1
|
Farkhondeh Tale Navi F, Heysieattalab S, Raoufy MR, Sabaghypour S, Nazari M, Nazari MA. Adaptive closed-loop modulation of cortical theta oscillations: Insights into the neural dynamics of navigational decision-making. Brain Stimul 2024; 17:1101-1118. [PMID: 39277130 DOI: 10.1016/j.brs.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 08/04/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024] Open
Abstract
Navigational decision-making tasks, such as spatial working memory (SWM), rely highly on information integration from several cortical and sub-cortical regions. Performance in SWM tasks is associated with theta rhythm, including low-frequency oscillations related to movement and memory. The interaction of the ventral hippocampus (vHPC) and medial prefrontal cortex (mPFC), reflected in theta synchrony, is essential in various steps of information processing during SWM. We used a closed-loop neurofeedback (CLNF) system to upregulate theta power in the mPFC and investigate its effects on circuit dynamics and behavior in animal models. Specifically, we hypothesized that enhancing the power of the theta rhythm in the mPFC might improve SWM performance. Animals were divided into three groups: closed-loop (CL), random-loop (RL), and OFF (without stimulation). We recorded local field potential (LFP) in the mPFC while electrical reward stimulation contingent on cortical theta activity was delivered to the lateral hypothalamus (LH), which is considered one of the central reward-associated regions. We also recorded LFP in the vHPC to evaluate the related subcortical neural changes. Results revealed a sustained increase in the theta power in both mPFC and vHPC for the CL group. Our analysis also revealed an increase in mPFC-vHPC synchronization in the theta range over the stimulation sessions in the CL group, as measured by coherence and cross-correlation in the theta frequency band. The reinforcement of this circuit improved spatial decision-making performance in the subsequent behavioral results. Our findings provide direct evidence of the relationship between specific theta upregulation and SWM performance and suggest that theta oscillations are integral to cognitive processes. Overall, this study highlights the potential of adaptive CLNF systems in investigating neural dynamics in various brain circuits.
Collapse
Affiliation(s)
- Farhad Farkhondeh Tale Navi
- Department of Cognitive Neuroscience, Faculty of Education and Psychology, University of Tabriz, Tabriz, Iran
| | - Soomaayeh Heysieattalab
- Department of Cognitive Neuroscience, Faculty of Education and Psychology, University of Tabriz, Tabriz, Iran
| | - Mohammad Reza Raoufy
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Saied Sabaghypour
- Department of Cognitive Neuroscience, Faculty of Education and Psychology, University of Tabriz, Tabriz, Iran
| | - Milad Nazari
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | - Mohammad Ali Nazari
- Department of Cognitive Neuroscience, Faculty of Education and Psychology, University of Tabriz, Tabriz, Iran; Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Papo D, Bucolo M, Dimitriadis SI, Onton JA, Philippu A, Shannahoff-Khalsa D. Editorial: Advances in brain dynamics in the healthy and psychiatric disorders. Front Psychiatry 2023; 14:1284670. [PMID: 37779613 PMCID: PMC10539585 DOI: 10.3389/fpsyt.2023.1284670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023] Open
Affiliation(s)
- David Papo
- Center for Translational Neurophysiology of Speech and Communication, Fondazione Istituto Italiano di Tecnologia, Ferrara, Italy
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, Ferrara, Italy
| | - Maide Bucolo
- Department of Electrical, Electronic and Informatics, University of Catania, Catania, Italy
| | - Stavros I. Dimitriadis
- Department of Clinical Psychology and Psychobiology, Faculty of Psychology, University of Barcelona, Barcelona, Spain
| | - Julie A. Onton
- Institute of Neural Computation, University of California, San Diego, La Jolla, CA, United States
| | - Athineos Philippu
- Department of Pharmacology and Toxicology, University of Innsbruck, Innsbruck, Austria
| | - David Shannahoff-Khalsa
- BioCircuits Institute, University of California San Diego, La Jolla, CA, United States
- Center for Integrative Medicine, University of California San Diego, La Jolla, CA, United States
- The Khalsa Foundation for Medical Science, Del Mar, CA, United States
| |
Collapse
|
3
|
