to those in the central nervous system. Yet, functional recovery after surgical repair is often disappointing. The basis for poor recovery is progressive deterioration with time and distance of the growth capacity of the neurons that lose their contact with targets (chronic axotomy) and the growth support of the chronically denervated Schwann cells (SC) in the distal nerve stumps. Nonetheless, chronically denervated atrophic muscle retains the capacity for reinnervation. Declining electrical activity of motoneurons accompanies the progressive fall in axotomized neuronal and denervated SC expression of regeneration-associated-genes and declining regenerative success. Reduced motoneuronal activity is due to the withdrawal of synaptic contacts from the soma. Exogenous neurotrophic factors that promote nerve regeneration can replace the endogenous factors whose expression declines with time. But the profuse axonal outgrowth they provoke and the difficulties in their delivery hinder their efficacy. Brief (1 h) low-frequency (20 Hz) electrical stimulation (ES) proximal to the injury site promotes the expression of endogenous growth factors and, in turn, dramatically accelerates axon outgrowth and target reinnervation. The latter ES effect has been demonstrated in both rats and humans. A conditioning ES of intact nerve days prior to nerve injury increases axonal outgrowth and regeneration rate. Thereby, this form of ES is amenable for nerve transfer surgeries and end-to-side neurorrhaphies. However, additional surgery for applying the required electrodes may be a hurdle. ES is applicable in all surgeries with excellent outcomes.
Collapse
Affiliation(s)
- Tessa Gordon
- Division of Reconstructive Surgery, Department of Surgery, University of Toronto, Toronto, ON M4G 1X8, Canada
| |
Collapse
|
5
|
Cescon M, Gambarotta G, Calabrò S, Cicconetti C, Anselmi F, Kankowski S, Lang L, Basic M, Bleich A, Bolsega S, Steglich M, Oliviero S, Raimondo S, Bizzotto D, Haastert-Talini K, Ronchi G. Gut microbiota depletion delays somatic peripheral nerve development and impairs neuromuscular junction maturation. Gut Microbes 2024; 16:2363015. [PMID: 38845453 PMCID: PMC11164225 DOI: 10.1080/19490976.2024.2363015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 05/29/2024] [Indexed: 06/12/2024] Open
Abstract
Gut microbiota is responsible for essential functions in human health. Several communication axes between gut microbiota and other organs via neural, endocrine, and immune pathways have been described, and perturbation of gut microbiota composition has been implicated in the onset and progression of an emerging number of diseases. Here, we analyzed peripheral nerves, dorsal root ganglia (DRG), and skeletal muscles of neonatal and young adult mice with the following gut microbiota status: a) germ-free (GF), b) gnotobiotic, selectively colonized with 12 specific gut bacterial strains (Oligo-Mouse-Microbiota, OMM12), or c) natural complex gut microbiota (CGM). Stereological and morphometric analyses revealed that the absence of gut microbiota impairs the development of somatic median nerves, resulting in smaller diameter and hypermyelinated axons, as well as in smaller unmyelinated fibers. Accordingly, DRG and sciatic nerve transcriptomic analyses highlighted a panel of differentially expressed developmental and myelination genes. Interestingly, the type III isoform of Neuregulin1 (NRG1), known to be a neuronal signal essential for Schwann cell myelination, was overexpressed in young adult GF mice, with consequent overexpression of the transcription factor Early Growth Response 2 (Egr2), a fundamental gene expressed by Schwann cells at the onset of myelination. Finally, GF status resulted in histologically atrophic skeletal muscles, impaired formation of neuromuscular junctions, and deregulated expression of related genes. In conclusion, we demonstrate for the first time a gut microbiota regulatory impact on proper development of the somatic peripheral nervous system and its functional connection to skeletal muscles, thus suggesting the existence of a novel 'Gut Microbiota-Peripheral Nervous System-axis.'
Collapse
Affiliation(s)
- Matilde Cescon
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Giovanna Gambarotta
- Department of Clinical and Biological Sciences & Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Orbassano, Italy
| | - Sonia Calabrò
- Department of Molecular Medicine, University of Padova, Padova, Italy
- Department of Biology, University of Padova, Padova, Italy
| | - Chiara Cicconetti
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Francesca Anselmi
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Svenja Kankowski
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Lower-Saxony, Germany
| | - Luisa Lang
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Lower-Saxony, Germany
| | - Marijana Basic
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Lower-Saxony, Germany
| | - Andre Bleich
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Lower-Saxony, Germany
| | - Silvia Bolsega
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Lower-Saxony, Germany
| | - Matthias Steglich
- Research Core Unit Genomics, Hannover Medical School, Hannover, Lower-Saxony, Germany
| | - Salvatore Oliviero
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Stefania Raimondo
- Department of Clinical and Biological Sciences & Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Orbassano, Italy
| | - Dario Bizzotto
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Kirsten Haastert-Talini
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Lower-Saxony, Germany
- Centre for Systems Neuroscience (ZSN), Hannover Medical School, Hannover, Lower-Saxony, Germany
| | - Giulia Ronchi
- Department of Clinical and Biological Sciences & Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Orbassano, Italy
| |
Collapse
|
6
|
Gupta DP, Bhusal A, Rahman MH, Kim JH, Choe Y, Jang J, Jung HJ, Kim UK, Park JS, Maeng LS, Suk K, Song GJ. EBP50 is a key molecule for the Schwann cell-axon interaction in peripheral nerves. Prog Neurobiol 2023; 231:102544. [PMID: 37940033 DOI: 10.1016/j.pneurobio.2023.102544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 11/10/2023]
Abstract
Peripheral nerve injury disrupts the Schwann cell-axon interaction and the cellular communication between them. The peripheral nervous system has immense potential for regeneration extensively due to the innate plastic potential of Schwann cells (SCs) that allows SCs to interact with the injured axons and exert specific repair functions essential for peripheral nerve regeneration. In this study, we show that EBP50 is essential for the repair function of SCs and regeneration following nerve injury. The increased expression of EBP50 in the injured sciatic nerve of control mice suggested a significant role in regeneration. The ablation of EBP50 in mice resulted in delayed nerve repair, recovery of behavioral function, and remyelination following nerve injury. EBP50 deficiency led to deficits in SC functions, including proliferation, migration, cytoskeleton dynamics, and axon interactions. The adeno-associated virus (AAV)-mediated local expression of EBP50 improved SCs migration, functional recovery, and remyelination. ErbB2-related proteins were not differentially expressed in EBP50-deficient sciatic nerves following injury. EBP50 binds and stabilizes ErbB2 and activates the repair functions to promote regeneration. Thus, we identified EBP50 as a potent SC protein that can enhance the regeneration and functional recovery driven by NRG1-ErbB2 signaling, as well as a novel regeneration modulator capable of potential therapeutic effects.
Collapse
Affiliation(s)
- Deepak Prasad Gupta
- Translational Brain Research Center, International St. Mary's Hospital, Catholic Kwandong University, Incheon, Republic of Korea; Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Anup Bhusal
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Md Habibur Rahman
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jae-Hong Kim
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Youngshik Choe
- Korea Brain Research Institute, Daegu, Republic of Korea
| | - Jaemyung Jang
- Korea Brain Research Institute, Daegu, Republic of Korea
| | - Hyun Jin Jung
- Korea Brain Research Institute, Daegu, Republic of Korea
| | - Un-Kyung Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Jin-Sung Park
- Department of Neurology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - Lee-So Maeng
- Department of Hospital Pathology, Incheon St. Mary's Hospital College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Gyun Jee Song
- Translational Brain Research Center, International St. Mary's Hospital, Catholic Kwandong University, Incheon, Republic of Korea; Department of Medicine, College of Medicine, Catholic Kwandong University, Gangneung, Gangwon-do, Republic of Korea.
| |
Collapse
|
7
|
Xu X, Song L, Li Y, Guo J, Huang S, Du S, Li W, Cao R, Cui S. Neurotrophin-3 promotes peripheral nerve regeneration by maintaining a repair state of Schwann cells after chronic denervation via the TrkC/ERK/c-Jun pathway. J Transl Med 2023; 21:733. [PMID: 37848983 PMCID: PMC10583391 DOI: 10.1186/s12967-023-04609-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Maintaining the repair phenotype of denervated Schwann cells in the injured distal nerve is crucial for promoting peripheral nerve regeneration. However, when chronically denervated, the capacity of Schwann cells to support repair and regeneration deteriorates, leading to peripheral nerve regeneration and poor functional recovery. Herein, we investigated whether neurotrophin-3 (NT-3) could sustain the reparative phenotype of Schwann cells and promote peripheral nerve regeneration after chronic denervation and aimed to uncover its potential molecular mechanisms. METHODS Western blot was employed to investigate the relationship between the expression of c-Jun and the reparative phenotype of Schwann cells. The inducible expression of c-Jun by NT-3 was examined both in vitro and in vivo with western blot and immunofluorescence staining. A chronic denervation model was established to study the role of NT-3 in peripheral nerve regeneration. The number of regenerated distal axons, myelination of regenerated axons, reinnervation of neuromuscular junctions, and muscle fiber diameters of target muscles were used to evaluate peripheral nerve regeneration by immunofluorescence staining, transmission electron microscopy (TEM), and hematoxylin and eosin (H&E) staining. Adeno-associated virus (AAV) 2/9 carrying shRNA, small molecule inhibitors, and siRNA were employed to investigate whether NT-3 could signal through the TrkC/ERK pathway to maintain c-Jun expression and promote peripheral nerve regeneration after chronic denervation. RESULTS After peripheral nerve injury, c-Jun expression progressively increased until week 5 and then began to decrease in the distal nerve following denervation. NT-3 upregulated the expression of c-Jun in denervated Schwann cells, both in vitro and in vivo. NT-3 promoted peripheral nerve regeneration after chronic denervation, mainly by upregulating or maintaining a high level of c-Jun rather than NT-3 itself. The TrkC receptor was consistently presented on denervated Schwann cells and served as NT-3 receptors following chronic denervation. NT-3 mainly upregulated c-Jun through the TrkC/ERK pathway. CONCLUSION NT-3 promotes peripheral nerve regeneration by maintaining the repair phenotype of Schwann cells after chronic denervation via the TrkC/ERK/c-Jun pathway. It provides a potential target for the clinical treatment of peripheral nerve injury after chronic denervation.
Collapse
Affiliation(s)
- Xiong Xu
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, 130033, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China
| | - Lili Song
- Department of Hand & Microsurgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yueying Li
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, 130033, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China
| | - Jin Guo
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, 130033, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China
| | - Shuo Huang
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China
| | - Shuang Du
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, 130033, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China
| | - Weizhen Li
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, 130033, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China
| | - Rangjuan Cao
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, 130033, China.
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China.
| | - Shusen Cui
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, 130033, China.
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China.
| |
Collapse
|
8
|
Low-intensity pulsed ultrasound promotes proliferation and myelinating genes expression of Schwann cells through NRG1/ErbB signaling pathway. Tissue Cell 2023; 80:101985. [PMID: 36459840 DOI: 10.1016/j.tice.2022.101985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022]
Abstract
Schwann cells (SCs) are the major component of myelin sheath in the peripheral nervous system, which are necessary in the development, function maintenance, and repair of peripheral nerves. This study aimed to investigate the potential mechanism of low-intensity pulsed ultrasound (LIPUS) affecting the proliferation and myelinating activity of SCs. Rat Schwann cell line RSC96 were cultured and exposed to LIPUS of different duty ratios (control, 20 %, 50 %, 80 %). Results demonstrated that LIPUS with a duty ratio of 50 % showing the maximal effect in facilitating proliferation of SCs. The expressions of Krox20 and myelin basic protein (MBP), the key molecules of SC myelination, and the potent inducer of myelination neuregulin 1 (NRG1) and its receptors ErbB2 and ErbB3 increased significantly by LIPUS. The reaction of these factors to LIPUS were both time- and duty ratio-dependent: namely LIPUS with higher duty ratios took effects when applied repeatedly over more consecutive days. These observations indicated that NRG1/ErbB signaling pathway might contribute to the effects of LIPUS on the proliferation and myelinating status of SCs, which could be one of the mechanisms in the protective role of LIPUS in nerve repair and regeneration. Our work provided novel insights for promising strategies of nerve repair therapy.
