1
|
Al-Jehani HM, Mousa AH, Alhamid MA, Al-Mufti F. Role of microRNA in the risk stratification of ischemic strokes. Front Neurol 2025; 16:1499493. [PMID: 40012999 PMCID: PMC11860075 DOI: 10.3389/fneur.2025.1499493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/29/2025] [Indexed: 02/28/2025] Open
Abstract
Background Ischemic stroke is a major cause of death and morbidity, and risk classification is essential for predicting therapeutic outcomes. MicroRNAs may be useful indicators for risk stratification, as they control gene expression and influence physiological and pathological processes. Methodology A systematic strategy was developed to search relevant material using databases like PubMed, Scopus, and Web of Science. Selection criteria included human research, a certain date, or categories of studies. Data extraction, synthesis, and analysis were carried out to find trends, similarities, and differences among the chosen studies. The study's design, sample size, methodology, statistical analysis, and any potential biases or restrictions from the selected reference papers were also taken into account. Results and findings MicroRNA is an important biomarker for risk stratification in Ischemic Strokes. It can be used to identify Stroke-Specific microRNA Signatures, identify diagnostic and prognostic values, and regulate Vascular Inflammation, Endothelial Dysfunction, and Thrombus Formation and Resolution. It also has potential therapeutic applications. Conclusion MicroRNAs have emerged as promising biomarkers for predicting stroke risk, severity of strokes, and clinical outcomes. They can be used to predict the severity of a stroke and aid clinicians in making treatment decisions.
Collapse
Affiliation(s)
- Hosam M. Al-Jehani
- Department of Neurosurgery and Interventional Neuroradiology and Critical Care Medicine, Imam Abdulrahman Bin Faisal University, Al Khobar, Saudi Arabia
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
- Department of Neurosurgery, Houston Methodist Hospital, Weill Cornell University, Houston, TX, United States
- Department of Neurosurgery and Interventional Neuroradiology, King Fahd Hospital Specialist Hospital, Dammam, Saudi Arabia
| | - Ahmed Hafez Mousa
- Department of Neurosurgery and Interventional Neuroradiology, King Fahd Hospital Specialist Hospital, Dammam, Saudi Arabia
- Neurosciences, Dubai Health, Dubai, United Arab Emirates
- Department of Neurosurgery, Graduate Medical Education, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Department of Neurosurgery and Interventional Neuroradiology, Imam Abdulrahman Bin Faisal University, Al Khobar, Saudi Arabia
| | - May Adel Alhamid
- Department of Neurology and Interventional Neuroradiology, King Fahad Hospital of the University, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Fawaz Al-Mufti
- Department of Neurology and Neurosurgery, Westchester Medical Center at New York Medical College, Valhalla, NY, United States
| |
Collapse
|
2
|
Al-Ward H, Chen W, Gao W, Zhang C, Yang X, Xiong Y, Wang X, Agila R, Xu H, Sun YE. Can miRNAs in MSCs-EVs Offer a Potential Treatment for Hypoxic-ischemic Encephalopathy? Stem Cell Rev Rep 2025; 21:236-253. [PMID: 39503828 DOI: 10.1007/s12015-024-10803-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 01/26/2025]
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is a critical condition resulting from impaired oxygen and blood flow to the brain during birth, leading to neuroinflammation, neuronal apoptosis, and long-term neurological deficits. Despite the use of therapeutic hypothermia, current treatments remain inadequate in fully preventing brain damage. Recent advances in mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) offer a novel, cell-free therapeutic approach, as these EVs can cross the blood-brain barrier (BBB) and deliver functional microRNAs (miRNAs) to modulate key pathways involved in inflammation and neuroprotection. This review examines how specific miRNAs encapsulated in MSC-EVs-including miR-21, miR-124, miR-146, and the miR-17-92 cluster-target the complex inflammatory responses that drive HIE pathology. By modulating pathways such as NF-κB, STAT3, and PI3K/Akt, these miRNAs influence neuroinflammatory processes, reduce neuronal apoptosis, and promote tissue repair. The aim is to assess the therapeutic potential of miRNA-loaded MSC-EVs in mitigating inflammation and neuronal damage, thus addressing the limitations of current therapies like therapeutic hypothermia.
Collapse
Affiliation(s)
- Hisham Al-Ward
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wei Chen
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenxia Gao
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chunxue Zhang
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xueyan Yang
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yao Xiong
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xinyi Wang
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Rafeq Agila
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Hui Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Jiamusi University, Jiamusi, China.
