1
|
Nayana J, Shankaranarayana Rao BS, Srikumar BN. The interaction between finasteride and corticosterone levels: implications for depression-, and anxiety-like behavior and hippocampal synaptic plasticity in male rats. Psychopharmacology (Berl) 2025:10.1007/s00213-025-06810-1. [PMID: 40377688 DOI: 10.1007/s00213-025-06810-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 05/02/2025] [Indexed: 05/18/2025]
Abstract
RATIONALE Finasteride is FDA-approved for the treatment of hair loss and in older men for benign prostatic hyperplasia. However, some patients treated with finasteride reported suicidal ideation, depression, and anxiety. The neurobiological mechanisms underlying this are not clearly understood. Previously, we showed that short-term finasteride administration results in depression- and anxiety-like behaviour. Since finasteride treatment is long-term in the clinic, we examine the effects of chronic finasteride administration in the current study. OBJECTIVE This study aims to understand the behavioral, cellular, and molecular changes in male rats following 21 days of finasteride (3 mg, 10 mg, and 30 mg/Kg) administration. METHODS Depression-like behavior was evaluated using forced swim (FST), sucrose preference (SPT), and splash tests. Anxiety-like behavior was assessed using elevated plus maze (EPM), open field (OFT), light-dark (LDT), Vogel's conflict (VCT), and home cage emergence (HCET), and depression-related anxiety in novelty-suppressed feeding task (NSFT) tests. Hippocampal synaptic plasticity was assessed by field excitatory post-synaptic potentials (fEPSP) recordings in the Schaffer-collateral-CA1 synapses, and plasma corticosterone levels were estimated using ELISA. RESULTS Chronic finasteride administration induced depression-like and anxiety-like behavior in SPT and EPM, respectively, but not in the other paradigms. There was a modest decrease in long-term potentiation in the hippocampus. Interestingly, there was an increase in the plasma corticosterone levels with 6 days of finasteride administration, but not after 14 or 21 days of administration. CONCLUSIONS Chronic administration of finasteride did not induce a robust depression- and anxiety-like behavior and modestly affected synaptic plasticity. This could be potentially because of the adaptive response observed in the plasma corticosterone levels.
Collapse
Affiliation(s)
- Jose Nayana
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, 560029, India
| | | | - Bettadapura N Srikumar
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, 560029, India.
| |
Collapse
|
2
|
Maroteaux MJ, Noccioli CT, Daniel JM, Schrader LA. Rapid and local neuroestrogen synthesis supports long-term potentiation of hippocampal Schaffer collaterals-cornu ammonis 1 synapse in ovariectomized mice. J Neuroendocrinol 2024; 36:e13450. [PMID: 39351868 DOI: 10.1111/jne.13450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/31/2024] [Accepted: 09/04/2024] [Indexed: 10/03/2024]
Abstract
In aging women, cognitive decline and increased risk of dementia have been associated with the cessation of ovarian hormones production at menopause. In the brain, presence of the key enzyme aromatase required for the synthesis of 17-β-estradiol (E2) allows for local production of E2 in absence of functional ovaries. Understanding how aromatase activity is regulated could help alleviate the cognitive symptoms. In female rodents, genetic or pharmacological reduction of aromatase activity over extended periods of time impair memory formation, decreases spine density, and hinders long-term potentiation (LTP) in the hippocampus. Conversely, increased excitatory neurotransmission resulting in rapid N-methyl-d-aspartic acid (NMDA) receptor activation rapidly promotes neuroestrogen synthesis. This rapid modulation of aromatase activity led us to address the hypothesis that acute neuroestrogens synthesis is necessary for LTP at the Schaffer collateral-cornu ammonis 1 (CA1) synapse in absence of circulating ovarian estrogens. To test this hypothesis, we did electrophysiological recordings of field excitatory postsynaptic potential (fEPSPs) in hippocampal slices obtained from ovariectomized mice. To assess the impact of neuroestrogens synthesis on LTP, we applied the specific aromatase inhibitor, letrozole, before the induction of LTP with a theta burst stimulation protocol. We found that blocking aromatase activity prevented LTP. Interestingly, exogenous E2 application, while blocking aromatase activity, was not sufficient to recover LTP in our model. Our results indicate the critical importance of rapid, activity-dependent local neuroestrogens synthesis, independent of circulating hormones for hippocampal synaptic plasticity in female rodents.