Collapse
|
9
|
El Soury M, García-García ÓD, Tarulli I, Chato-Astrain J, Perroteau I, Geuna S, Raimondo S, Gambarotta G, Carriel V. Chitosan conduits enriched with fibrin-collagen hydrogel with or without adipose-derived mesenchymal stem cells for the repair of 15-mm-long sciatic nerve defect. Neural Regen Res 2022; 18:1378-1385. [PMID: 36453426 PMCID: PMC9838150 DOI: 10.4103/1673-5374.358605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Hollow conduits of natural or synthetic origins have shown acceptable regeneration results in short nerve gap repair; however, results are still not comparable with the current gold standard technique "autografts". Hollow conduits do not provide a successful regeneration outcome when it comes to critical nerve gap repair. Enriching the lumen of conduits with different extracellular materials and cells could provide a better biomimicry of the natural nerve regenerating environment and is expected to ameliorate the conduit performance. In this study, we evaluated nerve regeneration in vivo using hollow chitosan conduits or conduits enriched with fibrin-collagen hydrogels alone or with the further addition of adipose-derived mesenchymal stem cells in a 15 mm rat sciatic nerve transection model. Unexpected changes in the hydrogel consistency and structural stability in vivo led to a failure of nerve regeneration after 15 weeks. Nevertheless, the molecular assessment in the early regeneration phase (7, 14, and 28 days) has shown an upregulation of useful regenerative genes in hydrogel enriched conduits compared with the hollow ones. Hydrogels composed of fibrin-collagen were able to upregulate the expression of soluble NRG1, a growth factor that plays an important role in Schwann cell transdifferentiation. The further enrichment with adipose-derived mesenchymal stem cells has led to the upregulation of other important genes such as ErbB2, VEGF-A, BDNF, c-Jun, and ATF3.
Collapse
Affiliation(s)
- Marwa El Soury
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy,Neuroscience Institute Cavalieri Ottolenghi, University of Torino, Torino, Italy
| | - Óscar Darío García-García
- Department of Histology, Tissue Engineering Group, University of Granada, Granada, Spain,Instituto de Investigacion Biosanitaria, Ibs.GRANADA, Granada, Spain
| | - Isabella Tarulli
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Jesús Chato-Astrain
- Department of Histology, Tissue Engineering Group, University of Granada, Granada, Spain,Instituto de Investigacion Biosanitaria, Ibs.GRANADA, Granada, Spain
| | - Isabelle Perroteau
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy,Neuroscience Institute Cavalieri Ottolenghi, University of Torino, Torino, Italy
| | - Stefania Raimondo
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy,Neuroscience Institute Cavalieri Ottolenghi, University of Torino, Torino, Italy,Correspondence to: Stefania Raimondo, .
| | - Giovanna Gambarotta
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy,Neuroscience Institute Cavalieri Ottolenghi, University of Torino, Torino, Italy
| | - Víctor Carriel
- Department of Histology, Tissue Engineering Group, University of Granada, Granada, Spain,Instituto de Investigacion Biosanitaria, Ibs.GRANADA, Granada, Spain
| |
Collapse
|
10
|
Cheng J, Zheng Z, Tang W, Shao J, Jiang H, Lin H. A new strategy for stem cells therapy for erectile dysfunction: Adipose-derived stem cells transfect Neuregulin-1 gene through superparamagnetic iron oxide nanoparticles. Investig Clin Urol 2022; 63:359-367. [PMID: 35534221 PMCID: PMC9091825 DOI: 10.4111/icu.20220016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/05/2022] [Accepted: 02/09/2022] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Our previous studies showed that nanotechnology improves derived adipose-derived stem cells (ADSCs) therapy for erectile dysfunction (ED). In this study, the Neuregulin-1(NRG1) gene was transfected into ADSCs with superparamagnetic iron oxide nanoparticles (SPION) further to improve the therapeutic effect of ADSCs on ED. MATERIALS AND METHODS ADSCs were isolated from epididymal adipose tissue of Sprague-Dawley rats. The optimal concentration of PEI-SPION (SPION modified with polyethyleneimine) was selected to construct the gene complex. After electrostatic binding of PEI-SPION and DNA, a PEI layer was wrapped to make the PEI-SPION-NRG1-PEI gene transfection complex. Different groups were set up for transfection tests. Lipo2000 transfection reagent was used as the control. PEI-SPION-NRG1-PEI in the experimental group was transfected under an external magnetic field. RESULTS When the concentration of PEI-SPION was 10 µg/mL, it had little cytotoxicity, and cell activity was not significantly affected. PEI-SPION-NRG1-PEI forms positively charged nanocomposites with a particle size of 72.6±14.9 nm when N/P ≥8. The PEI-SPION-NRG1-PEI gene complex can significantly improve the transfection efficiency of ADSCs, reaching 26.74%±4.62%, under the action of the external magnetic field. PCR and Western blot showed that the expression level of the NRG1 gene increased significantly, which proved that the transfection was effective. CONCLUSIONS PEI-SPION can be used as a vector for NRG1 gene transfection into ADSCs. PEI-SPION-NRG1-PEI packaging has the highest transfection efficiency under the external magnetic field than the other groups. These findings may provide a new strategy for ADSCs therapy for ED.
Collapse
Affiliation(s)
- Jianxing Cheng
- Department of Urology, Peking University Third Hospital, Peking University, Beijing, China
- Reproductive Medicine Center, Peking University Third Hospital, Peking University, Beijing, China
- Department of Andrology, Peking University Third Hospital, Peking University, Beijing, China
| | - Zhongjie Zheng
- Department of Urology, Peking University Third Hospital, Peking University, Beijing, China
- Reproductive Medicine Center, Peking University Third Hospital, Peking University, Beijing, China
- Department of Andrology, Peking University Third Hospital, Peking University, Beijing, China
| | - Wenhao Tang
- Department of Urology, Peking University Third Hospital, Peking University, Beijing, China
- Reproductive Medicine Center, Peking University Third Hospital, Peking University, Beijing, China
- Department of Andrology, Peking University Third Hospital, Peking University, Beijing, China
| | - Jichun Shao
- Department of Urology, Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, Sichuan, China
| | - Hui Jiang
- Department of Urology, Peking University Third Hospital, Peking University, Beijing, China
- Reproductive Medicine Center, Peking University Third Hospital, Peking University, Beijing, China
- Department of Andrology, Peking University Third Hospital, Peking University, Beijing, China
- Department of Human Sperm Bank, Peking University Third Hospital, Peking University, Beijing, China.
| | - Haocheng Lin
- Department of Urology, Peking University Third Hospital, Peking University, Beijing, China
- Reproductive Medicine Center, Peking University Third Hospital, Peking University, Beijing, China
- Department of Andrology, Peking University Third Hospital, Peking University, Beijing, China.
| |
Collapse
|
11
|
Mestiri S, Boussetta S, Pakstis AJ, El Kamel S, Ben Ammar El Gaaied A, Kidd KK, Cherni L. New Insight into the human genetic diversity in North African populations by genotyping of SNPs in DRD3, CSMD1 and NRG1 genes. Mol Genet Genomic Med 2022; 10:e1871. [PMID: 35128830 PMCID: PMC8922960 DOI: 10.1002/mgg3.1871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/02/2021] [Accepted: 01/04/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND The single nucleotide polymorphisms (SNPs) of the dopamine D3 receptor (DRD3), the CUB and sushi multiple domains 1 (CSMD1) and the neuregulin 1 (NRG1) genes were used to study the genetic diversity and affinity among North African populations and to examine their genetic relationships in worldwide populations. METHODS The rs3773678, rs3732783 and rs6280 SNPs of the DRD3 gene located on chromosome 3, the rs10108270 SNP of the CSMD1 gene and the rs383632, rs385396 and rs1462906 SNPs of the NRG1 gene located on chromosome 8 were analysed in 366 individuals from seven North African populations (Libya, Kairouan, Mehdia, Sousse, Kesra, Smar and Kerkennah). RESULTS The low values of FST indicated that only 0.27%-1.65% of the genetic variability was due to the differences between the populations. The Kairouan population has the lowest average heterozygosity among the North African populations. Haplotypes composed of the ancestral alleles ACC and ACAT were more frequent in the Kairouan population than in other North African populations. The PCA and the haplotypic analysis showed that the genetic structure of populations in North Africa was closer to that of Europeans, Admixed Americans, South Asians and East Asians. However, analysis of the rs3732783 and rs6280 SNPs revealed that the CT microhaplotype was specific to the North African population. CONCLUSIONS The Kairouan population exhibited a relatively low rate of genetic variability. The North African population has undergone significant gene flow but also evolutionary forces that have made it genetically distinct from other populations.
Collapse
Affiliation(s)
- Souhir Mestiri
- Laboratory of Genetics, Biodiversity and Bioresource Valorization (LR11ES41)University of MonastirMonastirTunisia
- Higher Institute of Biotechnology of MonastirMonastir UniversityMonastirTunisia
| | - Sami Boussetta
- Laboratory of Genetics, Immunology and Human Pathologies, Faculty of Sciences of TunisUniversity of Tunis El ManarTunisTunisia
| | - Andrew J. Pakstis
- Department of GeneticsYale University School of MedicineNew HavenConnecticutUSA
| | - Sarra El Kamel
- Laboratory of Genetics, Immunology and Human Pathologies, Faculty of Sciences of TunisUniversity of Tunis El ManarTunisTunisia
| | - Amel Ben Ammar El Gaaied
- Laboratory of Genetics, Immunology and Human Pathologies, Faculty of Sciences of TunisUniversity of Tunis El ManarTunisTunisia
| | - Kenneth K. Kidd
- Department of GeneticsYale University School of MedicineNew HavenConnecticutUSA
| | - Lotfi Cherni
- Higher Institute of Biotechnology of MonastirMonastir UniversityMonastirTunisia
- Laboratory of Genetics, Immunology and Human Pathologies, Faculty of Sciences of TunisUniversity of Tunis El ManarTunisTunisia
| |
Collapse
|
12
|
Blood Vessels: The Pathway Used by Schwann Cells to Colonize Nerve Conduits. Int J Mol Sci 2022; 23:ijms23042254. [PMID: 35216370 PMCID: PMC8879195 DOI: 10.3390/ijms23042254] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 01/27/2023] Open
Abstract
The repair of severe nerve injuries requires an autograft or conduit to bridge the gap and avoid axon dispersion. Several conduits are used routinely, but their effectiveness is comparable to that of an autograft only for short gaps. Understanding nerve regeneration within short conduits could help improve their efficacy for longer gaps. Since Schwann cells are known to migrate on endothelial cells to colonize the “nerve bridge”, the new tissue spontaneously forming to connect the injured nerve stumps, here we aimed to investigate whether this migratory mechanism drives Schwann cells to also proceed within the nerve conduits used to repair large nerve gaps. Injured median nerves of adult female rats were repaired with 10 mm chitosan conduits and the regenerated nerves within conduits were analyzed at different time points using confocal imaging of sequential thick sections. Our data showed that the endothelial cells formed a dense capillary network used by Schwann cells to migrate from the two nerve stumps into the conduit. We concluded that angiogenesis played a key role in the nerve conduits, not only by supporting cell survival but also by providing a pathway for the migration of newly formed Schwann cells.