| | - Yi Eve Sun
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
3
|
Yadav SK, Dhuri K, Gamiotea-Turro D, Cormier MK, Patel V, Yadawa AK, Pathuri M, Bahal R, Verma R. Exploring the therapeutic potential of sγPNA-141: Pharmacodynamics and mechanistic insights during ischemic stroke recovery. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102355. [PMID: 39507400 PMCID: PMC11539414 DOI: 10.1016/j.omtn.2024.102355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 10/02/2024] [Indexed: 11/08/2024]
Abstract
MicroRNA-141-3p plays a detrimental role in the pathology of ischemic stroke, presenting a new target for stroke treatment. This study introduces and validates a novel class of peptide nucleic acid (PNA)-based miR-141-3p inhibitors known as serine gamma PNA-141 (sγPNA-141) for ischemic stroke treatment. After synthesis, physicochemical characterization, and nanoparticle encapsulation of sγPNA-141, we compared its safety and efficacy with traditional phosphorothioate- and regular PNA-based anti-miR-141-3p (PNA-141) in vitro, followed by detailed in vivo and ex vivo efficacy testing of sγPNA-141 for treating ischemic stroke using a mouse model. sγPNA-141 demonstrated higher affinity and specificity toward miR-141-3p, and when applied post-stroke, demonstrated decreased brain damage, enhanced neuroprotective proteins, reduced tissue atrophy, swift improvement in functional deficits, and improvement in learning and memory during long-term recovery. Overall, our data show sγPNA-141 has neuroprotective and neuro-rehabilitative effects during stroke recovery. Furthermore, we demonstrated sγPNA-141's effects are mediated by the TGF-β-SMAD2/3 pathway. In summary, the present findings suggest that sγPNA-141 could be a potentially novel and effective therapeutic modality for the treatment of ischemic stroke.
Collapse
Affiliation(s)
| | - Karishma Dhuri
- School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | | | | | - Vraj Patel
- Department of Neuroscience, UConn Health, Farmington, CT 06032, USA
| | | | - Mounika Pathuri
- School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | - Raman Bahal
- School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | - Rajkumar Verma
- Department of Neuroscience, UConn Health, Farmington, CT 06032, USA
| |
Collapse
|
4
|
Tao Z, Li P, Zhao X. Progress on the Mechanisms and Neuroprotective Benefits of Dexmedetomidine in Brain Diseases. Brain Behav 2024; 14:e70116. [PMID: 39482839 PMCID: PMC11527817 DOI: 10.1002/brb3.70116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/27/2024] [Accepted: 10/08/2024] [Indexed: 11/03/2024] Open
Abstract
INTRODUCTION Dexmedetomidine, a highly specific α2 agonist, has been extensively utilized in clinical sedation and surgical anesthesia since its introduction in 2000 due to its excellent sympatholytic, sedative, and analgesic effects. This review aimed to identify new approaches for the treatment of patients with brain disorders by thoroughly describing the mechanism of action of dexmedetomidine and examining its neuroprotective effects from the standpoints of basic and clinical research. METHODS The PubMed and Web of Science databases were searched using the keywords dexmedetomidine and related brain diseases, although relevant articles from the last decade were included for detailed summarization and analysis. RESULTS Dexmedetomidine has shown strong neuroprotective effects, such as protection of the blood-brain barrier, decreased neuronal death, maintained hemodynamic stability, and reduced postoperative agitation and cognitive dysfunction. Furthermore, dexmedetomidine has been shown to exert various neuroprotective effects, including anti-inflammatory and antioxidative stress effects, modulation of autophagy, and reduction of apoptosis in cerebral diseases. CONCLUSIONS Dexmedetomidine acts as a neuroprotective agent against brain diseases during all phases of treatment. However, clinical trials with larger sample sizes are required to optimize dosage and dosing strategies.
Collapse
Affiliation(s)
- Zhenxing Tao
- Wuxi Medical SchoolJiangnan UniversityWuxiChina
- Department of NeurosurgeryJiangnan University Medical CenterWuxiChina
| | - Pengpeng Li
- Wuxi Medical SchoolJiangnan UniversityWuxiChina
- Department of NeurosurgeryJiangnan University Medical CenterWuxiChina
| | - Xudong Zhao
- Department of NeurosurgeryJiangnan University Medical CenterWuxiChina
- Wuxi Neurosurgical InstituteWuxiChina
| |
Collapse
|
5
|
Rout M, Vaughan A, Sidorov EV, Sanghera DK. Improving Stroke Outcome Prediction Using Molecular and Machine Learning Approaches in Large Vessel Occlusion. J Clin Med 2024; 13:5917. [PMID: 39407977 PMCID: PMC11477941 DOI: 10.3390/jcm13195917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Introduction: Predicting stroke outcomes in acute ischemic stroke (AIS) can be challenging, especially for patients with large vessel occlusion (LVO). Available tools such as infarct volume and the National Institute of Health Stroke Scale (NIHSS) have shown limited accuracy in predicting outcomes for this specific patient population. The present study aimed to confirm whether sudden metabolic changes due to blood-brain barrier (BBB) disruption during LVO reflect differences in circulating metabolites and RNA between small and large core strokes. The second objective was to evaluate whether integrating molecular markers with existing neurological and imaging tools can enhance outcome predictions in LVO strokes. Methods: The infarction volume in patients was measured using magnetic resonance diffusion-weighted images, and the 90-day stroke outcome was defined by a modified Rankin Scale (mRS). Differential expression patterns of miRNAs were identified by RNA sequencing of serum-driven exosomes. Nuclear magnetic resonance (NMR) spectroscopy was used to identify metabolites associated with AIS with small and large infarctions. Results: We identified 41 miRNAs and 11 metabolites to be significantly associated with infarct volume in a multivariate regression analysis after adjusting for the confounders. Eight miRNAs and ketone bodies correlated significantly with infarct volume, NIHSS (severity), and mRS (outcome). Through integrative analysis of clinical, radiological, and omics data using machine learning, our study identified 11 top features for predicting stroke outcomes with an accuracy of 0.81 and AUC of 0.91. Conclusions: Our study provides a future framework for advancing stroke therapeutics by incorporating molecular markers into the existing neurological and imaging tools to improve predictive efficacy and enhance patient outcomes.