Collapse
Affiliation(s)
- Matthieu J Maroteaux
- Department of Psychology, Tulane University, New Orleans, LA, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
| | - Claire T Noccioli
- Department of Psychology, Tulane University, New Orleans, LA, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
| | - Jill M Daniel
- Department of Psychology, Tulane University, New Orleans, LA, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
| | - Laura A Schrader
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA
| |
Collapse
|
3
|
Nayana J, Shankaranarayana Rao BS, Srikumar BN. Repeated finasteride administration promotes synaptic plasticity and produces antidepressant- and anxiolytic-like effects in female rats. J Neurosci Res 2024; 102:e25306. [PMID: 38468573 DOI: 10.1002/jnr.25306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/04/2023] [Accepted: 01/27/2024] [Indexed: 03/13/2024]
Abstract
Finasteride is used in female-pattern hair loss, hirsutism, and polycystic ovarian syndrome. It inhibits 5α-reductase, which is an important enzyme in the biosynthesis of neurosteroids. The effects of finasteride treatment on mental health in female patients as well as the effects of repeated/chronic finasteride administration in female rodents are still unknown. Accordingly, in our study, we administered finasteride (10, 30, or 100 mg/Kg, s.c.) for 6 days in female rats and evaluated behavior, plasma steroid levels, and synaptic plasticity. Depression-like behavior was evaluated using forced swim test (FST) and splash test. Anxiety-like behavior was evaluated using novelty-suppressed feeding task (NSFT), elevated plus maze (EPM), open field test (OFT), and light-dark test (LDT). Plasma steroid levels were assessed using ELISA and synaptic plasticity by field potential recordings. We observed that finasteride decreased total immobility duration in FST, indicating antidepressant-like effect and decreased the latency to first bite in NSFT, showing anxiolytic-like effect. We also found a significant increase in plasma estradiol and a significant decrease in plasma corticosterone level. Furthermore, field potential recordings showed that finasteride increased hippocampal long-term potentiation. These results indicate that repeated finasteride administration in female rats may have antidepressant- and anxiolytic-like effect, which might be mediated by enhanced estradiol levels or decreased corticosterone levels. Further studies are required to validate the molecular mechanisms underlying the effects of finasteride in female rats. Understanding the mechanisms will help us in developing novel neurosteroid-based therapeutics in the treatment of neuropsychiatric disorders in women.
Collapse
Affiliation(s)
- Jose Nayana
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| | | | - Bettadapura N Srikumar
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| |
Collapse
|
4
|
Rune GM, Joue G, Sommer T. Effects of 24-hour oral estradiol-valerate administration on hormone levels in men and pre-menopausal women. Psychoneuroendocrinology 2023; 156:106320. [PMID: 37307791 DOI: 10.1016/j.psyneuen.2023.106320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/14/2023]
Abstract
In order to translate the findings from the vast animal literature on the effect of 17β-estradiol (E2) on brain and behavior to humans, a placebo-controlled pharmacological enhancement of E2 levels for at least 24 h is necessary. However, an exogenous increase in E2 for such a prolonged period might affect the endogenous secretion of other (neuroactive) hormones. Such effects would be of relevance for the interpretation of the effects of this pharmacological regimen on cognition and its neural correlates as well as be of basic scientific interest. We therefore administered a double dose of 12 mg of estradiol-valerate (E2V) to men and of 8 mg to naturally cycling women in their low-hormone phase, and assessed the concentration of two steroids critical to hormone regulation: follicle stimulating hormone (FSH) and luteinizing hormone (LH). We also assessed any changes in concentration of the neuroactive hormones progesterone (P4), testosterone (TST), dihydrotestosterone (DHT) and immune-like growth factor 1 (IGF-1). This regimen resulted in similar E2 levels in both sexes (saliva and serum). FSH and LH levels in both sexes were down-regulated to the same degree. P4 concentration decreased in both sexes only in serum but not saliva. TST and DHT levels dropped only in men whereas sex-hormone binding globulin was not affected. Finally, the concentration of IGF-1 decreased in both sexes. Based on previous studies on the effects of these neuroactive hormones, only the degree of downregulation of TST and DHT levels in men might have an impact on brain and behavior, which should be considered when interpreting the effects of the presented E2V regimes.
Collapse
Affiliation(s)
- Gabriele M Rune
- Institute of Cell Biology and Neurobiology, Charité Anatomy, Charitéplatz 1, 10117 Berlin, Germany
| | - Gina Joue
- Institute of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20248 Hamburg, Germany
| | - Tobias Sommer
- Institute of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20248 Hamburg, Germany.