Collapse
|
13
|
Carta G, Gambarotta G, Fornasari BE, Muratori L, El Soury M, Geuna S, Raimondo S, Fregnan F. The neurodynamic treatment induces biological changes in sensory and motor neurons in vitro. Sci Rep 2021; 11:13277. [PMID: 34168249 PMCID: PMC8225768 DOI: 10.1038/s41598-021-92682-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/14/2021] [Indexed: 11/08/2022] Open
Abstract
Nerves are subjected to tensile forces in various paradigms such as injury and regeneration, joint movement, and rehabilitation treatments, as in the case of neurodynamic treatment (NDT). The NDT induces selective uniaxial repeated tension on the nerve and was described to be an effective treatment to reduce pain in patients. Nevertheless, the biological mechanisms activated by the NDT promoting the healing processes of the nerve are yet still unknown. Moreover, a dose-response analysis to define a standard protocol of treatment is unavailable. In this study, we aimed to define in vitro whether NDT protocols could induce selective biological effects on sensory and motor neurons, also investigating the possible involved molecular mechanisms taking a role behind this change. The obtained results demonstrate that NDT induced significant dose-dependent changes promoting cell differentiation, neurite outgrowth, and neuron survival, especially in nociceptive neurons. Notably, NDT significantly upregulated PIEZO1 gene expression. A gene that is coding for an ion channel that is expressed both in murine and human sensory neurons and is related to mechanical stimuli transduction and pain suppression. Other genes involved in mechanical allodynia related to neuroinflammation were not modified by NDT. The results of the present study contribute to increase the knowledge behind the biological mechanisms activated in response to NDT and to understand its efficacy in improving nerve regenerational physiological processes and pain reduction.
Collapse
Affiliation(s)
- Giacomo Carta
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, 10043, Orbassano, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Regione Gonzole 10, 10043, Orbassano, Italy
- ASST Nord Milano, Sesto San Giovanni Hospital, Milan, Italy
| | - Giovanna Gambarotta
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, 10043, Orbassano, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Regione Gonzole 10, 10043, Orbassano, Italy
| | - Benedetta Elena Fornasari
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, 10043, Orbassano, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Regione Gonzole 10, 10043, Orbassano, Italy
| | - Luisa Muratori
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, 10043, Orbassano, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Regione Gonzole 10, 10043, Orbassano, Italy
| | - Marwa El Soury
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, 10043, Orbassano, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Regione Gonzole 10, 10043, Orbassano, Italy
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, 10043, Orbassano, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Regione Gonzole 10, 10043, Orbassano, Italy
| | - Stefania Raimondo
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, 10043, Orbassano, Italy.
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Regione Gonzole 10, 10043, Orbassano, Italy.
| | - Federica Fregnan
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, 10043, Orbassano, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Regione Gonzole 10, 10043, Orbassano, Italy
| |
Collapse
|
14
|
Nocera G, Jacob C. Mechanisms of Schwann cell plasticity involved in peripheral nerve repair after injury. Cell Mol Life Sci 2020; 77:3977-3989. [PMID: 32277262 PMCID: PMC7532964 DOI: 10.1007/s00018-020-03516-9] [Citation(s) in RCA: 256] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 03/09/2020] [Accepted: 03/30/2020] [Indexed: 01/01/2023]
Abstract
The great plasticity of Schwann cells (SCs), the myelinating glia of the peripheral nervous system (PNS), is a critical feature in the context of peripheral nerve regeneration following traumatic injuries and peripheral neuropathies. After a nerve damage, SCs are rapidly activated by injury-induced signals and respond by entering the repair program. During the repair program, SCs undergo dynamic cell reprogramming and morphogenic changes aimed at promoting nerve regeneration and functional recovery. SCs convert into a repair phenotype, activate negative regulators of myelination and demyelinate the damaged nerve. Moreover, they express many genes typical of their immature state as well as numerous de-novo genes. These genes modulate and drive the regeneration process by promoting neuronal survival, damaged axon disintegration, myelin clearance, axonal regrowth and guidance to their former target, and by finally remyelinating the regenerated axon. Many signaling pathways, transcriptional regulators and epigenetic mechanisms regulate these events. In this review, we discuss the main steps of the repair program with a particular focus on the molecular mechanisms that regulate SC plasticity following peripheral nerve injury.
Collapse
Affiliation(s)
- Gianluigi Nocera
- Faculty of Biology, Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University, Mainz, Germany
| | - Claire Jacob
- Faculty of Biology, Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
15
|
Fibroblasts Colonizing Nerve Conduits Express High Levels of Soluble Neuregulin1, a Factor Promoting Schwann Cell Dedifferentiation. Cells 2020; 9:cells9061366. [PMID: 32492853 PMCID: PMC7349576 DOI: 10.3390/cells9061366] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/26/2020] [Accepted: 05/30/2020] [Indexed: 12/12/2022] Open
Abstract
Conduits for the repair of peripheral nerve gaps are a good alternative to autografts as they provide a protected environment and a physical guide for axonal re-growth. Conduits require colonization by cells involved in nerve regeneration (Schwann cells, fibroblasts, endothelial cells, macrophages) while in the autograft many cells are resident and just need to be activated. Since it is known that soluble Neuregulin1 (sNRG1) is released after injury and plays an important role activating Schwann cell dedifferentiation, its expression level was investigated in early regeneration steps (7, 14, 28 days) inside a 10 mm chitosan conduit used to repair median nerve gaps in Wistar rats. In vivo data show that sNRG1, mainly the isoform α, is highly expressed in the conduit, together with a fibroblast marker, while Schwann cell markers, including NRG1 receptors, were not. Primary culture analysis shows that nerve fibroblasts, unlike Schwann cells, express high NRG1α levels, while both express NRG1β. These data suggest that sNRG1 might be mainly expressed by fibroblasts colonizing nerve conduit before Schwann cells. Immunohistochemistry analysis confirmed NRG1 and fibroblast marker co-localization. These results suggest that fibroblasts, releasing sNRG1, might promote Schwann cell dedifferentiation to a “repair” phenotype, contributing to peripheral nerve regeneration.
Collapse
|
16
|
Differential expression of circular RNAs in the proximal and distal segments of the sciatic nerve after injury. Neuroreport 2020; 31:76-84. [PMID: 31764243 DOI: 10.1097/wnr.0000000000001371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To investigate the functions of circular RNAs (circRNAs) in axonal regeneration and degeneration after injury, circRNA expression profiles in the injured peripheral nerves were determined using a circRNA-based microarray. The results showed that 281 upregulated and 261 downregulated circRNAs were found in the proximal stump of the sciatic nerve after injury. In the distal stump after injury, 217 circRNAs were upregulated and 224 circRNAs were downregulated. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment and gene ontology (GO) analysis of circRNAs after injury were associated with axon regeneration pathways, including thyroid hormone, Ras signaling, endocytosis, and the ErbB signaling pathway, as well as with Schwann cell differentiation and proliferation, including the axon guidance, focal adhesion, Glutamatergic synapse, and MAPK signaling pathway. To verify the microarray results, among the regulated circRNAs, the upregulation of circRNA 012142 in both proximal and distal segments was validated using quantitative PCR analysis. The biological function of the circRNA 012412/microRNA/mRNA network based on GO analysis and KEGG pathway was identified in cell differentiation, phosphorylation, intracellular signaling transduction, and focal adhesion, the Rap1 signaling pathway. Thus, circRNAs after nerve injury may be involved in these biological functions during nerve regeneration and degeneration.
Collapse
|
17
|
Ronchi G, Morano M, Fregnan F, Pugliese P, Crosio A, Tos P, Geuna S, Haastert-Talini K, Gambarotta G. The Median Nerve Injury Model in Pre-clinical Research - A Critical Review on Benefits and Limitations. Front Cell Neurosci 2019; 13:288. [PMID: 31316355 PMCID: PMC6609919 DOI: 10.3389/fncel.2019.00288] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 06/13/2019] [Indexed: 12/21/2022] Open
Abstract
The successful introduction of innovative treatment strategies into clinical practise strongly depends on the availability of effective experimental models and their reliable pre-clinical assessment. Considering pre-clinical research for peripheral nerve repair and reconstruction, the far most used nerve regeneration model in the last decades is the sciatic nerve injury and repair model. More recently, the use of the median nerve injury and repair model has gained increasing attention due to some significant advantages it provides compared to sciatic nerve injury. Outstanding advantages are the availability of reliable behavioural tests for assessing posttraumatic voluntary motor recovery and a much lower impact on the animal wellbeing. In this article, the potential application of the median nerve injury and repair model in pre-clinical research is reviewed. In addition, we provide a synthetic overview of a variety of methods that can be applied in this model for nerve regeneration assessment. This article is aimed at helping researchers in adequately adopting this in vivo model for pre-clinical evaluation of peripheral nerve reconstruction as well as for interpreting the results in a translational perspective.
Collapse
Affiliation(s)
- Giulia Ronchi
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.,Neuroscience Institute Cavalieri Ottolenghi Foundation (NICO), University of Turin, Turin, Italy
| | - Michela Morano
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.,Neuroscience Institute Cavalieri Ottolenghi Foundation (NICO), University of Turin, Turin, Italy
| | - Federica Fregnan
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.,Neuroscience Institute Cavalieri Ottolenghi Foundation (NICO), University of Turin, Turin, Italy
| | - Pierfrancesco Pugliese
- Dipartimento di Chirurgia Generale e Specialistica, Azienda Ospedaliera Universitaria, Ancona, Italy
| | - Alessandro Crosio
- UO Microchirurgia e Chirurgia della Mano, Ospedale Gaetano Pini, Milan, Italy
| | - Pierluigi Tos
- UO Microchirurgia e Chirurgia della Mano, Ospedale Gaetano Pini, Milan, Italy
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.,Neuroscience Institute Cavalieri Ottolenghi Foundation (NICO), University of Turin, Turin, Italy
| | - Kirsten Haastert-Talini
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hanover, Germany.,Center for Systems Neuroscience (ZSN) Hannover, Hanover, Germany
| | - Giovanna Gambarotta
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| |
Collapse
|
18
|
Kataria H, Alizadeh A, Karimi-Abdolrezaee S. Neuregulin-1/ErbB network: An emerging modulator of nervous system injury and repair. Prog Neurobiol 2019; 180:101643. [PMID: 31229498 DOI: 10.1016/j.pneurobio.2019.101643] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/07/2019] [Accepted: 06/11/2019] [Indexed: 12/20/2022]
Abstract
Neuregulin-1 (Nrg-1) is a member of the Neuregulin family of growth factors with essential roles in the developing and adult nervous system. Six different types of Nrg-1 (Nrg-1 type I-VI) and over 30 isoforms have been discovered; however, their specific roles are not fully determined. Nrg-1 signals through a complex network of protein-tyrosine kinase receptors, ErbB2, ErbB3, ErbB4 and multiple intracellular pathways. Genetic and pharmacological studies of Nrg-1 and ErbB receptors have identified a critical role for Nrg-1/ErbB network in neurodevelopment including neuronal migration, neural differentiation, myelination as well as formation of synapses and neuromuscular junctions. Nrg-1 signaling is best known for its characterized role in development and repair of the peripheral nervous system (PNS) due to its essential role in Schwann cell development, survival and myelination. However, our knowledge of the impact of Nrg-1/ErbB on the central nervous system (CNS) has emerged in recent years. Ongoing efforts have uncovered a multi-faceted role for Nrg-1 in regulating CNS injury and repair processes. In this review, we provide a timely overview of the most recent updates on Nrg-1 signaling and its role in nervous system injury and diseases. We will specifically highlight the emerging role of Nrg-1 in modulating the glial and immune responses and its capacity to foster neuroprotection and remyelination in CNS injury. Nrg-1/ErbB network is a key regulatory pathway in the developing nervous system; therefore, unraveling its role in neuropathology and repair can aid in development of new therapeutic approaches for nervous system injuries and associated disorders.