Collapse
Affiliation(s)
- Madhusmita Rout
- Department of Pediatrics, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - April Vaughan
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Evgeny V. Sidorov
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Dharambir K. Sanghera
- Department of Pediatrics, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
6
|
Tsai YC, Chang CH, Chong YB, Wu CH, Tsai HP, Cheng TL, Lin CL. MicroRNA-195-5p Inhibits Intracerebral Hemorrhage-Induced Inflammatory Response and Neuron Cell Apoptosis. Int J Mol Sci 2024; 25:10321. [PMID: 39408651 PMCID: PMC11476780 DOI: 10.3390/ijms251910321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Intracerebral hemorrhage (ICH) is a severe condition characterized by bleeding within brain tissue. Primary brain injury in ICH results from a mechanical insult caused by blood accumulation, whereas secondary injury involves inflammation, oxidative stress, and disruption of brain physiology. miR-195-5p may participate in ICH pathology by regulating cell proliferation, oxidative stress, and inflammation. Therefore, we assessed the performance of miR-195-5p in alleviating ICH-induced secondary brain injury. ICH was established in male Sprague-Dawley rats (7 weeks old, 200-250 g) via the stereotaxic intrastriatal injection of type IV bacterial collagenase, after which miR-195-5p was administered intravenously. Neurological function was assessed using corner turn and forelimb grip strength tests. Protein expression was assessed by western blotting and ELISA. The miR-195-5p treatment significantly improved neurological function; modulated macrophage polarization by promoting anti-inflammatory marker (CD206 and Arg1) production and inhibiting pro-inflammatory marker (CD68 and iNOS) production; enhanced Akt signalling, reduced oxidative stress by increasing Sirt1 and Nrf2 levels, and attenuated inflammation by decreasing NF-κB activation; inhibited apoptosis via increased Bcl-2 and decreased cleaved caspase-3 levels; and regulated synaptic plasticity by modulating NMDAR2A, NMDAR2B, BDNF, and TrkB expression and ERK and CREB phosphorylation. In conclusion, miR-195-5p exerts neuroprotective effects in ICH by reducing inflammation and oxidative stress, inhibiting apoptosis, and restoring synaptic plasticity, ultimately restoring behavioral recovery, and represents a promising therapeutic agent that warrants clinical studies.
Collapse
Affiliation(s)
- Yi-Cheng Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.T.); (C.-H.C.); (Y.B.C.); (T.-L.C.)
| | - Chih-Hui Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.T.); (C.-H.C.); (Y.B.C.); (T.-L.C.)
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-H.W.); (H.-P.T.)
| | - Yoon Bin Chong
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.T.); (C.-H.C.); (Y.B.C.); (T.-L.C.)
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-H.W.); (H.-P.T.)
| | - Chieh-Hsin Wu
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-H.W.); (H.-P.T.)
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hung-Pei Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-H.W.); (H.-P.T.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Tian-Lu Cheng
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.T.); (C.-H.C.); (Y.B.C.); (T.-L.C.)
- Department of Biochemistry, School of Post Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chih-Lung Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.T.); (C.-H.C.); (Y.B.C.); (T.-L.C.)
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-H.W.); (H.-P.T.)
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
7
|
Ma H, Zhu L. Exploring the role of traditional Chinese medicine rehabilitation in stroke based on microRNA-mediated pyroptosis: A review. Medicine (Baltimore) 2024; 103:e39685. [PMID: 39312329 PMCID: PMC11419531 DOI: 10.1097/md.0000000000039685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/23/2024] [Indexed: 09/25/2024] Open
Abstract
Stroke, also known as "cerebrovascular accident," is a disease caused by acute impairment of brain circulation, which has a high rate of disability and mortality. Ischemic stroke (IS) is the most common type of stroke and a major cause of death and disability worldwide. At present, there are still many limitations in the treatment of IS, so it may be urgent to explore more treatments for IS. In recent years, the clinical application of traditional Chinese medicine rehabilitation methods such as traditional Chinese medicine, acupuncture, massage, traditional exercises and modern rehabilitation technology has achieved good results in the treatment of IS. Concurrently, studies have identified microRNA (miRNA), which are intimately associated with traditional Chinese medicine rehabilitation, as regulators of pyroptosis through their influence on microglia activity, inflammatory response, oxidative stress, angiogenesis and other factors, but at present, the mechanism of this direction has not been systematically summarized. Consequently, this article delineates in detail the specific role of miRNA in IS and the related activation pathways of pyroptosis in IS. This article presents a detailed discussion of the role of microRNA-mediated pyroptosis in IS, with a particular focus on the signaling pathways involved. The aim is to provide new insights for the research of traditional Chinese medicine (TCM) rehabilitation in the prevention and treatment of IS. In addition, the article explores the potential of TCM rehabilitation in regulating miRNA-mediated pyroptosis to intervene in IS.