| |
Collapse
|
5
|
Androgens and NGF Mediate the Neurite-Outgrowth through Inactivation of RhoA. Cells 2023; 12:cells12030373. [PMID: 36766714 PMCID: PMC9913450 DOI: 10.3390/cells12030373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Steroid hormones and growth factors control neuritogenesis through their cognate receptors under physiological and pathological conditions. We have already shown that nerve growth factor and androgens induce neurite outgrowth of PC12 cells through a reciprocal crosstalk between the NGF receptor, TrkA and the androgen receptor. Here, we report that androgens or NGF induce neuritogenesis in PC12 cells through inactivation of RhoA. Ectopic expression of the dominant negative RhoA N19 promotes, indeed, the neurite-elongation of unchallenged and androgen- or NGF-challenged PC12 cells and the increase in the expression levels of βIII tubulin, a specific neuronal marker. Pharmacological inhibition of the Ser/Thr kinase ROCK, an RhoA effector, induces neuritogenesis in unchallenged PC12 cells, and potentiates the effect of androgens and NGF, confirming the role of RhoA/ROCK axis in the neuritogenesis induced by androgen and NGF, through the phosphorylation of Akt. These findings suggest that therapies based on new selective androgen receptor modulators and/or RhoA/ROCK inhibitors might exert beneficial effects in the treatment of neuro-disorders, neurological diseases and ageing-related processes.
Collapse
|
6
|
Edwards M, Lam S, Ranjan R, Pereira M, Babbitt C, Lacreuse A. Letrozole treatment alters hippocampal gene expression in common marmosets (Callithrix jacchus). Horm Behav 2023; 147:105281. [PMID: 36434852 PMCID: PMC9839488 DOI: 10.1016/j.yhbeh.2022.105281] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 10/28/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022]
Abstract
Aromatase inhibitors (AIs) are a class of drugs commonly given to patients with estrogen receptor (ER)-dependent breast cancers to reduce estrogenic stimulation. However, AIs like Letrozole are associated with negative side effects such as cognitive deficits, sleep disturbances and hot flashes. We have previously shown that these negative effects can be recapitulated in common marmosets (Callithrix jacchus) treated with Letrozole (20 μg daily) for 4 weeks and that marmosets treated with Letrozole show increased levels of estradiol in the hippocampus (Gervais et al., 2019). In order to better understand the mechanisms through which AIs affect cognitive function and increase steroid levels in the hippocampus, we used bulk, paired-end RNA-sequencing to examine differentially expressed genes among Letrozole-treated (LET; n = 8) and vehicle-treated (VEH; n = 8) male and female animals. Gene ontology results show significant reduction across hundreds of categories, some of the most significant being inflammatory response, stress response, MHC Class II protein complex binding, T-cell activation, carbohydrate binding and signaling receptor binding in LET animals. GSEA results indicate that LET females, but not LET males, show enrichment for hormonal gene sets. Based on the transcriptional changes observed, we conclude that AIs may differentially affect the sexes in part due to processes mediated by the CYP-450 superfamily. Ongoing studies will further investigate the longitudinal effects of AIs on behavior and whether AIs increase the risk of stress-induced neurodegeneration.
Collapse
Affiliation(s)
- Mélise Edwards
- University of Massachusetts Amherst, Department of Psychological & Brain Sciences, Amherst, MA 01003, USA; Neuroscience and Behavior Graduate Program, University of Massachusetts, Amherst, MA 01003, USA.
| | - Sam Lam
- University of Massachusetts Amherst, Department of Psychological & Brain Sciences, Amherst, MA 01003, USA
| | - Ravi Ranjan
- University of Massachusetts Amherst, Department of Psychological & Brain Sciences, Amherst, MA 01003, USA; Genomics Resource Laboratory, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Mariana Pereira
- University of Massachusetts Amherst, Department of Psychological & Brain Sciences, Amherst, MA 01003, USA; Neuroscience and Behavior Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Courtney Babbitt
- University of Massachusetts Amherst, Department of Psychological & Brain Sciences, Amherst, MA 01003, USA; University of Massachusetts Amherst, Department of Biology, Amherst, MA 01003, USA
| | - Agnès Lacreuse
- University of Massachusetts Amherst, Department of Psychological & Brain Sciences, Amherst, MA 01003, USA; Neuroscience and Behavior Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
7
|
Hernández-Vivanco A, Cano-Adamuz N, Sánchez-Aguilera A, González-Alonso A, Rodríguez-Fernández A, Azcoitia Í, de la Prida LM, Méndez P. Sex-specific regulation of inhibition and network activity by local aromatase in the mouse hippocampus. Nat Commun 2022; 13:3913. [PMID: 35798748 PMCID: PMC9262915 DOI: 10.1038/s41467-022-31635-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 06/27/2022] [Indexed: 11/15/2022] Open
Abstract
Cognitive function relies on a balanced interplay between excitatory and inhibitory neurons (INs), but the impact of estradiol on IN function is not fully understood. Here, we characterize the regulation of hippocampal INs by aromatase, the enzyme responsible for estradiol synthesis, using a combination of molecular, genetic, functional and behavioral tools. The results show that CA1 parvalbumin-expressing INs (PV-INs) contribute to brain estradiol synthesis. Brain aromatase regulates synaptic inhibition through a mechanism that involves modification of perineuronal nets enwrapping PV-INs. In the female brain, aromatase modulates PV-INs activity, the dynamics of network oscillations and hippocampal-dependent memory. Aromatase regulation of PV-INs and inhibitory synapses is determined by the gonads and independent of sex chromosomes. These results suggest PV-INs are mediators of estrogenic regulation of behaviorally-relevant activity. Using a combination of molecular, genetic, functional and behavioural tools, this study describes the impact of brain synthesized estrogen in inhibitory neuronal function, network oscillations and hippocampal dependent memory.