Collapse
Affiliation(s)
- Hardeep Kataria
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Arsalan Alizadeh
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
19
|
Two Pathways Regulate Differential Expression of nAChRs Between the Orbicularis Oris and Gastrocnemius. J Surg Res 2019; 243:130-142. [PMID: 31174064 DOI: 10.1016/j.jss.2019.04.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/02/2019] [Accepted: 04/17/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND We previously demonstrated differential expression of nicotinic acetylcholine receptors (nAChRs) in the facial nerve-innervated orbicularis oris and somatic nerve-innervated gastrocnemius, which contribute to different sensitivities to muscle relaxants. Furthermore, the orbicularis oris exhibits less sensitivity to muscle relaxants after facial nerve injury, which is also related to upregulation of nAChRs. Here, we explored the regulatory mechanism for the different expression patterns. Because the agrin/Lrp4/MuSK/rapsyn and neuregulin1/ErbB signaling pathways are indispensable for maintaining the expression of nAChRs, we examined the activity of these two signaling pathways in gastrocnemius and orbicularis oris innervated by normal or injured facial nerves. MATERIALS AND METHODS A quantitative analysis of these two signaling pathways was realized by immunofluorescence, and immunoprecipitation was applied to detect the level of phosphorylated MuSK in the gastrocnemius and orbicularis oris innervated by normal or injured facial nerves in adult rats. RESULTS ErbB and the phosphorylated MuSK were expressed more in orbicularis oris than in gastrocnemius (P < 0.05). No significant difference was found in the expression of agrin/Lrp4/MuSK/rapsyn. After facial nerve injury, the level of agrin and the percentage of phosphorylated MuSK decreased significantly, although the expression levels of MuSK, rapsyn, and neuregulin1/ErbB were highly upregulated. CONCLUSIONS Differential expression of the neuregulin1/ErbB signaling pathway may account for the different expression patterns of nAChRs at the neuromuscular junctions of the orbicularis oris and gastrocnemius. Overexpression of MuSK and rapsyn may contribute to upregulation of nAChRs after facial nerve injury.
Collapse
|
20
|
Dietzmeyer N, Förthmann M, Leonhard J, Helmecke O, Brandenberger C, Freier T, Haastert-Talini K. Two-Chambered Chitosan Nerve Guides With Increased Bendability Support Recovery of Skilled Forelimb Reaching Similar to Autologous Nerve Grafts in the Rat 10 mm Median Nerve Injury and Repair Model. Front Cell Neurosci 2019; 13:149. [PMID: 31133803 PMCID: PMC6523043 DOI: 10.3389/fncel.2019.00149] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 04/08/2019] [Indexed: 12/18/2022] Open
Abstract
Tension-free surgical reconstruction of transected digital nerves in humans is regularly performed using autologous nerve grafts (ANGs) or bioartificial nerve grafts. Nerve grafts with increased bendability are needed to protect regenerating nerves in highly mobile extremity parts. We have recently demonstrated increased bendability and regeneration supporting properties of chitosan nerve guides with a corrugated outer wall (corrCNGs) in the common rat sciatic nerve model (model of low mobility). Here, we further modified the hollow corrCNGs into two-chambered nerve guides by inserting a perforated longitudinal chitosan-film (corrCNG[F]s) and comprehensively monitored functional recovery in the advanced rat median nerve model. In 16 adult female Lewis rats, we bilaterally reconstructed 10 mm median nerve gaps with either ANGs, standard chitosan nerve guides (CNGs), CNGs (CNG[F]s), or corrCNG[F]s (n = 8, per group). Over 16 weeks, functional recovery of each forelimb was separately surveyed using the grasping test (reflex-based motor task), the staircase test (skilled forelimb reaching task), and non-invasive electrophysiological recordings from the thenar muscles. Finally, regenerated tissue harvested from the distal part of the nerve grafts was paraffin-embedded and cross-sections were analyzed regarding the number of Neurofilament 200-immunopositive axons and the area of newly formed blood vessels. Nerve tissue harvested distal to the grafts was epon-embedded and semi-thin cross-sections underwent morphometrical analyses (e.g., number of myelinated axons, axon and fiber diameters, and myelin thicknesses). Functional recovery was fastest and most complete in the ANG group (100% recovery rate regarding all parameters), but corrCNG[F]s accelerated the recovery of all functions evaluated in comparison to the other nerve guides investigated. Furthermore, corrCNG[F]s supported recovery of reflex-based grasping (87.5%) and skilled forelimb reaching (100%) to eventually significantly higher rates than the other nerve guides (grasping test: CNGs: 75%, CNG[F]s: 62.5%; staircase test: CNGs: 66.7%, CNG[F]s: 83.3%). Histological and nerve morphometrical evaluations, in accordance to the functional results, demonstrated best outcome in the ANG group and highest myelin thicknesses in the corrCNG[F] group compared to the CNG and CNG[F] groups. We thus clearly demonstrate that corrCNG[F]s represent promising innovative nerve grafts for nerve repair in mobile body parts such as digits.
Collapse
Affiliation(s)
- Nina Dietzmeyer
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hanover, Germany.,Center for Systems Neuroscience (ZSN) Hannover, Hanover, Germany
| | - Maria Förthmann
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hanover, Germany.,Center for Systems Neuroscience (ZSN) Hannover, Hanover, Germany
| | - Julia Leonhard
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hanover, Germany
| | | | | | | | - Kirsten Haastert-Talini
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hanover, Germany.,Center for Systems Neuroscience (ZSN) Hannover, Hanover, Germany
| |
Collapse
|
21
|
Zhang Z, Cui J, Gao F, Li Y, Zhang G, Liu M, Yan R, Shen Y, Li R. Elevated cleavage of neuregulin-1 by beta-secretase 1 in plasma of schizophrenia patients. Prog Neuropsychopharmacol Biol Psychiatry 2019; 90:161-168. [PMID: 30500411 DOI: 10.1016/j.pnpbp.2018.11.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/23/2018] [Accepted: 11/24/2018] [Indexed: 01/22/2023]
Abstract
Neuregulin 1 (NRG1) is a key candidate susceptibility gene for schizophrenia. It is reported that the function of NRG1 can be regulated by cleavage via the β-Secretase (BACE1), particularly during early development. While current knowledge suggested that schizophrenia might have different phenotypes, it is unknown whether BACE1-cleaved-NRG1 (BACE1-NRG1) activity is related to clinical phenotypes of schizophrenia. In the current study, we used a newly developed enzymatic assay to detect BACE1-NRG1 activity in the human plasma and investigated the levels of cleavage of NRG1 by BACE1 in the plasma from schizophrenia patients. Our results are the first to demonstrate that the level of plasma BACE1-NRG1 activity was significantly increased in subjects affected with schizophrenia compared with healthy controls. Interestingly, the elevated BACE1-NRG1 activity was correlated with the disease severity and duration of schizophrenia, such as patients suffering from shorter-term course and worse disease status expressed higher BACE1-NRG1 activity levels compared to whom with longer duration and less severity of the disease. Furthermore, this is also the first report that the alternation of BACE1-NRG1 activity was a substrate -specific event in schizophrenia. Together, our findings suggested that the plasma BACE1-NRG1 activity can be a potential biomarker for the early diagnosis of schizophrenia.
Collapse
Affiliation(s)
- Zhengrong Zhang
- National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Jie Cui
- Center for Hormone Advanced Science and Education, Roskamp Institute, Sarasota, FL 34243, USA
| | - Feng Gao
- Neurodegenerative Disorder Research Center, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Yuhong Li
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Guofu Zhang
- National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Min Liu
- National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Riqiang Yan
- Department of Neurosciences, University of Connecticut School of Medicine, Farmington, CT 06269, USA
| | - Yong Shen
- Neurodegenerative Disorder Research Center, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Rena Li
- National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; Center for Hormone Advanced Science and Education, Roskamp Institute, Sarasota, FL 34243, USA; Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
22
|
Jessen KR, Mirsky R. The Success and Failure of the Schwann Cell Response to Nerve Injury. Front Cell Neurosci 2019; 13:33. [PMID: 30804758 PMCID: PMC6378273 DOI: 10.3389/fncel.2019.00033] [Citation(s) in RCA: 311] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/22/2019] [Indexed: 01/06/2023] Open
Abstract
The remarkable plasticity of Schwann cells allows them to adopt the Remak (non-myelin) and myelin phenotypes, which are specialized to meet the needs of small and large diameter axons, and differ markedly from each other. It also enables Schwann cells initially to mount a strikingly adaptive response to nerve injury and to promote regeneration by converting to a repair-promoting phenotype. These repair cells activate a sequence of supportive functions that engineer myelin clearance, prevent neuronal death, and help axon growth and guidance. Eventually, this response runs out of steam, however, because in the long run the phenotype of repair cells is unstable and their survival is compromised. The re-programming of Remak and myelin cells to repair cells, together with the injury-induced switch of peripheral neurons to a growth mode, gives peripheral nerves their strong regenerative potential. But it remains a challenge to harness this potential and devise effective treatments that maintain the initial repair capacity of peripheral nerves for the extended periods typically required for nerve repair in humans.
Collapse
Affiliation(s)
- Kristjan R. Jessen
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | | |
Collapse
|
23
|
Gordon T, Wood P, Sulaiman OAR. Long-Term Denervated Rat Schwann Cells Retain Their Capacity to Proliferate and to Myelinate Axons in vitro. Front Cell Neurosci 2019; 12:511. [PMID: 30666188 PMCID: PMC6330764 DOI: 10.3389/fncel.2018.00511] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/10/2018] [Indexed: 12/19/2022] Open
Abstract
Functional recovery is poor after peripheral nerve injury and delayed surgical repair or when nerves must regenerate over long distances to reinnervate distant targets. A reduced capacity of Schwann cells (SCs) in chronically denervated distal nerve stumps to support and interact with regenerating axons may account for the poor outcome. In an in vitro system, we examined the capacity of adult, long-term denervated rat SCs to proliferate and to myelinate neurites in co-cultures with fetal dorsal root ganglion (DRG) neurons. Non-neuronal cells were counted immediately after their isolation from the distal sciatic nerve stumps that were subjected to acute denervation of 7 days or chronic denervation of either 7 weeks or 17 months. Thereafter, equal numbers of the non-neural cells were co-cultured with purified dissociated DRG neurons for 5 days. The co-cultures were then treated with 3H-Thymidine for 24 h to quantitate SC proliferation with S100 immunostaining and autoradiography. After a 24-day period of co-culture, Sudan Black staining was used to visualize and count myelin segments that were elaborated around DRG neurites by the SCs. Isolated non-neural cells from 7-week chronically denervated nerve stumps increased 2.5-fold in number compared to ~2 million in 7 day acutely denervated stumps. There were only <0.2 million cells in the 17-week chronically denervated stumps. Nonetheless, these chronically denervated SCs maintained their proliferative capacity although the capacity was reduced to 30% in the 17-month chronically denervated distal nerve stumps. Moreover, the chronically denervated SCs retained their capacity to myelinate DRG neurites: there was extensive myelination of the neurites by the acutely and chronically denervated SCs after 24 days co-culture. There were no significant differences in the extent of myelination. We conclude that the low numbers of surviving SCs in chronically denervated distal nerve stumps retain their ability to respond to axonal signals to divide and to elaborate myelin. However, their low numbers consequent to their poor survival and their reduced capacity to proliferate account, at least in part, for the poor functional recovery after delayed surgical repair of injured nerve and/or the repair of injured nerves far from their target organs.