Collapse
Affiliation(s)
- Hanwen Ma
- Graduate School, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Luwen Zhu
- Rehabilitation Center, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
8
|
Song J, Zhou D, Cui L, Wu C, Jia L, Wang M, Li J, Ya J, Ji X, Meng R. Advancing stroke therapy: innovative approaches with stem cell-derived extracellular vesicles. Cell Commun Signal 2024; 22:369. [PMID: 39039539 PMCID: PMC11265156 DOI: 10.1186/s12964-024-01752-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024] Open
Abstract
Stroke is a leading cause of mortality and long-term disability globally, with acute ischemic stroke (AIS) being the most common subtype. Despite significant advances in reperfusion therapies, their limited time window and associated risks underscore the necessity for novel treatment strategies. Stem cell-derived extracellular vesicles (EVs) have emerged as a promising therapeutic approach due to their ability to modulate the post-stroke microenvironment and facilitate neuroprotection and neurorestoration. This review synthesizes current research on the therapeutic potential of stem cell-derived EVs in AIS, focusing on their origin, biogenesis, mechanisms of action, and strategies for enhancing their targeting capacity and therapeutic efficacy. Additionally, we explore innovative combination therapies and discuss both the challenges and prospects of EV-based treatments. Our findings reveal that stem cell-derived EVs exhibit diverse therapeutic effects in AIS, such as promoting neuronal survival, diminishing neuroinflammation, protecting the blood-brain barrier, and enhancing angiogenesis and neurogenesis. Various strategies, including targeting modifications and cargo modifications, have been developed to improve the efficacy of EVs. Combining EVs with other treatments, such as reperfusion therapy, stem cell transplantation, nanomedicine, and gut microbiome modulation, holds great promise for improving stroke outcomes. However, challenges such as the heterogeneity of EVs and the need for standardized protocols for EV production and quality control remain to be addressed. Stem cell-derived EVs represent a novel therapeutic avenue for AIS, offering the potential to address the limitations of current treatments. Further research is needed to optimize EV-based therapies and translate their benefits to clinical practice, with an emphasis on ensuring safety, overcoming regulatory hurdles, and enhancing the specificity and efficacy of EV delivery to target tissues.
Collapse
Affiliation(s)
- Jiahao Song
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100053, China
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Da Zhou
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100053, China.
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Lili Cui
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100053, China
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Chuanjie Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100053, China
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Lina Jia
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100053, China
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Mengqi Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100053, China
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Jingrun Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100053, China
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Jingyuan Ya
- Academic Unit of Mental Health and Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, England
| | - Xunming Ji
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100053, China
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Ran Meng
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100053, China.
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
9
|
Jiang W, Wu Y, Pang A, Li P, Mei S. M1-type microglia-derived exosomes contribute to blood-brain barrier damage. Brain Res 2024; 1835:148919. [PMID: 38588846 DOI: 10.1016/j.brainres.2024.148919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND As a key substance for intercellular communication, exosomes could be a potential strategy for stroke treatment. Activated microglia disrupt the integrity of blood-brain barrier (BBB) to facilitate the stroke process. Hence, this study was designed to investigate the effect of microglia-derived exosomes on BBB cell model injury and to explore the underlying molecular mechanisms. METHODS M1 polarization of BV2 cells was induced with LPS and their derived exosomes were isolated. Astrocytes were cultured in primary culture and constructed with End3 cells as a BBB cell model. After co-culture with exosomes, the BBB cell model was examined for changes in TEER, permeability, and expression of BBB-related proteins (Claudin-1, Occludin, ZO-1 and JAM). Resting and M1-type BV2 cell-derived exosomes perform small RNA sequences and differentially expressed miRNAs (DE-miRNAs) are identified by bioinformatics. RESULTS M1-type BV2 cell-derived exosomes decreased End3 cell viability, and increased their apoptotic ratio. Moreover, M1 type BV2 cell-derived exosomes dramatically enhanced the permeability of BBB cell model, and diminished the TEER and BBB-related protein (Claudin-1, Occludin, ZO-1) expression. Notably, resting BV2 cell-derived exosomes had no effect on the integrity of BBB cell model. Sequencing results indicated that 71 DE-miRNAs were present in M1 BV2 cell-derived exosomes, and their targets mediated neurological development and signaling pathways such as MAPK and cAMP. RT-qPCR confirmed the differential expression of mmu-miR-125a-5p, mmu-miR-122b-3p, mmu-miR-139-3p, mmu-miR-330-3p, mmu-miR-3057-5p and mmu-miR-342-3p consistent with the small RNA sequence. Furthermore, Creb1, Jun, Mtor, Frk, Pabpc1 and Sdc1 are the most well-connected proteins in the PPI network. CONCLUSION M1-type microglia-derived exosomes contribute to the injury of BBB cell model, which has the involvement of miRNAs. Our findings provide new perspectives and potential mechanisms for future M1 microglia-derived exosomes as therapeutic targets in stroke.