Tetsuka M, Sakurada T, Matsumoto M, Nakajima T, Morita M, Fujimoto S, Kawai K. Higher prefrontal activity based on short-term neurofeedback training can prevent working memory decline in acute stroke. Front Syst Neurosci 2023; 17:1130272. [PMID: 37388942 PMCID: PMC10300420 DOI: 10.3389/fnsys.2023.1130272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/29/2023] [Indexed: 07/01/2023] Open
Abstract
This study aimed to clarify whether short-term neurofeedback training during the acute stroke phase led to prefrontal activity self-regulation, providing positive efficacy to working memory. A total of 30 patients with acute stroke performed functional near-infrared spectroscopy-based neurofeedback training for a day to increase their prefrontal activity. A randomized, Sham-controlled, double-blind study protocol was used comparing working memory ability before and after neurofeedback training. Working memory was evaluated using a target-searching task requiring spatial information retention. A decline in spatial working memory performance post-intervention was prevented in patients who displayed a higher task-related right prefrontal activity during neurofeedback training compared with the baseline. Neurofeedback training efficacy was not associated with the patient's clinical background such as Fugl-Meyer Assessment score and time since stroke. These findings demonstrated that even short-term neurofeedback training can strengthen prefrontal activity and help maintain cognitive ability in acute stroke patients, at least immediately after training. However, further studies investigating the influence of individual patient clinical background, especially cognitive impairment, on neurofeedback training is needed. Current findings provide an encouraging option for clinicians to design neurorehabilitation programs, including neurofeedback protocols, for acute stroke patients.
Collapse
Affiliation(s)
- Masayuki Tetsuka
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
| | - Takeshi Sakurada
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
- Faculty of Science and Technology, Seikei University, Tokyo, Japan
- Functional Brain Science Laboratory, Center for Development of Advanced Medical Technology, Jichi Medical University, Tochigi, Japan
| | - Mayuko Matsumoto
- Functional Brain Science Laboratory, Center for Development of Advanced Medical Technology, Jichi Medical University, Tochigi, Japan
- College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| | - Takeshi Nakajima
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
- Rehabilitation Center, Jichi Medical University Hospital, Tochigi, Japan
| | - Mitsuya Morita
- Rehabilitation Center, Jichi Medical University Hospital, Tochigi, Japan
- Division of Neurology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Shigeru Fujimoto
- Division of Neurology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Kensuke Kawai
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
4
|
Lehnertz K, Bröhl T, Wrede RV. Epileptic-network-based prediction and control of seizures in humans. Neurobiol Dis 2023; 181:106098. [PMID: 36997129 DOI: 10.1016/j.nbd.2023.106098] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/08/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
Epilepsy is now conceptualized as a network disease. The epileptic brain network comprises structurally and functionally connected cortical and subcortical brain regions - spanning lobes and hemispheres -, whose connections and dynamics evolve in time. With this concept, focal and generalized seizures as well as other related pathophysiological phenomena are thought to emerge from, spread via, and be terminated by network vertices and edges that also generate and sustain normal, physiological brain dynamics. Research over the last years has advanced concepts and techniques to identify and characterize the evolving epileptic brain network and its constituents on various spatial and temporal scales. Network-based approaches further our understanding of how seizures emerge from the evolving epileptic brain network, and they provide both novel insights into pre-seizure dynamics and important clues for success or failure of measures for network-based seizure control and prevention. In this review, we summarize the current state of knowledge and address several important challenges that would need to be addressed to move network-based prediction and control of seizures closer to clinical translation.
Collapse
Affiliation(s)
- Klaus Lehnertz
- Department of Epileptology, University of Bonn Medical Centre, Venusberg Campus 1, 53127 Bonn, Germany; Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Nussallee 14-16, 53115 Bonn, Germany; Interdisciplinary Center for Complex Systems, University of Bonn, Brühler Straße 7, 53175 Bonn, Germany.