Collapse
Affiliation(s)
- Tessa Gordon
- Division of Neuroscience, Faculty of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Patrick Wood
- The Miami Project to Cure Paralysis/Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL, United States
| | - Olawale A R Sulaiman
- Department of Neurosurgery, Ochsner Medical Center, New Orleans, LA, United States
| |
Collapse
|
24
|
El Soury M, Gambarotta G. Soluble neuregulin-1 (NRG1): a factor promoting peripheral nerve regeneration by affecting Schwann cell activity immediately after injury. Neural Regen Res 2019; 14:1374-1375. [PMID: 30964058 PMCID: PMC6524519 DOI: 10.4103/1673-5374.253516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Marwa El Soury
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Giovanna Gambarotta
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| |
Collapse
|
25
|
Ma KH, Duong P, Moran JJ, Junaidi N, Svaren J. Polycomb repression regulates Schwann cell proliferation and axon regeneration after nerve injury. Glia 2018; 66:2487-2502. [PMID: 30306639 PMCID: PMC6289291 DOI: 10.1002/glia.23500] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 01/01/2023]
Abstract
The transition of differentiated Schwann cells to support of nerve repair after injury is accompanied by remodeling of the Schwann cell epigenome. The EED-containing polycomb repressive complex 2 (PRC2) catalyzes histone H3K27 methylation and represses key nerve repair genes such as Shh, Gdnf, and Bdnf, and their activation is accompanied by loss of H3K27 methylation. Analysis of nerve injury in mice with a Schwann cell-specific loss of EED showed the reversal of polycomb repression is required and a rate limiting step in the increased transcription of Neuregulin 1 (type I), which is required for efficient remyelination. However, mouse nerves with EED-deficient Schwann cells display slow axonal regeneration with significantly low expression of axon guidance genes, including Sema4f and Cntf. Finally, EED loss causes impaired Schwann cell proliferation after injury with significant induction of the Cdkn2a cell cycle inhibitor gene. Interestingly, PRC2 subunits and CDKN2A are commonly co-mutated in the transition from benign neurofibromas to malignant peripheral nerve sheath tumors (MPNST's). RNA-seq analysis of EED-deficient mice identified PRC2-regulated molecular pathways that may contribute to the transition to malignancy in neurofibromatosis.
Collapse
Affiliation(s)
- Ki H. Ma
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Phu Duong
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - John J. Moran
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Nabil Junaidi
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - John Svaren
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
26
|
Chitosan Tubes Enriched with Fresh Skeletal Muscle Fibers for Primary Nerve Repair. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9175248. [PMID: 30009176 PMCID: PMC6020668 DOI: 10.1155/2018/9175248] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/09/2018] [Indexed: 11/17/2022]
Abstract
Muscle-in-vein conduit is successfully employed for repairing nerve injuries: the vein prevents muscle fiber dispersion, while the muscle prevents the vein collapse and creates a favorable environment for Schwann cell migration and axon regrowth. However, it requires microsurgical skills. In this study we show a simple strategy to improve the performance of a chitosan hollow tube by the introduction of fresh skeletal muscle fibers. The hypothesis is to overcome the technical issue of the muscle-in-vein preparation and to take advantage of fiber muscle properties to create an easy and effective conduit for nerve regeneration. Rat median nerve gaps were repaired with chitosan tubes filled with skeletal muscle fibers (muscle-in-tube graft), hollow chitosan tubes, or autologous nerve grafts. Our results demonstrate that the fresh skeletal muscle inside the conduit is an endogenous source of soluble Neuregulin 1, a key factor for Schwann cell survival and dedifferentiation, absent in the hollow tube during the early phase of regeneration. However, nerve regeneration assessed at late time point was similar to that obtained with the hollow tube. To conclude, the muscle-in-tube graft is surgically easy to perform and we suggest that it might be a promising strategy to repair longer nerve gap or for secondary nerve repair, situations in which Schwann cell atrophy is a limiting factor for recovery.
Collapse
|
27
|
Gnavi S, Morano M, Fornasari BE, Riccobono C, Tonda-Turo C, Zanetti M, Ciardelli G, Gambarotta G, Perroteau I, Geuna S, Raimondo S. Combined Influence of Gelatin Fibre Topography and Growth Factors on Cultured Dorsal Root Ganglia Neurons. Anat Rec (Hoboken) 2018; 301:1668-1677. [DOI: 10.1002/ar.23846] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/26/2018] [Accepted: 02/12/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Sara Gnavi
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation; University of Torino; Orbassano 10043 Italy
| | - Michela Morano
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation; University of Torino; Orbassano 10043 Italy
- Department of Clinical and Biological Sciences; University of Torino; Orbassano 10043 Italy
| | - Benedetta Elena Fornasari
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation; University of Torino; Orbassano 10043 Italy
- Department of Clinical and Biological Sciences; University of Torino; Orbassano 10043 Italy
| | - Claudio Riccobono
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation; University of Torino; Orbassano 10043 Italy
| | - Chiara Tonda-Turo
- Department of Mechanical and Aerospace Engineering; Politecnico of Torino; Torino 10100 Italy
| | - Marco Zanetti
- Nanostructured Interfaces and Surfaces, Department of Chemistry; University of Torino; Torino 10100 Italy
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering; Politecnico of Torino; Torino 10100 Italy
| | - Giovanna Gambarotta
- Department of Clinical and Biological Sciences; University of Torino; Orbassano 10043 Italy
| | - Isabelle Perroteau
- Department of Clinical and Biological Sciences; University of Torino; Orbassano 10043 Italy
| | - Stefano Geuna
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation; University of Torino; Orbassano 10043 Italy
- Department of Clinical and Biological Sciences; University of Torino; Orbassano 10043 Italy
| | - Stefania Raimondo
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation; University of Torino; Orbassano 10043 Italy
- Department of Clinical and Biological Sciences; University of Torino; Orbassano 10043 Italy
| |
Collapse
|
28
|
Muratori L, Gnavi S, Fregnan F, Mancardi A, Raimondo S, Perroteau I, Geuna S. Evaluation of Vascular Endothelial Growth Factor (VEGF) and Its Family Member Expression After Peripheral Nerve Regeneration and Denervation. Anat Rec (Hoboken) 2018; 301:1646-1656. [DOI: 10.1002/ar.23842] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/24/2018] [Accepted: 02/05/2018] [Indexed: 01/15/2023]
Affiliation(s)
- Luisa Muratori
- Department of Clinical and Biological Sciences; University of Turin; Orbassano To, 10043 Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO); Orbassano To 10043 Italy
| | - Sara Gnavi
- Department of Clinical and Biological Sciences; University of Turin; Orbassano To, 10043 Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO); Orbassano To 10043 Italy
| | - F. Fregnan
- Department of Clinical and Biological Sciences; University of Turin; Orbassano To, 10043 Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO); Orbassano To 10043 Italy
| | - Anabella Mancardi
- Department of Clinical and Biological Sciences; University of Turin; Orbassano To, 10043 Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO); Orbassano To 10043 Italy
| | - Stefania Raimondo
- Department of Clinical and Biological Sciences; University of Turin; Orbassano To, 10043 Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO); Orbassano To 10043 Italy
| | - Isabelle Perroteau
- Department of Clinical and Biological Sciences; University of Turin; Orbassano To, 10043 Italy
| | - Stefano Geuna
- Department of Clinical and Biological Sciences; University of Turin; Orbassano To, 10043 Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO); Orbassano To 10043 Italy
| |
Collapse
|
29
|
El Soury M, Fornasari BE, Morano M, Grazio E, Ronchi G, Incarnato D, Giacobini M, Geuna S, Provero P, Gambarotta G. Soluble Neuregulin1 Down-Regulates Myelination Genes in Schwann Cells. Front Mol Neurosci 2018; 11:157. [PMID: 29867349 PMCID: PMC5960709 DOI: 10.3389/fnmol.2018.00157] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/24/2018] [Indexed: 01/09/2023] Open
Abstract
Peripheral nerves are characterised by the ability to regenerate after injury. Schwann cell activity is fundamental for all steps of peripheral nerve regeneration: immediately after injury they de-differentiate, remove myelin debris, proliferate and repopulate the injured nerve. Soluble Neuregulin1 (NRG1) is a growth factor that is strongly up-regulated and released by Schwann cells immediately after nerve injury. To identify the genes regulated in Schwann cells by soluble NRG1, we performed deep RNA sequencing to generate a transcriptome database and identify all the genes regulated following 6 h stimulation of primary adult rat Schwann cells with soluble recombinant NRG1. Interestingly, the gene ontology analysis of the transcriptome reveals that NRG1 regulates genes belonging to categories that are regulated in the peripheral nerve immediately after an injury. In particular, NRG1 strongly inhibits the expression of genes involved in myelination and in glial cell differentiation, suggesting that NRG1 might be involved in the de-differentiation (or "trans-differentiation") process of Schwann cells from a myelinating to a repair phenotype. Moreover, NRG1 inhibits genes involved in the apoptotic process, and up-regulates genes positively regulating the ribosomal RNA processing, thus suggesting that NRG1 might promote cell survival and stimulate new protein expression. This in vitro transcriptome analysis demonstrates that in Schwann cells NRG1 drives the expression of several genes which partially overlap with genes regulated in vivo after peripheral nerve injury, underlying the pivotal role of NRG1 in the first steps of the nerve regeneration process.
Collapse
Affiliation(s)
- Marwa El Soury
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | - Benedetta E Fornasari
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy.,Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Turin, Italy
| | - Michela Morano
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy.,Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Turin, Italy
| | - Elio Grazio
- Computational Epidemiology Group and Data Analysis Unit, Department of Veterinary Sciences, University of Torino, Turin, Italy
| | - Giulia Ronchi
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy.,Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Turin, Italy
| | | | - Mario Giacobini
- Computational Epidemiology Group and Data Analysis Unit, Department of Veterinary Sciences, University of Torino, Turin, Italy
| | - Stefano Geuna
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Turin, Italy
| | - Paolo Provero
- Department of Molecular Biotechnology and Health Sciences (MBC), University of Torino, Turin, Italy.,Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute (IRCCS), Milan, Italy
| | - Giovanna Gambarotta
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| |
Collapse
|
30
|
Morano M, Ronchi G, Nicolò V, Fornasari BE, Crosio A, Perroteau I, Geuna S, Gambarotta G, Raimondo S. Modulation of the Neuregulin 1/ErbB system after skeletal muscle denervation and reinnervation. Sci Rep 2018; 8:5047. [PMID: 29568012 PMCID: PMC5864756 DOI: 10.1038/s41598-018-23454-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 03/12/2018] [Indexed: 12/23/2022] Open
Abstract
Neuregulin 1 (NRG1) is a growth factor produced by both peripheral nerves and skeletal muscle. In muscle, it regulates neuromuscular junction gene expression, acetylcholine receptor number, muscle homeostasis and satellite cell survival. NRG1 signalling is mediated by the tyrosine kinase receptors ErbB3 and ErbB4 and their co-receptors ErbB1 and ErbB2. The NRG1/ErbB system is well studied in nerve tissue after injury, but little is known about this system in skeletal muscle after denervation/reinnervation processes. Here, we performed a detailed time-course expression analysis of several NRG1 isoforms and ErbB receptors in the rat superficial digitorum flexor muscle after three types of median nerve injuries of different severities. We found that ErbB receptor expression was correlated with the innervated state of the muscle, with upregulation of ErbB2 clearly associated with the denervation state. Interestingly, the NRG1 isoforms were differently regulated depending on the nerve injury type, leading to the hypothesis that both the NRG1α and NRG1β isoforms play a key role in the muscle reaction to injury. Indeed, in vitro experiments with C2C12 atrophic myotubes revealed that both NRG1α and NRG1β treatment influences the best-known atrophic pathways, suggesting that NRG1 might play an anti-atrophic role.