Collapse
Affiliation(s)
- Wen Jiang
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, No.295 Xichang Road, Kunming 650032, Yunnan, China; The Yunnan Province Clinical Research Center for Neurological Diseases, No.295 Xichang Road, Kunming 650032, Yunnan, China
| | - Yan Wu
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, No.295 Xichang Road, Kunming 650032, Yunnan, China
| | - Ailan Pang
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, No.295 Xichang Road, Kunming 650032, Yunnan, China
| | - Peiyao Li
- Department of Pain Medicine, the First Affiliated Hospital of Kunming Medical University, No.295 Xichang Road, Kunming 650032, Yunnan, China
| | - Song Mei
- Department of Cardiac Surgery, the First Affiliated Hospital of Kunming Medical University, No.295 Xichang Road, Kunming 650032, Yunnan, China.
| |
Collapse
|
10
|
Alikiaii B, Bagherniya M, Askari G, Rajendram R, Sahebkar A. MicroRNA Profiles in Critically Ill Patients. Curr Med Chem 2024; 31:6801-6825. [PMID: 37496239 DOI: 10.2174/0929867331666230726095222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 05/19/2023] [Accepted: 06/01/2023] [Indexed: 07/28/2023]
Abstract
The use of biomarkers to expedite diagnosis, prognostication, and treatment could significantly improve patient outcomes. The early diagnosis and treatment of critical illnesses can greatly reduce mortality and morbidity. Therefore, there is great interest in the discovery of biomarkers for critical illnesses. Micro-ribonucleic acids (miRNAs) are a highly conserved group of non-coding RNA molecules. They regulate the expression of genes involved in several developmental, physiological, and pathological processes. The characteristics of miRNAs suggest that they could be versatile biomarkers. Assay panels to measure the expression of several miRNAs could facilitate clinical decision-- making for a range of diseases. We have, in this paper, reviewed the current understanding of the role of miRNAs as biomarkers in critically ill patients.
Collapse
Affiliation(s)
- Babak Alikiaii
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Askari
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rajkumar Rajendram
- Department of Medicine, King Abdulaziz Medical City, King Abdulaziz International Medical Research Center, Ministry of National Guard - Health Affairs, Riyadh, Saudi Arabia
- College of Medicine, King Saud bin Abdulaziz University of Health Sciences, Riyadh, Saudi Arabia
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Jian H, Wang F, Wang Y, Dou L. Clinical Significance of MicroRNA-330-3p in Plasma Level for Acute Cerebral Infarction. Cerebrovasc Dis 2023; 53:411-419. [PMID: 37778331 DOI: 10.1159/000533605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/10/2023] [Indexed: 10/03/2023] Open
Abstract
INTRODUCTION The present study was to investigate the clinical role of miR-330-3p in acute cerebral infarction (ACI), including its diagnostic and prognostic potential. Preliminary exploration of its target genes was archived by bioinformatics analysis. METHODS miR-330-3p in plasma of the patients with ACI and controls were quantified by real-time quantitative PCR. The 1-month prognosis of the ACI patients was evaluated by the Glasgow Outcome Scale (GOS). The correlation between the plasma levels of miR-330-3p and the GOS scores was tested by Pearson correlation analysis. The receiver operating characteristic (ROC) curves were established based on the expression level of miR-330-3p in different groups. The miR-330-3p-targeting genes were analyzed using Venn diagram, protein-protein interaction network, and Gene Ontology enrichment analysis. RESULTS miR-330-3p was significantly increased in the plasma of ACI patients compared with that in healthy controls, and ROC curve revealed its diagnostic value for ACI. miR-330-3p was significantly increased in the plasma of patients with poor 1-month prognosis compared with those with good 1-month prognosis. miR-330-3p expression was negatively correlated with GOS score, suggesting its potential to predict the 1-month prognosis for ACI. One-year survival analysis revealed surviving patients had lower levels of miR-330-3p than the deceased. miR-330-3p was proven to predict the death of patients with ACI. The miR-330-3p-targeting genes were associated with synapse-related Gene Ontology terms. CONCLUSION miR-330-3p was upregulated in the plasma of patients with ACI, making it a promising diagnostic and prognostic marker for patients with ACI. miR-330-3p could facilitate synaptic plasticity following cerebral infarction.