| | - Timo Bröhl
- Department of Epileptology, University of Bonn Medical Centre, Venusberg Campus 1, 53127 Bonn, Germany; Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Nussallee 14-16, 53115 Bonn, Germany
| | - Randi von Wrede
- Department of Epileptology, University of Bonn Medical Centre, Venusberg Campus 1, 53127 Bonn, Germany
| |
Collapse
|
5
|
Kerick SE, Asbee J, Spangler DP, Brooks JB, Garcia JO, Parsons TD, Bannerjee N, Robucci R. Neural and behavioral adaptations to frontal theta neurofeedback training: A proof of concept study. PLoS One 2023; 18:e0283418. [PMID: 36952490 PMCID: PMC10035884 DOI: 10.1371/journal.pone.0283418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/08/2023] [Indexed: 03/25/2023] Open
Abstract
Previous neurofeedback research has shown training-related frontal theta increases and performance improvements on some executive tasks in real feedback versus sham control groups. However, typical sham control groups receive false or non-contingent feedback, making it difficult to know whether observed differences between groups are associated with accurate contingent feedback or other cognitive mechanisms (motivation, control strategies, attentional engagement, fatigue, etc.). To address this question, we investigated differences between two frontal theta training groups, each receiving accurate contingent feedback, but with different top-down goals: (1) increase and (2) alternate increase/decrease. We hypothesized that the increase group would exhibit greater increases in frontal theta compared to the alternate group, which would exhibit lower frontal theta during down- versus up-modulation blocks over sessions. We also hypothesized that the alternate group would exhibit greater performance improvements on a Go-NoGo shooting task requiring alterations in behavioral activation and inhibition, as the alternate group would be trained with greater task specificity, suggesting that receiving accurate contingent feedback may be the more salient learning mechanism underlying frontal theta neurofeedback training gains. Thirty young healthy volunteers were randomly assigned to increase or alternate groups. Training consisted of an orientation session, five neurofeedback training sessions (six blocks of six 30-s trials of FCz theta modulation (4-7 Hz) separated by 10-s rest intervals), and six Go-NoGo testing sessions (four blocks of 90 trials in both Low and High time-stress conditions). Multilevel modeling revealed greater frontal theta increases in the alternate group over training sessions. Further, Go-NoGo task performance increased at a greater rate in the increase group (accuracy and reaction time, but not commission errors). Overall, these results reject our hypotheses and suggest that changes in frontal theta and performance outcomes were not explained by reinforcement learning afforded by accurate contingent feedback. We discuss our findings in terms of alternative conceptual and methodological considerations, as well as limitations of this research.
Collapse
Affiliation(s)
- Scott E Kerick
- U.S. Combat Capabilities Development Command, Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, MD, United States of America
| | - Justin Asbee
- The Institute for Integrative & Innovative Research, University of Arkansas, Fayetteville, AR, United States of America
| | - Derek P Spangler
- U.S. Combat Capabilities Development Command, Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, MD, United States of America
- Department of Biobehavioral Health, Penn State University, University Park, PA, United States of America
| | - Justin B Brooks
- U.S. Combat Capabilities Development Command, Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, MD, United States of America
- D-Prime, Washington, DC, United States of America
- Department of Computer Science and Electrical Engineering, University of Maryland at Baltimore County, Baltimore, MD, United States of America
| | - Javier O Garcia
- U.S. Combat Capabilities Development Command, Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, MD, United States of America
| | - Thomas D Parsons
- Computational Neuropsychology and Simulation (CNS) Laboratory, Edson College, Arizona State University, Phoenix, AZ, United States of America
| | - Nilanjan Bannerjee
- Department of Computer Science and Electrical Engineering, University of Maryland at Baltimore County, Baltimore, MD, United States of America
| | - Ryan Robucci
- Department of Computer Science and Electrical Engineering, University of Maryland at Baltimore County, Baltimore, MD, United States of America
| |
Collapse
|
6
|
Fedotchev AI. Correction of Stress-Induced States Using Sensory Stimulation Automatically Modulated by Endogenous Human Rhythms. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2022; 52:947-952. [PMID: 36373061 PMCID: PMC9638486 DOI: 10.1007/s11055-022-01322-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/26/2021] [Indexed: 06/16/2023]
Abstract
This article considers the dynamics of the development of a potential approach to correcting stress-induced states in humans, i.e., adaptive neurostimulation. The approach consists of presenting sensory stimulation automatically modulated by intrinsic rhythmic human processes such as the respiratory rhythm, the heartbeat rhythm, and electroencephalograph (EEG) rhythms. Many examples have shown that real-time self-adjustment of the stimulation parameters by these rhythms leads to a high level personalization of therapeutic stimulation and increases in its efficacy in suppressing stress-induced states. The publications reviewed here point to the advantages of this approach for developing innovatory technologies using complex feedback from endogenous human rhythms to correct a wide spectrum of functional disorders.