Collapse
Affiliation(s)
- Michela Morano
- Department of Clinical and Biological Sciences, University of Torino, 10043, Orbassano, Italy.,Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, 10043, Orbassano, Italy
| | - Giulia Ronchi
- Department of Clinical and Biological Sciences, University of Torino, 10043, Orbassano, Italy.,Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, 10043, Orbassano, Italy
| | - Valentina Nicolò
- Department of Clinical and Biological Sciences, University of Torino, 10043, Orbassano, Italy
| | - Benedetta Elena Fornasari
- Department of Clinical and Biological Sciences, University of Torino, 10043, Orbassano, Italy.,Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, 10043, Orbassano, Italy
| | - Alessandro Crosio
- Microsurgery Unit, AOU Città della Salute e della Scienza, PO CTO, 10126, Torino, Italy
| | - Isabelle Perroteau
- Department of Clinical and Biological Sciences, University of Torino, 10043, Orbassano, Italy
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, University of Torino, 10043, Orbassano, Italy.,Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, 10043, Orbassano, Italy
| | - Giovanna Gambarotta
- Department of Clinical and Biological Sciences, University of Torino, 10043, Orbassano, Italy.
| | - Stefania Raimondo
- Department of Clinical and Biological Sciences, University of Torino, 10043, Orbassano, Italy.,Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, 10043, Orbassano, Italy
| |
Collapse
|
31
|
Fornasari BE, Ronchi G, Pascal D, Visigalli D, Capodivento G, Nobbio L, Perroteau I, Schenone A, Geuna S, Gambarotta G. Soluble Neuregulin1 is strongly up-regulated in the rat model of Charcot-Marie-Tooth 1A disease. Exp Biol Med (Maywood) 2018; 243:370-374. [PMID: 29350067 DOI: 10.1177/1535370218754492] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neuregulin1 (NRG1) is a growth factor playing a pivotal role in peripheral nerve development through the activation of the transmembrane co-receptors ErbB2-ErbB3. Soluble NRG1 isoforms, mainly secreted by Schwann cells, are strongly and transiently up-regulated after acute peripheral nerve injury, thus suggesting that they play a crucial role also in the response to nerve damage. Here we show that in the rat experimental model of the peripheral demyelinating neuropathy Charcot-Marie-Tooth 1A (CMT1A) the expression of the different NRG1 isoforms (soluble, type α and β, type a and b) is strongly up-regulated, as well as the expression of NRG1 co-receptors ErbB2-ErbB3, thus showing that CMT1A nerves have a gene expression pattern highly reminiscent of injured nerves. Because it has been shown that high concentrations of soluble NRG1 negatively affect myelination, we suggest that soluble NRG1 over-expression might play a negative role in the pathogenesis of CMT1A disease, and that a therapeutic approach, aimed to interfere with NRG1 activity, might be beneficial for CMT1A patients. Further studies will be necessary to test this hypothesis in animal models and to evaluate NRG1 expression in human patients. Impact statement Charcot-Marie-Tooth1A (CMT1A) is one of the most frequent inherited neurological diseases, characterized by chronic demyelination of peripheral nerves, for which effective therapies are not yet available. It has been recently proposed that the treatment with soluble Neuregulin1 (NRG1), a growth factor released by Schwann cells immediately after acute nerve injury, might be effective in CMT1A treatment. However, the expression of the different isoforms of endogenous NRG1 in CMT1A nerves has not been yet investigated. In this preliminary study, we demonstrate that different isoforms of soluble NRG1 are strongly over-expressed in CMT1A nerves, thus suggesting that a therapeutic approach based on NRG1 treatment should be carefully reconsidered. If soluble NRG1 is over-expressed also in human CMT1A nerves, a therapeutic approach aimed to inhibit (instead of stimulate) the signal transduction pathways driven by NRG1 might be fruitfully developed. Further studies will be necessary to test these hypotheses.
Collapse
Affiliation(s)
- Benedetta Elena Fornasari
- 1 Department of Clinical and Biological Sciences, University of Torino, Torino 10043, Italy.,2 Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Torino 10043, Italy
| | - Giulia Ronchi
- 1 Department of Clinical and Biological Sciences, University of Torino, Torino 10043, Italy.,2 Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Torino 10043, Italy
| | - Davide Pascal
- 1 Department of Clinical and Biological Sciences, University of Torino, Torino 10043, Italy.,3 Candiolo Cancer Institute-FPO, IRCCS, Candiolo (TO) 10060, Italy
| | - Davide Visigalli
- 4 Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal-Infantile Sciences (DINOGMI) and CEBR, University of Genova, Genoa 16132, Italy
| | - Giovanna Capodivento
- 4 Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal-Infantile Sciences (DINOGMI) and CEBR, University of Genova, Genoa 16132, Italy
| | - Lucilla Nobbio
- 4 Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal-Infantile Sciences (DINOGMI) and CEBR, University of Genova, Genoa 16132, Italy
| | - Isabelle Perroteau
- 1 Department of Clinical and Biological Sciences, University of Torino, Torino 10043, Italy
| | - Angelo Schenone
- 4 Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal-Infantile Sciences (DINOGMI) and CEBR, University of Genova, Genoa 16132, Italy
| | - Stefano Geuna
- 1 Department of Clinical and Biological Sciences, University of Torino, Torino 10043, Italy.,2 Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Torino 10043, Italy
| | - Giovanna Gambarotta
- 1 Department of Clinical and Biological Sciences, University of Torino, Torino 10043, Italy
| |
Collapse
|
32
|
Palomo-Guerrero M, Cosgaya JM, Gella A, Casals N, Grijota-Martinez C. Uridine-5'-Triphosphate Partially Blocks Differentiation Signals and Favors a more Repair State in Cultured rat Schwann Cells. Neuroscience 2018; 372:255-265. [PMID: 29337237 DOI: 10.1016/j.neuroscience.2018.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/21/2017] [Accepted: 01/03/2018] [Indexed: 01/05/2023]
Abstract
Schwann cells (SCs) play a key role in peripheral nerve regeneration. After damage, they respond acquiring a repair phenotype that allows them to proliferate, migrate and redirect axonal growth. Previous studies have shown that Uridine-5'-Triphosphate (UTP) and its purinergic receptors participate in several pathophysiological responses in the nervous system. Our group has previously described how UTP induces the migration of a Schwannoma cell line and promotes wound healing. These data suggest that UTP participates in the signaling involved in the regeneration process. In the present study we evaluated UTP effects in isolated rat SCs and cocultures of SCs and dorsal root ganglia neurons. UTP reduced cAMP-dependent Krox-20 induction in SCs. UTP also reduced the N-cadherin re-expression that occurs when SCs and axons make contact. In myelinating cocultures, a non-significant tendency to a lower expression of P0 and MAG proteins in presence of UTP was observed. We also demonstrated that UTP induced SC migration without affecting cell proliferation. Interestingly, UTP was found to block neuregulin-induced phosphorylation of the ErbB3 receptor, a pathway involved in the regeneration process. These results indicate that UTP could acts as a brake to the differentiation signals, promoting a more migratory state in the repair-SCs.
Collapse
Affiliation(s)
- Marta Palomo-Guerrero
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain.
| | - Jose Miguel Cosgaya
- Department of Endocrine and Nervous System Pathophysiology, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain.
| | - Alejandro Gella
- Instituto de Neurociencias, Departamento de Biología Celular, Fisiología e Inmunología, Facultad de Biociencias, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| | - Núria Casals
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.
| | - Carmen Grijota-Martinez
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain.
| |
Collapse
|
33
|
Postinjury Induction of Activated ErbB2 Selectively Hyperactivates Denervated Schwann Cells and Promotes Robust Dorsal Root Axon Regeneration. J Neurosci 2017; 37:10955-10970. [PMID: 28982707 DOI: 10.1523/jneurosci.0903-17.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 09/20/2017] [Accepted: 09/27/2017] [Indexed: 11/21/2022] Open
Abstract
Following nerve injury, denervated Schwann cells (SCs) convert to repair SCs, which enable regeneration of peripheral axons. However, the repair capacity of SCs and the regenerative capacity of peripheral axons are limited. In the present studies we examined a potential therapeutic strategy to enhance the repair capacity of SCs, and tested its efficacy in enhancing regeneration of dorsal root (DR) axons, whose regenerative capacity is particularly weak. We used male and female mice of a doxycycline-inducible transgenic line to induce expression of constitutively active ErbB2 (caErbB2) selectively in SCs after DR crush or transection. Two weeks after injury, injured DRs of induced animals contained far more SCs and SC processes. These SCs had not redifferentiated and continued to proliferate. Injured DRs of induced animals also contained far more axons that regrew along SC processes past the transection or crush site. Remarkably, SCs and axons in uninjured DRs remained quiescent, indicating that caErbB2 enhanced regeneration of injured DRs, without aberrantly activating SCs and axons in intact nerves. We also found that intraspinally expressed glial cell line-derived neurotrophic factor (GDNF), but not the removal of chondroitin sulfate proteoglycans, greatly enhanced the intraspinal migration of caErbB2-expressing SCs, enabling robust penetration of DR axons into the spinal cord. These findings indicate that SC-selective, post-injury activation of ErbB2 provides a novel strategy to powerfully enhance the repair capacity of SCs and axon regeneration, without substantial off-target damage. They also highlight that promoting directed migration of caErbB2-expressing SCs by GDNF might be useful to enable axon regrowth in a non-permissive environment.SIGNIFICANCE STATEMENT Repair of injured peripheral nerves remains a critical clinical problem. We currently lack a therapy that potently enhances axon regeneration in patients with traumatic nerve injury. It is extremely challenging to substantially increase the regenerative capacity of damaged nerves without deleterious off-target effects. It was therefore of great interest to discover that caErbB2 markedly enhances regeneration of damaged dorsal roots, while evoking little change in intact roots. To our knowledge, these findings are the first demonstration that repair capacity of denervated SCs can be efficaciously enhanced without altering innervated SCs. Our study also demonstrates that oncogenic ErbB2 signaling can be activated in SCs but not impede transdifferentiation of denervated SCs to regeneration-promoting repair SCs.
Collapse
|
34
|
Ronchi G, Cillino M, Gambarotta G, Fornasari BE, Raimondo S, Pugliese P, Tos P, Cordova A, Moschella F, Geuna S. Irreversible changes occurring in long-term denervated Schwann cells affect delayed nerve repair. J Neurosurg 2017; 127:843-856. [DOI: 10.3171/2016.9.jns16140] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVEMultiple factors may affect functional recovery after peripheral nerve injury, among them the lesion site and the interval between the injury and the surgical repair. When the nerve segment distal to the lesion site undergoes chronic degeneration, the ensuing regeneration (when allowed) is often poor. The aims of the current study were as follows: 1) to examine the expression changes of the neuregulin 1/ErbB system during long-term nerve degeneration; and 2) to investigate whether a chronically denervated distal nerve stump can sustain nerve regeneration of freshly axotomized axons.METHODSThis study used a rat surgical model of delayed nerve repair consisting of a cross suture between the chronically degenerated median nerve distal stump and the freshly axotomized ulnar proximal stump. Before the suture, a segment of long-term degenerated median nerve stump was harvested for analysis. Functional, morphological, morphometric, and biomolecular analyses were performed.RESULTSThe results showed that neuregulin 1 is highly downregulated after chronic degeneration, as well as some Schwann cell markers, demonstrating that these cells undergo atrophy, which was also confirmed by ultrastructural analysis. After delayed nerve repair, it was observed that chronic degeneration of the distal nerve stump compromises nerve regeneration in terms of functional recovery, as well as the number and size of regenerated myelinated fibers. Moreover, neuregulin 1 is still downregulated after delayed regeneration.CONCLUSIONSThe poor outcome after delayed nerve regeneration might be explained by Schwann cell impairment and the consequent ineffective support for nerve regeneration. Understanding the molecular and biological changes occurring both in the chronically degenerating nerve and in the delayed nerve repair may be useful to the development of new strategies to promote nerve regeneration. The results suggest that neuregulin 1 has an important role in Schwann cell activity after denervation, indicating that its manipulation might be a good strategy for improving outcome after delayed nerve repair.