Collapse
Affiliation(s)
- Huiru Jian
- The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Fei Wang
- Department of Neurosurgery, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Ying Wang
- Department of Medical Record Room, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Liping Dou
- Department of Geriatrics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
12
|
He C, Li Z, Yang M, Yu W, Luo R, Zhou J, He J, Chen Q, Song Z, Cheng S. Non-Coding RNA in Microglia Activation and Neuroinflammation in Alzheimer's Disease. J Inflamm Res 2023; 16:4165-4211. [PMID: 37753266 PMCID: PMC10519213 DOI: 10.2147/jir.s422114] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by complex pathophysiological features. Amyloid plaques resulting from extracellular amyloid deposition and neurofibrillary tangles formed by intracellular hyperphosphorylated tau accumulation serve as primary neuropathological criteria for AD diagnosis. The activation of microglia has been closely associated with these pathological manifestations. Non-coding RNA (ncRNA), a versatile molecule involved in various cellular functions such as genetic information storage and transport, as well as catalysis of biochemical reactions, plays a crucial role in microglial activation. This review aims to investigate the regulatory role of ncRNAs in protein expression by directly targeting genes, proteins, and interactions. Furthermore, it explores the ability of ncRNAs to modulate inflammatory pathways, influence the expression of inflammatory factors, and regulate microglia activation, all of which contribute to neuroinflammation and AD. However, there are still significant controversies surrounding microglial activation and polarization. The categorization into M1 and M2 phenotypes may oversimplify the intricate and multifaceted regulatory processes in microglial response to neuroinflammation. Limited research has been conducted on the role of ncRNAs in regulating microglial activation and inducing distinct polarization states in the context of neuroinflammation. Moreover, the regulatory mechanisms through which ncRNAs govern microglial function continue to be refined. The current understanding of ncRNA regulatory pathways involved in microglial activation remains incomplete and may be influenced by spatial, temporal, and tissue-specific factors. Therefore, further in-depth investigations are warranted. In conclusion, there are ongoing debates and uncertainties regarding the activation and polarization of microglial cells, particularly concerning the categorization into M1 and M2 phenotypes. The study of ncRNA regulation in microglial activation and polarization, as well as its mechanisms, is still in its early stages and requires further investigation. However, this review offers new insights and opportunities for therapeutic approaches in AD. The development of ncRNA-based drugs may hold promise as a new direction in AD treatment.
Collapse
Affiliation(s)
- Chunxiang He
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
| | - Ze Li
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
| | - Miao Yang
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
| | - Wenjing Yu
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
| | - Rongsiqing Luo
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
| | - Jinyong Zhou
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
| | - Jiawei He
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
| | - Qi Chen
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
| | - Zhenyan Song
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
| | - Shaowu Cheng
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
13
|
Seong H, Jeong D, Kim EH, Yoon KS, Na D, Yoon SZ, Cho JE. MicroRNA-323-5p Involved in Dexmedetomidine Preconditioning Impart Neuroprotection. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1518. [PMID: 37763638 PMCID: PMC10532972 DOI: 10.3390/medicina59091518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/13/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023]
Abstract
Background and Objectives: Cerebral ischemia is one of the major preoperative complications. Dexmedetomidine is a well-known sedative-hypnotic agent that has potential organ-protective effects. We examine the miRNAs associated with preconditioning effects of dexmedetomidine in cerebral ischemia. Materials and Methods: Transient infarcts were induced in mice via reperfusion after temporary occlusion of one side of the middle cerebral artery. A subset of these mice was exposed to dexmedetomidine prior to cerebral infarction and miRNA profiling of the whole brain was performed. We administered dexmedetomidine and miRNA-323-5p mimic/inhibitor to oxygen-glucose deprivation/reoxygenation astrocytes. Additionally, we administered miR-323-5p mimic and inhibitor to mice via intracerebroventricular injection 2 h prior to induction of middle cerebral artery occlusion. Results: The infarct volume was significantly lower in the dexmedetomidine-preconditioned mice. Analysis of brain samples revealed an increased expression of five miRNAs and decreased expression of three miRNAs in the dexmedetomidine-pretreated group. The viability of cells significantly increased and expression of miR-323-5p was attenuated in the dexmedetomidine-treated oxygen-glucose deprivation/reoxygenation groups. Transfection with anti-miR-323-5p contributed to increased astrocyte viability. When miRNA-323-5p was injected intraventricularly, infarct volume was significantly reduced when preconditioned with the miR-323-5p inhibitor compared with mimic and negative control. Conclusions: Dexmedetomidine has a protective effect against transient neuronal ischemia-reperfusion injury and eight specific miRNAs were profiled. Also, miRNA-323-5p downregulation has a cell protective effect under ischemic conditions both in vivo and in vitro. Our findings suggest the potential of the miR-323-5p inhibitor as a therapeutic agent against cerebral infarction.