Collapse
Affiliation(s)
| | | | - Alberto Sánchez-Aguilera
- Instituto Cajal (CSIC), Av Dr. Arce 37, 28002, Madrid, Spain.,Department of Physiology, Faculty of Medicine, Universidad Complutense de Madrid IdISSC, Avda Complutense s/n, 28040, Madrid, Spain
| | | | | | - Íñigo Azcoitia
- Department of Cell Biology, Universidad Complutense de Madrid, C José Antonio Nováis 12, 28040, Madrid, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Pablo Méndez
- Instituto Cajal (CSIC), Av Dr. Arce 37, 28002, Madrid, Spain.
| |
Collapse
|
8
|
Acconcia F, Fiocchetti M, Busonero C, Fernandez VS, Montalesi E, Cipolletti M, Pallottini V, Marino M. The extra-nuclear interactome of the estrogen receptors: implications for physiological functions. Mol Cell Endocrinol 2021; 538:111452. [PMID: 34500041 DOI: 10.1016/j.mce.2021.111452] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/19/2021] [Accepted: 09/02/2021] [Indexed: 02/07/2023]
Abstract
Over the last decades, a great body of evidence has defined a novel view of the cellular mechanism of action of the steroid hormone 17β-estradiol (E2) through its estrogen receptors (i.e., ERα and ERβ). It is now clear that the E2-activated ERs work both as transcription factors and extra-nuclear plasma membrane-localized receptors. The activation of a plethora of signal transduction cascades follows the E2-dependent engagement of plasma membrane-localized ERs and is required for the coordination of gene expression, which ultimately controls the occurrence of the pleiotropic effects of E2. The definition of the molecular mechanisms by which the ERs locate at the cell surface (i.e., palmitoylation and protein association) determined the quest for understanding the specificity of the extra-nuclear E2 signaling. The use of mice models lacking the plasma membrane ERα localization unveiled that the extra-nuclear E2 signaling is operational in vivo but tissue-specific. However, the underlying molecular details for such ERs signaling diversity in the perspective of the E2 physiological functions in the different cellular contexts are still not understood. Therefore, to gain insights into the tissue specificity of the extra-nuclear E2 signaling to physiological functions, here we reviewed the known ERs extra-nuclear interactors and tried to extrapolate from available databases the ERα and ERβ extra-nuclear interactomes. Based on literature data, it is possible to conclude that by specifically binding to extra-nuclear localized proteins in different sub-cellular compartments, the ERs fine-tune their molecular activities. Moreover, we report that the context-dependent diversity of the ERs-mediated extra-nuclear E2 actions can be ascribed to the great flexibility of the physical structures of ERs and the spatial-temporal organization of the logistics of the cells (i.e., the endocytic compartments). Finally, we provide lists of proteins belonging to the potential ERα and ERβ extra-nuclear interactomes and propose that the systematic experimental definition of the ERs extra-nuclear interactomes in different tissues represents the next step for the research in the ERs field. Such characterization will be fundamental for the identification of novel druggable targets for the innovative treatment of ERs-related diseases.
Collapse
Affiliation(s)
- Filippo Acconcia
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy.
| | - Marco Fiocchetti
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Claudia Busonero
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Virginia Solar Fernandez
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Emiliano Montalesi
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Manuela Cipolletti
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Valentina Pallottini
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Maria Marino
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy.