Collapse
Affiliation(s)
- A I Fedotchev
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
7
|
Oda K, Colman R, Koshiba M. Simplified Attachable EEG Revealed Child Development Dependent Neurofeedback Brain Acute Activities in Comparison with Visual Numerical Discrimination Task and Resting. SENSORS (BASEL, SWITZERLAND) 2022; 22:7207. [PMID: 36236305 PMCID: PMC9572555 DOI: 10.3390/s22197207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
The development of an easy-to-attach electroencephalograph (EEG) would enable its frequent use for the assessment of neurodevelopment and clinical monitoring. In this study, we designed a two-channel EEG headband measurement device that could be used safely and was easily attachable and removable without the need for restraint or electrode paste or gel. Next, we explored the use of this device for neurofeedback applications relevant to education or neurocognitive development. We developed a prototype visual neurofeedback game in which the size of a familiar local mascot changes in the PC display depending on the user's brain wave activity. We tested this application at a local children's play event. Children at the event were invited to experience the game and, upon agreement, were provided with an explanation of the game and support in attaching the EEG device. The game began with a consecutive number visual discrimination task which was followed by an open-eye resting condition and then a neurofeedback task. Preliminary linear regression analyses by the least-squares method of the acquired EEG and age data in 30 participants from 5 to 20 years old suggested an age-dependent left brain lateralization of beta waves at the neurofeedback stage (p = 0.052) and of alpha waves at the open-eye resting stage (p = 0.044) with potential involvement of other wave bands. These results require further validation.
Collapse
Affiliation(s)
- Kazuyuki Oda
- Engineering Department, Graduate School of Sciences and Technology for Innovation Yamaguchi University, Yamaguchi 755-8611, Japan
| | - Ricki Colman
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, Madison, WI 53706, USA
| | - Mamiko Koshiba
- Engineering Department, Graduate School of Sciences and Technology for Innovation Yamaguchi University, Yamaguchi 755-8611, Japan
- Department of Pediatrics, Saitama Medical University, Saitama 350-0495, Japan
- Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, Japan
| |
Collapse
|
8
|
Mirifar A, Keil A, Ehrlenspiel F. Neurofeedback and neural self-regulation: a new perspective based on allostasis. Rev Neurosci 2022; 33:607-629. [PMID: 35122709 PMCID: PMC9381001 DOI: 10.1515/revneuro-2021-0133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/13/2022] [Indexed: 11/15/2022]
Abstract
The field of neurofeedback training (NFT) has seen growing interest and an expansion of scope, resulting in a steadily increasing number of publications addressing different aspects of NFT. This development has been accompanied by a debate about the underlying mechanisms and expected outcomes. Recent developments in the understanding of psychophysiological regulation have cast doubt on the validity of control systems theory, the principal framework traditionally used to characterize NFT. The present article reviews the theoretical and empirical aspects of NFT and proposes a predictive framework based on the concept of allostasis. Specifically, we conceptualize NFT as an adaptation to changing contingencies. In an allostasis four-stage model, NFT involves (a) perceiving relations between demands and set-points, (b) learning to apply collected patterns (experience) to predict future output, (c) determining efficient set-points, and (d) adapting brain activity to the desired ("set") state. This model also identifies boundaries for what changes can be expected from a neurofeedback intervention and outlines a time frame for such changes to occur.