Collapse
Affiliation(s)
- Giulia Ronchi
- 1Department of Clinical and Biological Sciences,
- 2Neuroscience Institute Cavalieri Ottolenghi, and
| | - Michele Cillino
- 3Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Italy
| | | | | | - Stefania Raimondo
- 1Department of Clinical and Biological Sciences,
- 2Neuroscience Institute Cavalieri Ottolenghi, and
| | - Pierfrancesco Pugliese
- 4Reconstructive Microsurgery, Centro Traumatologico Ortopedico Hospital, University of Torino; and
| | - Pierluigi Tos
- 4Reconstructive Microsurgery, Centro Traumatologico Ortopedico Hospital, University of Torino; and
| | - Adriana Cordova
- 3Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Italy
| | - Francesco Moschella
- 3Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Italy
| | - Stefano Geuna
- 1Department of Clinical and Biological Sciences,
- 2Neuroscience Institute Cavalieri Ottolenghi, and
| |
Collapse
|
35
|
Dias RA, Gonçalves BP, da Rocha JF, da Cruz E Silva OAB, da Silva AMF, Vieira SI. NeuronRead, an open source semi-automated tool for morphometric analysis of phase contrast and fluorescence neuronal images. Mol Cell Neurosci 2017; 85:57-69. [PMID: 28847569 DOI: 10.1016/j.mcn.2017.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/07/2017] [Accepted: 08/10/2017] [Indexed: 11/30/2022] Open
Abstract
Neurons are specialized cells of the Central Nervous System whose function is intricately related to the neuritic network they develop to transmit information. Morphological evaluation of this network and other neuronal structures is required to establish relationships between neuronal morphology and function, and may allow monitoring physiological and pathophysiologic alterations. Fluorescence-based microphotographs are the most widely used in cellular bioimaging, but phase contrast (PhC) microphotographs are easier to obtain, more affordable, and do not require invasive, complicated and disruptive techniques. Despite the various freeware tools available for fluorescence-based images analysis, few exist that can tackle the more elusive and harder-to-analyze PhC images. To surpass this, an interactive semi-automated image processing workflow was developed to easily extract relevant information (e.g. total neuritic length, average cell body area) from both PhC and fluorescence neuronal images. This workflow, named 'NeuronRead', was developed in the form of an ImageJ macro. Its robustness and adaptability were tested and validated on rat cortical primary neurons under control and differentiation inhibitory conditions. Validation included a comparison to manual determinations and to a golden standard freeware tool for fluorescence image analysis. NeuronRead was subsequently applied to PhC images of neurons at distinct differentiation days and exposed or not to DAPT, a pharmacological inhibitor of the γ-secretase enzyme, which cleaves the well-known Alzheimer's amyloid precursor protein (APP) and the Notch receptor. Data obtained confirms a neuritogenic regulatory role for γ-secretase products and validates NeuronRead as a time- and cost-effective useful monitoring tool.
Collapse
Affiliation(s)
- Roberto A Dias
- Cell Differentiation and Regeneration group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, Universidade de Aveiro, Aveiro, Portugal; Neurosciences and Signalling group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, Universidade de Aveiro, Aveiro, Portugal
| | - Bruno P Gonçalves
- Cell Differentiation and Regeneration group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, Universidade de Aveiro, Aveiro, Portugal; Neurosciences and Signalling group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, Universidade de Aveiro, Aveiro, Portugal
| | - Joana F da Rocha
- Cell Differentiation and Regeneration group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, Universidade de Aveiro, Aveiro, Portugal; Neurosciences and Signalling group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, Universidade de Aveiro, Aveiro, Portugal
| | - Odete A B da Cruz E Silva
- Neurosciences and Signalling group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, Universidade de Aveiro, Aveiro, Portugal
| | - Augusto M F da Silva
- Instituto de Engenharia Electrónica e Telemática (IEETA), Departamento de Electrónica e Telecomunicações (DETI), Universidade de Aveiro, Aveiro, Portugal
| | - Sandra I Vieira
- Cell Differentiation and Regeneration group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, Universidade de Aveiro, Aveiro, Portugal; Neurosciences and Signalling group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, Universidade de Aveiro, Aveiro, Portugal.
| |
Collapse
|
36
|
Boerboom A, Reusch C, Pieltain A, Chariot A, Franzen R. KIAA1199: A novel regulator of MEK/ERK-induced Schwann cell dedifferentiation. Glia 2017; 65:1682-1696. [PMID: 28699206 DOI: 10.1002/glia.23188] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 12/14/2022]
Abstract
The molecular mechanisms that regulate Schwann cell (SC) plasticity and the role of the Nrg1/ErbB-induced MEK1/ERK1/2 signalling pathway in SC dedifferentiation or in myelination remain unclear. It is currently believed that different levels of MEK1/ERK1/2 activation define the state of SC differentiation. Thus, the identification of new regulators of MEK1/ERK1/2 signalling could help to decipher the context-specific aspects driving the effects of this pathway on SC plasticity. In this perspective, we have investigated the potential role of KIAA1199, a protein that promotes ErbB and MEK1/ERK1/2 signalling in cancer cells, in SC plasticity. We depleted KIAA1199 in the SC-derived MSC80 cell line with RNA-interference-based strategy and also generated Tamoxifen-inducible and conditional mouse models in which KIAA1199 is inactivated through homologous recombination, using the Cre-lox technology. We show that the invalidation of KIAA1199 in SC decreases the expression of cJun and other negative regulators of myelination and elevates Krox20, driving them towards a pro-myelinating phenotype. We further show that in dedifferentiation conditions, SC invalidated for KIAA1199 exhibit lower myelin clearance as well as increased myelination capacity. Finally, the Nrg1-induced activation of the MEK/ERK/1/2 pathway is severely reduced when KIAA1199 is absent, indicating that KIAA1199 promotes Nrg1-dependent MEK1 and ERK1/2 activation in SCs. In conclusion, this work identifies KIAA1199 as a novel regulator of MEK/ERK-induced SC dedifferentiation and contributes to a better understanding of the molecular control of SC dedifferentiation.
Collapse
Affiliation(s)
| | - Céline Reusch
- GIGA-Molecular Biology of Diseases, University of Liège, Belgium
| | | | - Alain Chariot
- GIGA-Molecular Biology of Diseases, University of Liège, Belgium.,Walloon Excellence in Lifesciences and Biotechnology (WELBIO), Wavre, Belgium
| | | |
Collapse
|
37
|
Hayes DA, Kunde DA, Taylor RL, Pyecroft SB, Sohal SS, Snow ET. ERBB3: A potential serum biomarker for early detection and therapeutic target for devil facial tumour 1 (DFT1). PLoS One 2017; 12:e0177919. [PMID: 28591206 PMCID: PMC5462353 DOI: 10.1371/journal.pone.0177919] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 05/05/2017] [Indexed: 12/13/2022] Open
Abstract
Devil Facial Tumour 1 (DFT1) is one of two transmissible neoplasms of Tasmanian devils (Sarcophilus harrisii) predominantly affecting their facial regions. DFT1's cellular origin is that of Schwann cell lineage where lesions are evident macroscopically late in the disease. Conversely, the pre-clinical timeframe from cellular transmission to appearance of DFT1 remains uncertain demonstrating the importance of an effective pre-clinical biomarker. We show that ERBB3, a marker expressed normally by the developing neural crest and Schwann cells, is immunohistohemically expressed by DFT1, therefore the potential of ERBB3 as a biomarker was explored. Under the hypothesis that serum ERBB3 levels may increase as DFT1 invades local and distant tissues our pilot study determined serum ERBB3 levels in normal Tasmanian devils and Tasmanian devils with DFT1. Compared to the baseline serum ERBB3 levels in unaffected Tasmanian devils, Tasmanian devils with DFT1 showed significant elevation of serum ERBB3 levels. Interestingly Tasmanian devils with cutaneous lymphoma (CL) also showed elevation of serum ERBB3 levels when compared to the baseline serum levels of Tasmanian devils without DFT1. Thus, elevated serum ERBB3 levels in otherwise healthy looking devils could predict possible DFT1 or CL in captive or wild devil populations and would have implications on the management, welfare and survival of Tasmanian devils. ERBB3 is also a therapeutic target and therefore the potential exists to consider modes of administration that may eradicate DFT1 from the wild.
Collapse
Affiliation(s)
- Dane A. Hayes
- Department of Primary Industries, Parks Water and Environment, Animal Health Laboratory, Launceston, Tasmania, Australia
- Save the Tasmanian Devil Program, University of Tasmania, Hobart, Tasmania, Australia
- School of Health Sciences, Faculty of Health, University of Tasmania, Launceston, Tasmania, Australia
| | - Dale A. Kunde
- School of Health Sciences, Faculty of Health, University of Tasmania, Launceston, Tasmania, Australia
| | - Robyn L. Taylor
- Save the Tasmanian Devil Program, University of Tasmania, Hobart, Tasmania, Australia
- Department of Primary Industries, Parks Water and Environment, Resource Management and Conservation, Hobart, Tasmania, Australia
| | - Stephen B. Pyecroft
- School of Animal & Veterinary Sciences, Faculty of Science, University of Adelaide, Roseworthy Campus, Roseworthy, South Australia
| | - Sukhwinder Singh Sohal
- School of Health Sciences, Faculty of Health, University of Tasmania, Launceston, Tasmania, Australia
| | - Elizabeth T. Snow
- School of Health Sciences, Faculty of Health, University of Tasmania, Launceston, Tasmania, Australia
| |
Collapse
|
38
|
Tonazzini I, Moffa M, Pisignano D, Cecchini M. Neuregulin 1 functionalization of organic fibers for Schwann cell guidance. NANOTECHNOLOGY 2017; 28:155303. [PMID: 28303795 DOI: 10.1088/1361-6528/aa6316] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The repair of peripheral nerve lesions is a clinical problem where the functional recovery is often far from being satisfactory, although peripheral nerves generally retain good potential for regeneration. Here, we develop a novel scaffold approach based on bioactive fibers of poly(ε-caprolactone) where nanotopographical guidance and neuregulin 1 (NRG1) cues are combined. We interface them with rat primary Schwann cells (SCs), the peripheral glial cells that drive initial regeneration of injured nerves, and found that the combination of NRG1 with parallel nano-fibrous topographies is effective in improving SC growth up to 72 h, alignment to fiber topography, and bipolar differentiation, opening original perspectives for nerve repair applications.
Collapse
Affiliation(s)
- Ilaria Tonazzini
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, Pisa I-56127, Italy. Fondazione Umberto Veronesi, Piazza Velasca 5, Milan I-20122, Italy
| | | | | | | |
Collapse
|
39
|
Farkas JE, Monaghan JR. A brief history of the study of nerve dependent regeneration. NEUROGENESIS 2017; 4:e1302216. [PMID: 28459075 DOI: 10.1080/23262133.2017.1302216] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/24/2017] [Accepted: 02/27/2017] [Indexed: 10/19/2022]
Abstract
Nerve dependence is a phenomenon observed across a stunning array of species and tissues. From zebrafish to fetal mice to humans, research across various animal models has shown that nerves are critical for the support of tissue repair and regeneration. Although the study of this phenomenon has persisted for centuries, largely through research conducted in salamanders, the cellular and molecular mechanisms of nerve dependence remain poorly-understood. Here we highlight the near-ubiquity and clinical relevance of vertebrate nerve dependence while providing a timeline of its study and an overview of recent advancements toward understanding the mechanisms behind this process. In presenting a brief history of the research of nerve dependence, we provide both historical and modern context to our recent work on nerve dependent limb regeneration in the Mexican axolotl.