| |
Collapse
|
9
|
Godó S, Barabás K, Lengyel F, Ernszt D, Kovács T, Kecskés M, Varga C, Jánosi TZ, Makkai G, Kovács G, Orsolits B, Fujiwara T, Kusumi A, Ábrahám IM. Single-Molecule Imaging Reveals Rapid Estradiol Action on the Surface Movement of AMPA Receptors in Live Neurons. Front Cell Dev Biol 2021; 9:708715. [PMID: 34631701 PMCID: PMC8495425 DOI: 10.3389/fcell.2021.708715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/07/2021] [Indexed: 01/04/2023] Open
Abstract
Gonadal steroid 17β-estradiol (E2) exerts rapid, non-genomic effects on neurons and strictly regulates learning and memory through altering glutamatergic neurotransmission and synaptic plasticity. However, its non-genomic effects on AMPARs are not well understood. Here, we analyzed the rapid effect of E2 on AMPARs using single-molecule tracking and super-resolution imaging techniques. We found that E2 rapidly decreased the surface movement of AMPAR via membrane G protein-coupled estrogen receptor 1 (GPER1) in neurites in a dose-dependent manner. The cortical actin network played a pivotal role in the GPER1 mediated effects of E2 on the surface mobility of AMPAR. E2 also decreased the surface movement of AMPAR both in synaptic and extrasynaptic regions on neurites and increased the synaptic dwell time of AMPARs. Our results provide evidence for understanding E2 action on neuronal plasticity and glutamatergic neurotransmission at the molecular level.
Collapse
Affiliation(s)
- Soma Godó
- PTE-NAP Molecular Neuroendocrinology Research Group, Centre for Neuroscience, Szentágothai Research Center, Medical School, Institute of Physiology, University of Pécs, Pécs, Hungary
| | - Klaudia Barabás
- PTE-NAP Molecular Neuroendocrinology Research Group, Centre for Neuroscience, Szentágothai Research Center, Medical School, Institute of Physiology, University of Pécs, Pécs, Hungary
| | - Ferenc Lengyel
- PTE-NAP Molecular Neuroendocrinology Research Group, Centre for Neuroscience, Szentágothai Research Center, Medical School, Institute of Physiology, University of Pécs, Pécs, Hungary
| | - Dávid Ernszt
- PTE-NAP Molecular Neuroendocrinology Research Group, Centre for Neuroscience, Szentágothai Research Center, Medical School, Institute of Physiology, University of Pécs, Pécs, Hungary
| | - Tamás Kovács
- PTE-NAP Molecular Neuroendocrinology Research Group, Centre for Neuroscience, Szentágothai Research Center, Medical School, Institute of Physiology, University of Pécs, Pécs, Hungary
| | - Miklós Kecskés
- PTE-NAP Cortical Microcircuits Research Group, Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Institute, Pécs, Hungary
| | - Csaba Varga
- PTE-NAP Cortical Microcircuits Research Group, Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Institute, Pécs, Hungary
| | - Tibor Z Jánosi
- PTE-NAP Molecular Neuroendocrinology Research Group, Centre for Neuroscience, Szentágothai Research Center, Medical School, Institute of Physiology, University of Pécs, Pécs, Hungary
| | - Géza Makkai
- PTE-NAP Molecular Neuroendocrinology Research Group, Centre for Neuroscience, Szentágothai Research Center, Medical School, Institute of Physiology, University of Pécs, Pécs, Hungary
| | - Gergely Kovács
- PTE-NAP Molecular Neuroendocrinology Research Group, Centre for Neuroscience, Szentágothai Research Center, Medical School, Institute of Physiology, University of Pécs, Pécs, Hungary
| | - Barbara Orsolits
- Laboratory of Neuroimmunology, Institute of Experimental Medicine of the Hungarian Academy of Sciences, Budapest, Hungary
| | - Takahiro Fujiwara
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, Japan
| | - Akihiro Kusumi
- Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna, Japan
| | - István M Ábrahám
- PTE-NAP Molecular Neuroendocrinology Research Group, Centre for Neuroscience, Szentágothai Research Center, Medical School, Institute of Physiology, University of Pécs, Pécs, Hungary
| |
Collapse
|
10
|
Ahmed MM, Block A, Busquet N, Gardiner KJ. Context Fear Conditioning in Down Syndrome Mouse Models: Effects of Trisomic Gene Content, Age, Sex and Genetic Background. Genes (Basel) 2021; 12:genes12101528. [PMID: 34680922 PMCID: PMC8535510 DOI: 10.3390/genes12101528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/26/2021] [Accepted: 09/26/2021] [Indexed: 01/20/2023] Open
Abstract
Down syndrome (DS), trisomy of the long arm of human chromosome 21 (Hsa21), is the most common genetic cause of intellectual disability (ID). Currently, there are no effective pharmacotherapies. The success of clinical trials to improve cognition depends in part on the design of preclinical evaluations in mouse models. To broaden understanding of the common limitations of experiments in learning and memory, we report performance in context fear conditioning (CFC) in three mouse models of DS, the Dp(16)1Yey, Dp(17)1Yey and Dp(10)1Yey (abbreviated Dp16, Dp17 and Dp10), separately trisomic for the human Hsa21 orthologs mapping to mouse chromosomes 16, 17 and 10, respectively. We examined female and male mice of the three lines on the standard C57BL/6J background at 3 months of age and Dp17 and Dp10 at 18 months of age. We also examined female and male mice of Dp17 and Dp10 at 3 months of age as F1 hybrids obtained from a cross with the DBA/2J background. Results indicate that genotype, sex, age and genetic background affect CFC performance. These data support the need to use both female and male mice, trisomy of sets of all Hsa21 orthologs, and additional ages and genetic backgrounds to improve the reliability of preclinical evaluations of drugs for ID in DS.