Collapse
Affiliation(s)
- Arash Mirifar
- Department of Sport and Health Sciences, Chair of Sport Psychology, Technische Universität München, Munich, Bavaria, Germany
- Institute of Sports Science, Leibniz UniversityHannover, Germany
| | - Andreas Keil
- Center for the Study of Emotion & Attention, University of Florida, Gainesville, Florida, United States of America
| | - Felix Ehrlenspiel
- Department of Sport and Health Sciences, Chair of Sport Psychology, Technische Universität München, Munich, Bavaria, Germany
| |
Collapse
|
9
|
Ponce H, Martínez-Villaseñor L, Chen Y. Editorial: Artificial intelligence in brain-computer interfaces and neuroimaging for neuromodulation and neurofeedback. Front Neurosci 2022; 16:974269. [PMID: 35911982 PMCID: PMC9336526 DOI: 10.3389/fnins.2022.974269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Hiram Ponce
- Facultad de Ingeniería, Universidad Panamericana, Ciudad de Mexico, Mexico
- *Correspondence: Hiram Ponce
| | | | - Yinong Chen
- Barrett Honors Faculty, School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
10
|
Destexhe A, Foubert L. A method to convert neural signals into sound sequences. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 151:3685. [PMID: 35778195 DOI: 10.1121/10.0011549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
We present a method to convert neural signals into sound sequences, with the constraint that the sound sequences precisely reflect the sequences of events in the neural signal. The method consists in quantifying the wave motifs in the signal and using these parameters to generate sound envelopes. We illustrate the procedure for sleep delta waves in the human electro-encephalogram (EEG), which are converted into sound sequences that encode the time structure of the original EEG waves. This procedure can be applied to synthesize personalized sound sequences specific to the EEG of a given subject.
Collapse
Affiliation(s)
- Alain Destexhe
- Paris-Saclay University, CNRS, Institute of Neuroscience, 91400 Saclay, France
| | - Luc Foubert
- Paris-Saclay University, CNRS, Institute of Neuroscience, 91400 Saclay, France
| |
Collapse
|
11
|
Cautionary Observations Concerning the Introduction of Psychophysiological Biomarkers into Neuropsychiatric Practice. PSYCHIATRY INTERNATIONAL 2022. [DOI: 10.3390/psychiatryint3020015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The combination of statistical learning technologies with large databases of psychophysiological data has appropriately generated enthusiastic interest in future clinical applicability. It is argued here that this enthusiasm should be tempered with the understanding that significant obstacles must be overcome before the systematic introduction of psychophysiological measures into neuropsychiatric practice becomes possible. The objective of this study is to identify challenges to this effort. The nonspecificity of psychophysiological measures complicates their use in diagnosis. Low test-retest reliability complicates use in longitudinal assessment, and quantitative psychophysiological measures can normalize in response to placebo intervention. Ten cautionary observations are introduced and, in some instances, possible directions for remediation are suggested.
Collapse
|
12
|
Farkhondeh Tale Navi F, Heysieattalab S, Ramanathan DS, Raoufy MR, Nazari MA. Closed-loop Modulation of the Self-regulating Brain: A Review on Approaches, Emerging Paradigms, and Experimental Designs. Neuroscience 2022; 483:104-126. [PMID: 34902494 DOI: 10.1016/j.neuroscience.2021.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 11/27/2022]
Abstract
Closed-loop approaches, setups, and experimental designs have been applied within the field of neuroscience to enhance the understanding of basic neurophysiology principles (closed-loop neuroscience; CLNS) and to develop improved procedures for modulating brain circuits and networks for clinical purposes (closed-loop neuromodulation; CLNM). The contents of this review are thus arranged into the following sections. First, we describe basic research findings that have been made using CLNS. Next, we provide an overview of the application, rationale, and therapeutic aspects of CLNM for clinical purposes. Finally, we summarize methodological concerns and critics in clinical practice of neurofeedback and novel applications of closed-loop perspective and techniques to improve and optimize its experiments. Moreover, we outline the theoretical explanations and experimental ideas to test animal models of neurofeedback and discuss technical issues and challenges associated with implementing closed-loop systems. We hope this review is helpful for both basic neuroscientists and clinical/ translationally-oriented scientists interested in applying closed-loop methods to improve mental health and well-being.