Collapse
Affiliation(s)
- Hyunyoung Seong
- Department of Anesthesiology and Pain Medicine, Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Daun Jeong
- Institute for Healthcare Service Innovation, Korea University, Seoul 02841, Republic of Korea
| | - Eung Hwi Kim
- Institute for Healthcare Service Innovation, Korea University, Seoul 02841, Republic of Korea
| | - Kyung Seob Yoon
- Department of Anesthesiology and Pain Medicine, Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Donghyun Na
- Department of Anesthesiology and Pain Medicine, Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Seung Zhoo Yoon
- Department of Anesthesiology and Pain Medicine, Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Jang Eun Cho
- Department of Anesthesiology and Pain Medicine, Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea
| |
Collapse
|
14
|
Datta N, Johnson C, Kao D, Gurnani P, Alexander C, Polytarchou C, Monaghan TM. MicroRNA-based therapeutics for inflammatory disorders of the microbiota-gut-brain axis. Pharmacol Res 2023; 194:106870. [PMID: 37499702 DOI: 10.1016/j.phrs.2023.106870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
An emerging but less explored shared pathophysiology across microbiota-gut-brain axis disorders is aberrant miRNA expression, which may represent novel therapeutic targets. miRNAs are small, endogenous non-coding RNAs that are important transcriptional repressors of gene expression. Most importantly, they regulate the integrity of the intestinal epithelial and blood-brain barriers and serve as an important communication channel between the gut microbiome and the host. A well-defined understanding of the mode of action, therapeutic strategies and delivery mechanisms of miRNAs is pivotal in translating the clinical applications of miRNA-based therapeutics. Accumulating evidence links disorders of the microbiota-gut-brain axis with a compromised gut-blood-brain-barrier, causing gut contents such as immune cells and microbiota to enter the bloodstream leading to low-grade systemic inflammation. This has the potential to affect all organs, including the brain, causing central inflammation and the development of neurodegenerative and neuropsychiatric diseases. In this review, we have examined in detail miRNA biogenesis, strategies for therapeutic application, delivery mechanisms, as well as their pathophysiology and clinical applications in inflammatory gut-brain disorders. The research data in this review was drawn from the following databases: PubMed, Google Scholar, and Clinicaltrials.gov. With increasing evidence of the pathophysiological importance for miRNAs in microbiota-gut-brain axis disorders, therapeutic targeting of cross-regulated miRNAs in these disorders displays potentially transformative and translational potential. Further preclinical research and human clinical trials are required to further advance this area of research.
Collapse
Affiliation(s)
- Neha Datta
- School of Medicine, University of Nottingham, Nottingham, UK
| | - Charlotte Johnson
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK; Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Dina Kao
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Pratik Gurnani
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Cameron Alexander
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Christos Polytarchou
- Department of Biosciences, John van Geest Cancer Research Centre, School of Science & Technology, Nottingham Trent University, Nottingham, UK.
| | - Tanya M Monaghan
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK; Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK.
| |
Collapse
|
15
|
Chen N, Wang YL, Sun HF, Wang ZY, Zhang Q, Fan FY, Ma YC, Liu FX, Zhang YK. Potential regulatory effects of stem cell exosomes on inflammatory response in ischemic stroke treatment. World J Stem Cells 2023; 15:561-575. [PMID: 37424949 PMCID: PMC10324506 DOI: 10.4252/wjsc.v15.i6.561] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/22/2023] [Accepted: 05/16/2023] [Indexed: 06/26/2023] Open
Abstract
The high incidence and disability rates of stroke pose a heavy burden on society. Inflammation is a significant pathological reaction that occurs after an ischemic stroke. Currently, therapeutic methods, except for intravenous thrombolysis and vascular thrombectomy, have limited time windows. Mesenchymal stem cells (MSCs) can migrate, differentiate, and inhibit inflammatory immune responses. Exosomes (Exos), which are secretory vesicles, have the characteristics of the cells from which they are derived, making them attractive targets for research in recent years. MSC-derived exosomes can attenuate the inflammatory response caused by cerebral stroke by modulating damage-associated molecular patterns. In this review, research on the inflammatory response mechanisms associated with Exos therapy after an ischemic injury is discussed to provide a new approach to clinical treatment.