Collapse
Affiliation(s)
- Md. Mahiuddin Ahmed
- Department of Neurology, Linda Crnic Institute for Down Syndrome, University of Colorado Alzheimer’s and Cognition Center, Aurora, CO 80045, USA;
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Aaron Block
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Nicolas Busquet
- Department of Neurology, Animal Behavior and In Vivo Neurophysiology Core, NeuroTechnology Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Katheleen J. Gardiner
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
- Correspondence:
| |
Collapse
|
11
|
Astrocyte-Derived Thrombospondin Induces Cortical Synaptogenesis in a Sex-Specific Manner. eNeuro 2021; 8:ENEURO.0014-21.2021. [PMID: 34266964 PMCID: PMC8328272 DOI: 10.1523/eneuro.0014-21.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/22/2021] [Accepted: 07/03/2021] [Indexed: 12/29/2022] Open
Abstract
The regulation of synaptic connectivity in the brain is vital to proper functioning and development of the CNS. Formation of neural networks in the CNS has been shown to be heavily influenced by astrocytes, which secrete factors, including thrombospondin (TSP) family proteins, that promote synaptogenesis. However, whether this process is different between males and females has not been thoroughly investigated. In this study, we found that cortical neurons purified from newborn male rats showed a significantly more robust synaptogenic response compared with female-derived cells when exposed to factors secreted from astrocytes. This difference was driven largely by the neuronal response to TSP2, which increased synapses in male neurons while showing no effect on female neurons. Blockade of endogenous 17β-estradiol (E2) production with letrozole normalized the TSP response between male and female cells, indicating a level of regulation by estrogen signaling. Our results suggest that male and female neurons show a divergent response to TSP synaptogenic signaling, contributing to sex differences in astrocyte-mediated synaptic connectivity.
Collapse
|
12
|
Pavlidi P, Kokras N, Dalla C. Antidepressants' effects on testosterone and estrogens: What do we know? Eur J Pharmacol 2021; 899:173998. [PMID: 33676942 DOI: 10.1016/j.ejphar.2021.173998] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/22/2021] [Accepted: 03/01/2021] [Indexed: 02/07/2023]
Abstract
Various antidepressants are commonly used to treat depression and anxiety disorders, and sex differences have been identified in their efficacy and side effects. Steroids, such as estrogens and testosterone, both in the periphery and locally in the brain, are regarded as important modulators of these sex differences. This review presents published data from preclinical and clinical studies that measure testosterone and estrogen level changes during and/or after acute or chronic administration of different antidepressants. The majority of studies show an interaction between sex hormones and antidepressants on sexual function and behavior, or in depressive symptom alleviation. However, most of the studies omit to investigate antidepressants' effects on circulating levels of gonadal hormones. From data reviewed herein, it is evident that most antidepressants can influence testosterone and estrogen levels. Still, the evidence is conflicting with some studies showing an increase, others decrease or no effect. Most studies are conducted in male animals or humans, underscoring the importance of considering sex as an important variable in such investigations, especially as depression and anxiety disorders are more common in women than men. Therefore, research is needed to elucidate the extent to which antidepressants can influence both peripheral and brain levels of testosterone and estrogens, in males and females, and whether this impacts the effectiveness or side effects of antidepressants.
Collapse
Affiliation(s)
- Pavlina Pavlidi
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Kokras
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece; First Department of Psychiatry, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Dalla
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
13
|
Taxier LR, Gross KS, Frick KM. Oestradiol as a neuromodulator of learning and memory. Nat Rev Neurosci 2020; 21:535-550. [PMID: 32879508 PMCID: PMC8302223 DOI: 10.1038/s41583-020-0362-7] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2020] [Indexed: 12/24/2022]
Abstract
Although hormones such as glucocorticoids have been broadly accepted in recent decades as general neuromodulators of memory processes, sex steroid hormones such as the potent oestrogen 17β-oestradiol have been less well recognized by the scientific community in this capacity. The predominance of females in studies of oestradiol and memory and the general (but erroneous) perception that oestrogens are 'female' hormones have probably prevented oestradiol from being more widely considered as a key memory modulator in both sexes. Indeed, although considerable evidence supports a crucial role for oestradiol in regulating learning and memory in females, a growing body of literature indicates a similar role in males. This Review discusses the mechanisms of oestradiol signalling and provides an overview of the effects of oestradiol on spatial, object recognition, social and fear memories. Although the primary focus is on data collected in females, effects of oestradiol on memory in males will be discussed, as will sex differences in the molecular mechanisms that regulate oestrogenic modulation of memory, which may have important implications for the development of future cognitive therapeutics.