Collapse
Affiliation(s)
- Farhad Farkhondeh Tale Navi
- Department of Cognitive Neuroscience, Faculty of Education and Psychology, University of Tabriz, Tabriz, Iran
| | - Soomaayeh Heysieattalab
- Department of Cognitive Neuroscience, Faculty of Education and Psychology, University of Tabriz, Tabriz, Iran
| | | | - Mohammad Reza Raoufy
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Ali Nazari
- Department of Cognitive Neuroscience, Faculty of Education and Psychology, University of Tabriz, Tabriz, Iran; Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Neurofeedback for cognitive enhancement and intervention and brain plasticity. Rev Neurol (Paris) 2021; 177:1133-1144. [PMID: 34674879 DOI: 10.1016/j.neurol.2021.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/27/2021] [Indexed: 12/18/2022]
Abstract
In recent years, neurofeedback has been used as a cognitive training tool to improve brain functions for clinical or recreational purposes. It is based on providing participants with feedback about their brain activity and training them to control it, initiating directional changes. The overarching hypothesis behind this method is that this control results in an enhancement of the cognitive abilities associated with this brain activity, and triggers specific structural and functional changes in the brain, promoted by learning and neuronal plasticity effects. Here, we review the general methodological principles behind neurofeedback and we describe its behavioural benefits in clinical and experimental contexts. We review the non-specific effects of neurofeedback on the reinforcement learning striato-frontal networks as well as the more specific changes in the cortical networks on which the neurofeedback control is exerted. Last, we analyse the current challenges faces by neurofeedback studies, including the quantification of the temporal dynamics of neurofeedback effects, the generalisation of its behavioural outcomes to everyday life situations, the design of appropriate controls to disambiguate placebo from true neurofeedback effects and the development of more advanced cortical signal processing to achieve a finer-grained real-time modelling of cognitive functions.
Collapse
|
14
|
Jeong JH, Jung C, Kim J, Kim JY, Kim HS, Park YC, Lee JH, Jung IC. Investigation of combined treatment of acupuncture and neurofeedback for improving cognitive function in mild neurocognitive disorder: A randomized, assessor-blind, pilot study. Medicine (Baltimore) 2021; 100:e27218. [PMID: 34664858 PMCID: PMC8448021 DOI: 10.1097/md.0000000000027218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Mild neurocognitive disorder (MND) is an intermediate state that can progress to dementia, and the cognitive reserve of MND is an important task in preventing dementia. Acupuncture and neurofeedback (NF) training have been used to improve cognitive function and treat MND or dementia, but their effectiveness remains controversial. In this trial, we will evaluate the efficacy and safety of combined NF-acupuncture treatment in comparison with single acupuncture treatment. METHODS AND DESIGN This study is a randomized, assessor-blind, pilot trial. It is designed in accordance with the Standards for Reporting Interventions in Controlled Trials of Acupuncture. A total of 44 MND participants who meet the inclusion and exclusion criteria will be enrolled, and each will be randomly assigned to 1 of 2 groups of 22 subjects. Each subject will visit 24 times over 12 weeks and receive either acupuncture or NF-acupuncture combined treatment. At visit 25 (week 13), a follow-up evaluation will be performed, and then the investigator will analyze the results. The primary outcome is defined by the Korean version of the Montreal Cognitive Assessment score from screening to visit 25. The secondary outcome includes the following: change in Alzheimer Disease Assessment Scale-Cognitive, the Korean version of the Beck Depression Inventory, Body Awareness Questionnaire, delayed matching to sample task scores, and functional near-infrared spectroscopy values, from visit 1 to visit 25; heart rate variability values from visit 1 to visit 5, visit 9, visit 13, visit 21, visit 25; breath per minute values from visit 1 to visit 1 to 25. DISCUSSION We will evaluate the effectiveness and safety of combined NF-acupuncture therapy, and expect that it will serve as the basis for the use of NF together with acupuncture in the clinical setting. TRIAL REGISTRATION NUMBER KCT0004972 (registered in Clinical Research Information Service of the Republic of Korea, https://cris.nih.go.kr/cris/search/detailSearch.do/16239).