Collapse
|
40
|
Boerboom A, Dion V, Chariot A, Franzen R. Molecular Mechanisms Involved in Schwann Cell Plasticity. Front Mol Neurosci 2017; 10:38. [PMID: 28261057 PMCID: PMC5314106 DOI: 10.3389/fnmol.2017.00038] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 01/31/2017] [Indexed: 01/09/2023] Open
Abstract
Schwann cell incredible plasticity is a hallmark of the utmost importance following nerve damage or in demyelinating neuropathies. After injury, Schwann cells undergo dedifferentiation before redifferentiating to promote nerve regeneration and complete functional recovery. This review updates and discusses the molecular mechanisms involved in the negative regulation of myelination as well as in the reprogramming of Schwann cells taking place early following nerve lesion to support repair. Significant advance has been made on signaling pathways and molecular components that regulate SC regenerative properties. These include for instance transcriptional regulators such as c-Jun or Notch, the MAPK and the Nrg1/ErbB2/3 pathways. This comprehensive overview ends with some therapeutical applications targeting factors that control Schwann cell plasticity and highlights the need to carefully modulate and balance this capacity to drive nerve repair.
Collapse
Affiliation(s)
| | - Valérie Dion
- GIGA-Neurosciences, University of Liège Liège, Belgium
| | - Alain Chariot
- GIGA-Molecular Biology of Diseases, University of LiègeLiège, Belgium; Walloon Excellence in Lifesciences and Biotechnology (WELBIO)Wavre, Belgium
| | | |
Collapse
|
41
|
Vallières N, Barrette B, Wang LX, Bélanger E, Thiry L, Schneider MR, Filali M, Côté D, Bretzner F, Lacroix S. Betacellulin regulates schwann cell proliferation and myelin formation in the injured mouse peripheral nerve. Glia 2017; 65:657-669. [DOI: 10.1002/glia.23119] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 12/05/2016] [Accepted: 01/06/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Nicolas Vallières
- Centre de recherche du Centre hospitalier universitaire (CHU) de Québec-CHUL et Département de médecine moléculaire; Faculté de médecine, Université Laval; Québec Canada
| | - Benoit Barrette
- Centre de recherche du Centre hospitalier universitaire (CHU) de Québec-CHUL et Département de médecine moléculaire; Faculté de médecine, Université Laval; Québec Canada
| | - Linda Xiang Wang
- Centre de recherche du Centre hospitalier universitaire (CHU) de Québec-CHUL et Département de médecine moléculaire; Faculté de médecine, Université Laval; Québec Canada
| | - Erik Bélanger
- Centre de recherche de l'Institut universitaire en santé mentale de Québec (CRIUSMQ) et Département de physique, génie physique et optique, Faculté des sciences et de génie, Université Laval; Québec Canada
- Centre d'optique, photonique et laser (COPL), Université Laval; Québec Canada
| | - Louise Thiry
- Centre de recherche du CHU de Québec-CHUL et Département de psychiatrie et de neurosciences de l'Université Laval; Faculté de Médecine, Université Laval; Québec Canada
| | - Marlon R. Schneider
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich; Munich Germany
| | - Mohammed Filali
- Centre de recherche du Centre hospitalier universitaire (CHU) de Québec-CHUL et Département de médecine moléculaire; Faculté de médecine, Université Laval; Québec Canada
| | - Daniel Côté
- Centre de recherche de l'Institut universitaire en santé mentale de Québec (CRIUSMQ) et Département de physique, génie physique et optique, Faculté des sciences et de génie, Université Laval; Québec Canada
- Centre d'optique, photonique et laser (COPL), Université Laval; Québec Canada
| | - Frédéric Bretzner
- Centre de recherche du CHU de Québec-CHUL et Département de psychiatrie et de neurosciences de l'Université Laval; Faculté de Médecine, Université Laval; Québec Canada
| | - Steve Lacroix
- Centre de recherche du Centre hospitalier universitaire (CHU) de Québec-CHUL et Département de médecine moléculaire; Faculté de médecine, Université Laval; Québec Canada
| |
Collapse
|
42
|
Ronchi G, Raimondo S. Chronically denervated distal nerve stump inhibits peripheral nerve regeneration. Neural Regen Res 2017; 12:739-740. [PMID: 28616024 PMCID: PMC5461605 DOI: 10.4103/1673-5374.206638] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Giulia Ronchi
- Department of Clinical and Biological Sciences, University of Torino, Orbassano (To), Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano (To), Italy
| | - Stefania Raimondo
- Department of Clinical and Biological Sciences, University of Torino, Orbassano (To), Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano (To), Italy
| |
Collapse
|
43
|
Hervé M, Ibrahim EC. MicroRNA screening identifies a link between NOVA1 expression and a low level of IKAP in familial dysautonomia. Dis Model Mech 2016; 9:899-909. [PMID: 27483351 PMCID: PMC5007982 DOI: 10.1242/dmm.025841] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/22/2016] [Indexed: 12/20/2022] Open
Abstract
Familial dysautonomia (FD) is a rare neurodegenerative disease caused by a mutation in intron 20 of the IKBKAP gene (c.2204+6T>C), leading to tissue-specific skipping of exon 20 and a decrease in the synthesis of the encoded protein IKAP (also known as ELP1). Small non-coding RNAs known as microRNAs (miRNAs) are important post-transcriptional regulators of gene expression and play an essential role in the nervous system development and function. To better understand the neuronal specificity of IKAP loss, we examined expression of miRNAs in human olfactory ecto-mesenchymal stem cells (hOE-MSCs) from five control individuals and five FD patients. We profiled the expression of 373 miRNAs using microfluidics and reverse transcription coupled to quantitative PCR (RT-qPCR) on two biological replicate series of hOE-MSC cultures from healthy controls and FD patients. This led to the total identification of 26 dysregulated miRNAs in FD, validating the existence of a miRNA signature in FD. We then selected the nine most discriminant miRNAs for further analysis. The signaling pathways affected by these dysregulated miRNAs were largely within the nervous system. In addition, many targets of these dysregulated miRNAs had been previously demonstrated to be affected in FD models. Moreover, we found that four of our nine candidate miRNAs target the neuron-specific splicing factor NOVA1. We demonstrated that overexpression of miR-203a-3p leads to a decrease of NOVA1, counter-balanced by an increase of IKAP, supporting a potential interaction between NOVA1 and IKAP. Taken together, these results reinforce the choice of miRNAs as potential therapeutic targets and suggest that NOVA1 could be a regulator of FD pathophysiology. Summary: A miRNA screening conducted in olfactory stem cells from patients links the neuron-specific splicing factor NOVA1 to neurodegeneration in familial dysautonomia.
Collapse
Affiliation(s)
- Mylène Hervé
- CRN2M-UMR7286, Aix-Marseille Université, CNRS, Faculté de Médecine Nord, Marseille 13344, Cedex 15, France
| | - El Chérif Ibrahim
- CRN2M-UMR7286, Aix-Marseille Université, CNRS, Faculté de Médecine Nord, Marseille 13344, Cedex 15, France
| |
Collapse
|
44
|
Farkas JE, Freitas PD, Bryant DM, Whited JL, Monaghan JR. Neuregulin-1 signaling is essential for nerve-dependent axolotl limb regeneration. Development 2016; 143:2724-31. [PMID: 27317805 DOI: 10.1242/dev.133363] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 06/08/2016] [Indexed: 02/01/2023]
Abstract
The Mexican axolotl (Ambystoma mexicanum) is capable of fully regenerating amputated limbs, but denervation of the limb inhibits the formation of the post-injury proliferative mass called the blastema. The molecular basis behind this phenomenon remains poorly understood, but previous studies have suggested that nerves support regeneration via the secretion of essential growth-promoting factors. An essential nerve-derived factor must be found in the blastema, capable of rescuing regeneration in denervated limbs, and its inhibition must prevent regeneration. Here, we show that the neuronally secreted protein Neuregulin-1 (NRG1) fulfills all these criteria in the axolotl. Immunohistochemistry and in situ hybridization of NRG1 and its active receptor ErbB2 revealed that they are expressed in regenerating blastemas but lost upon denervation. NRG1 was localized to the wound epithelium prior to blastema formation and was later strongly expressed in proliferating blastemal cells. Supplementation by implantation of NRG1-soaked beads rescued regeneration to digits in denervated limbs, and pharmacological inhibition of NRG1 signaling reduced cell proliferation, blocked blastema formation and induced aberrant collagen deposition in fully innervated limbs. Taken together, our results show that nerve-dependent NRG1/ErbB2 signaling promotes blastemal proliferation in the regenerating limb and may play an essential role in blastema formation, thus providing insight into the longstanding question of why nerves are required for axolotl limb regeneration.
Collapse
Affiliation(s)
- Johanna E Farkas
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Polina D Freitas
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Donald M Bryant
- Regenerative Medicine Center and Department of Orthopedic Surgery, Brigham & Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Jessica L Whited
- Regenerative Medicine Center and Department of Orthopedic Surgery, Brigham & Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - James R Monaghan
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
45
|
Rao SNR, Pearse DD. Regulating Axonal Responses to Injury: The Intersection between Signaling Pathways Involved in Axon Myelination and The Inhibition of Axon Regeneration. Front Mol Neurosci 2016; 9:33. [PMID: 27375427 PMCID: PMC4896923 DOI: 10.3389/fnmol.2016.00033] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/02/2016] [Indexed: 01/06/2023] Open
Abstract
Following spinal cord injury (SCI), a multitude of intrinsic and extrinsic factors adversely affect the gene programs that govern the expression of regeneration-associated genes (RAGs) and the production of a diversity of extracellular matrix molecules (ECM). Insufficient RAG expression in the injured neuron and the presence of inhibitory ECM at the lesion, leads to structural alterations in the axon that perturb the growth machinery, or form an extraneous barrier to axonal regeneration, respectively. Here, the role of myelin, both intact and debris, in antagonizing axon regeneration has been the focus of numerous investigations. These studies have employed antagonizing antibodies and knockout animals to examine how the growth cone of the re-growing axon responds to the presence of myelin and myelin-associated inhibitors (MAIs) within the lesion environment and caudal spinal cord. However, less attention has been placed on how the myelination of the axon after SCI, whether by endogenous glia or exogenously implanted glia, may alter axon regeneration. Here, we examine the intersection between intracellular signaling pathways in neurons and glia that are involved in axon myelination and axon growth, to provide greater insight into how interrogating this complex network of molecular interactions may lead to new therapeutics targeting SCI.
Collapse
Affiliation(s)
- Sudheendra N R Rao
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine Miami, FL, USA
| | - Damien D Pearse
- The Miami Project to Cure Paralysis, University of Miami Miller School of MedicineMiami, FL, USA; The Department of Neurological Surgery, University of Miami Miller School of MedicineMiami, FL, USA; The Neuroscience Program, University of Miami Miller School of MedicineMiami, FL, USA; The Interdisciplinary Stem Cell Institute, University of Miami Miller School of MedicineMiami, FL, USA; Bruce W. Carter Department of Veterans Affairs Medical CenterMiami, FL, USA
| |
Collapse
|