Collapse
Affiliation(s)
- Lisa R Taxier
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Kellie S Gross
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA.
| |
Collapse
|
14
|
Brandt N, Löffler T, Fester L, Rune GM. Sex-specific features of spine densities in the hippocampus. Sci Rep 2020; 10:11405. [PMID: 32647191 PMCID: PMC7347548 DOI: 10.1038/s41598-020-68371-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 06/18/2020] [Indexed: 01/27/2023] Open
Abstract
Previously, we found that in dissociated hippocampal cultures the proportion of large spines (head diameter ≥ 0.6 μm) was larger in cultures from female than from male animals. In order to rule out that this result is an in vitro phenomenon, we analyzed the density of large spines in fixed hippocampal vibratome sections of Thy1-GFP mice, in which GFP is expressed only in subpopulations of neurons. We compared spine numbers of the four estrus cycle stages in females with those of male mice. Remarkably, total spine numbers did not vary during the estrus cycle, while estrus cyclicity was evident regarding the number of large spines and was highest during diestrus, when estradiol levels start to rise. The average total spine number in females was identical with the spine number in male animals. The density of large spines, however, was significantly lower in male than in female animals in each stage of the estrus cycle. Interestingly, the number of spine apparatuses, a typical feature of large spines, did not differ between the sexes. Accordingly, NMDA-R1 and NMDA-R2A/B expression were lower in the hippocampus and in postsynaptic density fractions of adult male animals than in those of female animals. This difference could already be observed at birth for NMDA-R1, but not for NMDA-R2A/B expression. In dissociated embryonic hippocampal cultures, no difference was seen after 21 days in culture, while the difference was evident in postnatal cultures. Our data indicate that hippocampal neurons are differentiated in a sex-dependent manner, this differentiation being likely to develop during the perinatal period.
Collapse
Affiliation(s)
- Nicola Brandt
- Institute of Neuroanatomy, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.,Department of Human Medicine, Division of Anatomy, School of Medicine and Health Sciences, Carl Von Ossietzky University Oldenburg, Carl-von-Ossietzky Str. 9-11, 26129, Oldenburg, Germany
| | - Tobias Löffler
- Institute of Neuroanatomy, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Lars Fester
- Institute of Neuroanatomy, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.,Institute of Anatomy and Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Krankenhausstr. 9, 91054, Erlangen, Germany
| | - Gabriele M Rune
- Institute of Neuroanatomy, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| |
Collapse
|
15
|
Pawluski JL, Kokras N, Charlier TD, Dalla C. Sex matters in neuroscience and neuropsychopharmacology. Eur J Neurosci 2020; 52:2423-2428. [PMID: 32578303 DOI: 10.1111/ejn.14880] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/12/2020] [Accepted: 06/17/2020] [Indexed: 12/20/2022]
Abstract
Prevalence and symptoms of most psychiatric and neurological disorders differ in men and women and there is substantial evidence that their neurobiological basis and treatment also differ by sex. This special issue sought to bring together a series of empirical papers and targeted reviews to highlight the diverse impact of sex in neuroscience and neuropsychopharmacology. This special issue emphasizes the diverse impact of sex in neuroscience and neuropsychopharmacology, including 9 review papers and 17 research articles highlighting investigation in different species (zebrafish, mice, rats, and humans). Each contribution covers scientific topics that overlap with genetics, endocrinology, cognition, behavioral neuroscience, neurology, and pharmacology. Investigating the extent to which sex differences can impact the brain and behavior is key to moving forward in neuroscience research.