Collapse
Affiliation(s)
- Jin-Hyung Jeong
- Department of Oriental Neuropsychiatry, College of Korean Medicine, Daejeon University, Daejeon, Republic of Korea
| | - Changjin Jung
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Republic of Korea
| | - Jieun Kim
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Republic of Korea
| | - Ju-Yeon Kim
- Department of Oriental Neuropsychiatry, College of Korean Medicine, Daejeon University, Daejeon, Republic of Korea
| | - Hae Sook Kim
- Clinical trial center, Daejeon Korean Medicine Hospital of Daejeon University, Republic of Korea
| | - Yang-Chun Park
- Department of Internal Medicine, Daejeon Korean Medicine Hospital of Daejeon University, Republic of Korea
| | - Jun-Hwan Lee
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Republic of Korea
- Korean Medicine Life Science, University of Science & Technology (UST), Republic of Korea
| | - In Chul Jung
- Department of Oriental Neuropsychiatry, College of Korean Medicine, Daejeon University, Daejeon, Republic of Korea
- Clinical trial center, Daejeon Korean Medicine Hospital of Daejeon University, Republic of Korea
| |
Collapse
|
15
|
Fedotchev A, Parin S, Polevaya S, Zemlianaia A. Human Body Rhythms in the Development of Non-Invasive Methods of Closed-Loop Adaptive Neurostimulation. J Pers Med 2021; 11:437. [PMID: 34065196 PMCID: PMC8161182 DOI: 10.3390/jpm11050437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 11/21/2022] Open
Abstract
The creation and improvement of non-invasive closed-loop brain stimulation technologies represent an exciting and rapidly expanding field of neuroscience. To identify the appropriate way to close the feedback loop in adaptive neurostimulation procedures, it was previously proposed to use on-line automatic sensory stimulation with the parameters modulated by the patient's own rhythmical processes, such as respiratory rate, heart rate, and electroencephalogram (EEG) rhythms. The current paper aims to analyze several recent studies demonstrating further development in this line of research. The advantages of using automatic closed-loop feedback from human endogenous rhythms in non-invasive adaptive neurostimulation procedures have been demonstrated for relaxation assistance, for the correction of stress-induced functional disturbances, for anxiety management, and for the cognitive rehabilitation of an individual. Several distinctive features of the approach are noted to delineate its further development.
Collapse
Affiliation(s)
- Alexander Fedotchev
- Institute of Cell Biophysics, Russian Academy of Sciences, 3 Institutskaya St., Pushchino, 142290 Moscow Region, Russia
| | - Sergey Parin
- Lobachevsky State University of Nizhni Novgorod, 23 Prospekt Gagarina, 603950 Nizhny Novgorod, Russia; (S.P.); (S.P.)
| | - Sofia Polevaya
- Lobachevsky State University of Nizhni Novgorod, 23 Prospekt Gagarina, 603950 Nizhny Novgorod, Russia; (S.P.); (S.P.)
| | - Anna Zemlianaia
- Moscow Research Institute of Psychiatry, Branch of the Serbsky’ National Medical Research Center of Psychiatry and Narcology, Russian Ministry of Health, 3 Poteshnaya St., 107076 Moscow, Russia;
| |
Collapse
|
16
|
Suppress Me if You Can: Neurofeedback of the Readiness Potential. eNeuro 2021; 8:ENEURO.0425-20.2020. [PMID: 33568461 PMCID: PMC7986527 DOI: 10.1523/eneuro.0425-20.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 11/23/2022] Open
Abstract
Voluntary movements are usually preceded by a slow, negative-going brain signal over motor areas, the so-called readiness potential (RP). To date, the exact nature and causal role of the RP in movement preparation have remained heavily debated. Although the RP is influenced by several motorical and cognitive factors, it has remained unclear whether people can learn to exert mental control over their RP, for example, by deliberately suppressing it. If people were able to initiate spontaneous movements without eliciting an RP, this would challenge the idea that the RP is a necessary stage of the causal chain leading up to a voluntary movement. We tested the ability of participants to control the magnitude of their RP in a neurofeedback experiment. Participants performed self-initiated movements, and after every movement, they were provided with immediate feedback about the magnitude of their RP. They were asked to find a strategy to perform voluntary movements such that the RPs were as small as possible. We found no evidence that participants were able to to willfully modulate or suppress their RPs while still eliciting voluntary movements. This suggests that the RP might be an involuntary component of voluntary action over which people cannot exert conscious control.
Collapse
|
17
|
Mahmoodi K, West BJ, Grigolini P. Complex Periodicity and Synchronization. Front Physiol 2020; 11:563068. [PMID: 33101050 PMCID: PMC7556002 DOI: 10.3389/fphys.2020.563068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 08/27/2020] [Indexed: 11/13/2022] Open
Abstract
A recent experiment proves the therapeutic effect of arm-in-arm walking, showing that if an aged participant walks in close synchrony with a young companion, the complexity matching effect results in the restoration of complexity in the former. A clear manifestation of complexity restoration is a perfect synchronization. The authors of this interesting experiment leave open two important problems. The first is the measure of complexity that is interpreted as a degree of multifractality. The second problem is the lack of a theoretical derivation of synchronization, which is experimentally observed with no theoretical derivation. The main goal of this paper is to establish a physiological foundation of these important results based on the recent advances on the dynamics of the brain, interpreted as a system at criticality. Criticality is a phenomenon requiring the cooperative interaction of units, the neurons of the brain, and is hypothesized as the main source of cognition. Using the criticality-induced intelligence, we define complexity as a property of crucial events, a form of temporal complexity, and we prove that the perfect synchronization is due to the interaction between the two systems, with the more complex system restoring the temporal complexity of the less complex system. The phenomenon of temporal complexity is characterized by ergodicity breaking that has made it difficult in the past to derive the perfect synchronization generated by complexity matching. For this reason, we supplement the main result of this paper with a comparison between complexity matching and complexity management.
Collapse
Affiliation(s)
- Korosh Mahmoodi
- Department of Social and Decision Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Bruce J West
- Office of the Director, Army Research Office, Research Triangle Park, Durham, NC, United States
| | - Paolo Grigolini
- Center for Nonlinear Science, University of North Texas, Denton, TX, United States
| |
Collapse
|
18
|
Dehghani A, Soltanian-Zadeh H, Hossein-Zadeh GA. Global Data-Driven Analysis of Brain Connectivity During Emotion Regulation by Electroencephalography Neurofeedback. Brain Connect 2020; 10:302-315. [PMID: 32458692 DOI: 10.1089/brain.2019.0734] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Emotion regulation by neurofeedback involves interactions among multiple brain regions, including prefrontal cortex and subcortical regions. Previous studies focused on connections of specific brain regions such as amygdala with other brain regions. New method: Electroencephalography (EEG) neurofeedback is used to upregulate positive emotion by retrieving positive autobiographical memories and functional magnetic resonance imaging (fMRI) data acquired simultaneously. A global data-driven approach, group independent component analysis, is applied to the fMRI data and functional network connectivity (FNC) estimated. Results: The proposed approach identified all functional networks engaged in positive autobiographical memories and evaluated effects of neurofeedback. The results revealed two pairs of networks with significantly different functional connectivity among emotion regulation blocks (relative to other blocks of the experiment) and between experimental and control groups (false discovery rate corrected for multiple comparisons, q = 0.05). FNC distribution showed significant connectivity differences between neurofeedback blocks and other blocks, revealing more synchronized brain networks during neurofeedback. Comparison with Existing Methods: Although the results are consistent with those of previous model-based studies, some of the connections found in this study were not found previously. These connections are between (a) occipital and other regions including limbic system/sublobar, prefrontal/frontal cortex, inferior parietal, and middle temporal gyrus and (b) posterior cingulate cortex and hippocampus. Conclusions: This study provided a global insight into brain connectivity for emotion regulation. The brain network interactions may be used to develop connectivity-based neurofeedback methods and alternative therapeutic approaches, which may be more effective than the traditional activity-based neurofeedback methods.
Collapse
Affiliation(s)
- Amin Dehghani
- Department of Biomedical Engineering, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Hamid Soltanian-Zadeh
- Department of Biomedical Engineering, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran.,Department of Neuroimaging, School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.,Department of Radiology and Henry Ford Health System, Detroit, Michigan, USA.,Department of Research Administration, Henry Ford Health System, Detroit, Michigan, USA
| | - Gholam-Ali Hossein-Zadeh
- Department of Biomedical Engineering, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran.,Department of Neuroimaging, School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| |
Collapse
|
19
|
Bismuth J, Vialatte F, Lefaucheur JP. Relieving peripheral neuropathic pain by increasing the power-ratio of low-β over high-β activities in the central cortical region with EEG-based neurofeedback: Study protocol for a controlled pilot trial (SMRPain study). Neurophysiol Clin 2020; 50:5-20. [DOI: 10.1016/j.neucli.2019.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/27/2022] Open
|