Collapse
Affiliation(s)
- Jodi L Pawluski
- Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), Univ Rennes, Rennes, France
| | - Nikolaos Kokras
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,First Department of Psychiatry, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Thierry D Charlier
- Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), Univ Rennes, Rennes, France
| | - Christina Dalla
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
16
|
Haumann I, Sturm MA, Anstötz M, Rune GM. GPER1 Signaling Initiates Migration of Female V-SVZ-Derived Cells. iScience 2020; 23:101077. [PMID: 32361597 PMCID: PMC7200306 DOI: 10.1016/j.isci.2020.101077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/01/2019] [Accepted: 04/14/2020] [Indexed: 12/30/2022] Open
Abstract
In the rodent ventricular-subventricular zone (V-SVZ) neurons are generated throughout life. They migrate along the rostral migratory stream (RMS) into the olfactory bulb before their final differentiation into interneurons and integration into local circuits. Estrogen receptors (ERs) are steroid hormone receptors with important functions in neurogenesis and synaptic plasticity. In this study, we show that the ER GPER1 is expressed in subsets of cells within the V-SVZ of female animals and provide evidence for a potential local estrogen source from aromatase-positive astrocytes surrounding the RMS. Blocking of GPER1 in Matrigel cultures of female animals significantly impairs migration of V-SVZ-derived cells. This outgrowth is accompanied by regulation of phosphorylation of the actin-binding protein cofilin by GPER1 signaling including an involvement of the p21-Ras pathway. Our results point to a prominent role of GPER1 in the initiation of neuronal migration from the V-SVZ to the olfactory bulb. GPER1 is expressed within all cell types of the stem cell lineage in the V-SVZ Blocking of GPER1 leads to a decrease in migration of V-SVZ-derived neuroblasts GPER1 signaling in V-SVZ Matrigel cultures involves Ras-induced p21 Blocking of GPER1 signaling leads to an increase in the ratio of p-cofilin/cofilin
Collapse
Affiliation(s)
- Iris Haumann
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| | - Muriel Anne Sturm
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Max Anstötz
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Gabriele M Rune
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| |
Collapse
|
17
|
Proteomic Analysis of Brain Region and Sex-Specific Synaptic Protein Expression in the Adult Mouse Brain. Cells 2020; 9:cells9020313. [PMID: 32012899 PMCID: PMC7072627 DOI: 10.3390/cells9020313] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 12/19/2022] Open
Abstract
Genetic disruption of synaptic proteins results in a whole variety of human neuropsychiatric disorders including intellectual disability, schizophrenia or autism spectrum disorder (ASD). In a wide range of these so-called synaptopathies a sex bias in prevalence and clinical course has been reported. Using an unbiased proteomic approach, we analyzed the proteome at the interaction site of the pre- and postsynaptic compartment, in the prefrontal cortex, hippocampus, striatum and cerebellum of male and female adult C57BL/6J mice. We were able to reveal a specific repertoire of synaptic proteins in different brain areas as it has been implied before. Additionally, we found a region-specific set of novel synaptic proteins differentially expressed between male and female individuals including the strong ASD candidates DDX3X, KMT2C, MYH10 and SET. Being the first comprehensive analysis of brain region-specific synaptic proteomes from male and female mice, our study provides crucial information on sex-specific differences in the molecular anatomy of the synapse. Our efforts should serve as a neurobiological framework to better understand the influence of sex on synapse biology in both health and disease.
Collapse
|
18
|
Azcoitia I, Barreto GE, Garcia-Segura LM. Molecular mechanisms and cellular events involved in the neuroprotective actions of estradiol. Analysis of sex differences. Front Neuroendocrinol 2019; 55:100787. [PMID: 31513774 DOI: 10.1016/j.yfrne.2019.100787] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/27/2019] [Accepted: 09/07/2019] [Indexed: 12/12/2022]
Abstract
Estradiol, either from peripheral or central origin, activates multiple molecular neuroprotective and neuroreparative responses that, being mediated by estrogen receptors or by estrogen receptor independent mechanisms, are initiated at the membrane, the cytoplasm or the cell nucleus of neural cells. Estrogen-dependent signaling regulates a variety of cellular events, such as intracellular Ca2+ levels, mitochondrial respiratory capacity, ATP production, mitochondrial membrane potential, autophagy and apoptosis. In turn, these molecular and cellular actions of estradiol are integrated by neurons and non-neuronal cells to generate different tissue protective responses, decreasing blood-brain barrier permeability, oxidative stress, neuroinflammation and excitotoxicity and promoting synaptic plasticity, axonal growth, neurogenesis, remyelination and neuroregeneration. Recent findings indicate that the neuroprotective and neuroreparative actions of estradiol are different in males and females and further research is necessary to fully elucidate the causes for this sex difference.
Collapse
Affiliation(s)
- Iñigo Azcoitia
- Department of Cell Biology, Faculty of Biology, Universidad Complutense de Madrid, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludables (CIBERFES), Instituto de Salud Carlos III, Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain.
| | - George E Barreto
- Department of Biological Sciences, School of Natural Sciences, University of Limerick, Limerick, Ireland.
| | - Luis M Garcia-Segura
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludables (CIBERFES), Instituto de Salud Carlos III, Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain; Instituto Cajal, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain.
| |
Collapse
|