Collapse
Affiliation(s)
- Na Chen
- First School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China
| | - Yan-Lin Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Hui-Fang Sun
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Zhuo-Ya Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Qi Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Fei-Yan Fan
- First School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China
| | - Yu-Cheng Ma
- First School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China
| | - Fei-Xiang Liu
- Department of Neurology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
| | - Yun-Ke Zhang
- Department of Neurology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
- School of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou 450008, Henan Province, China
| |
Collapse
|
16
|
Ye W, Chen X, Li P, Tao Y, Wang Z, Gao C, Cheng J, Li F, Yi D, Wei Z, Yi D, Wu Y. OEDL: an optimized ensemble deep learning method for the prediction of acute ischemic stroke prognoses using union features. Front Neurol 2023; 14:1158555. [PMID: 37416306 PMCID: PMC10321134 DOI: 10.3389/fneur.2023.1158555] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/22/2023] [Indexed: 07/08/2023] Open
Abstract
Background Early stroke prognosis assessments are critical for decision-making regarding therapeutic intervention. We introduced the concepts of data combination, method integration, and algorithm parallelization, aiming to build an integrated deep learning model based on a combination of clinical and radiomics features and analyze its application value in prognosis prediction. Methods The research steps in this study include data source and feature extraction, data processing and feature fusion, model building and optimization, model training, and so on. Using data from 441 stroke patients, clinical and radiomics features were extracted, and feature selection was performed. Clinical, radiomics, and combined features were included to construct predictive models. We applied the concept of deep integration to the joint analysis of multiple deep learning methods, used a metaheuristic algorithm to improve the parameter search efficiency, and finally, developed an acute ischemic stroke (AIS) prognosis prediction method, namely, the optimized ensemble of deep learning (OEDL) method. Results Among the clinical features, 17 features passed the correlation check. Among the radiomics features, 19 features were selected. In the comparison of the prediction performance of each method, the OEDL method based on the concept of ensemble optimization had the best classification performance. In the comparison to the predictive performance of each feature, the inclusion of the combined features resulted in better classification performance than that of the clinical and radiomics features. In the comparison to the prediction performance of each balanced method, SMOTEENN, which is based on a hybrid sampling method, achieved the best classification performance than that of the unbalanced, oversampled, and undersampled methods. The OEDL method with combined features and mixed sampling achieved the best classification performance, with 97.89, 95.74, 94.75, 94.03, and 94.35% for Macro-AUC, ACC, Macro-R, Macro-P, and Macro-F1, respectively, and achieved advanced performance in comparison with that of methods in previous studies. Conclusion The OEDL approach proposed herein could effectively achieve improved stroke prognosis prediction performance, the effect of using combined data modeling was significantly better than that of single clinical or radiomics feature models, and the proposed method had a better intervention guidance value. Our approach is beneficial for optimizing the early clinical intervention process and providing the necessary clinical decision support for personalized treatment.
Collapse
Affiliation(s)
- Wei Ye
- Department of Health Statistics, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Xicheng Chen
- Department of Health Statistics, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Pengpeng Li
- Department of Health Statistics, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Yongjun Tao
- Department of Neurology, Taizhou Municipal Hospital, Taizhou, Zhejiang, China
| | - Zhenyan Wang
- Department of Health Statistics, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Chengcheng Gao
- Department of Health Statistics, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Jian Cheng
- Department of Radiology, Taizhou Municipal Hospital, Taizhou, Zhejiang, China
| | - Fang Li
- Department of Health Statistics, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Dali Yi
- Department of Health Statistics, College of Preventive Medicine, Army Medical University, Chongqing, China
- Department of Health Education, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Zeliang Wei
- Department of Health Statistics, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Dong Yi
- Department of Health Statistics, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Yazhou Wu
- Department of Health Statistics, College of Preventive Medicine, Army Medical University, Chongqing, China
| |
Collapse
|
17
|
Ke X, Deng M, Wu Z, Yu H, Yu D, Li H, Lu Y, Shu K, Pei L. miR-34b-3p Inhibition of eIF4E Causes Post-stroke Depression in Adult Mice. Neurosci Bull 2023; 39:194-212. [PMID: 35802246 PMCID: PMC9905405 DOI: 10.1007/s12264-022-00898-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/14/2022] [Indexed: 11/30/2022] Open
Abstract
Post-stroke depression (PSD) is a serious and common complication of stroke, which seriously affects the rehabilitation of stroke patients. To date, the pathogenesis of PSD is unclear and effective treatments remain unavailable. Here, we established a mouse model of PSD through photothrombosis-induced focal ischemia. By using a combination of brain imaging, transcriptome sequencing, and bioinformatics analysis, we found that the hippocampus of PSD mice had a significantly lower metabolic level than other brain regions. RNA sequencing revealed a significant reduction of miR34b-3p, which was expressed in hippocampal neurons and inhibited the translation of eukaryotic translation initiation factor 4E (eIF4E). Furthermore, silencing eIF4E inactivated microglia, inhibited neuroinflammation, and abolished the depression-like behaviors in PSD mice. Together, our data demonstrated that insufficient miR34b-3p after stroke cannot inhibit eIF4E translation, which causes PSD by the activation of microglia in the hippocampus. Therefore, miR34b-3p and eIF4E may serve as potential therapeutic targets for the treatment of PSD.
Collapse
Affiliation(s)
- Xiao Ke
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Manfei Deng
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhuoze Wu
- Department of Pathophysiology, Basic Medical School, North Sichuan Medical College, Nanchong, 637100, China
| | - Hongyan Yu
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dian Yu
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hao Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Youming Lu
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kai Shu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lei Pei
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
18
|
Gallardo VJ, Vila-Pueyo M, Pozo-Rosich P. The impact of epigenetic mechanisms in migraine: Current knowledge and future directions. Cephalalgia 2023; 43:3331024221145916. [PMID: 36759209 DOI: 10.1177/03331024221145916] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
BACKGROUND Epigenetic mechanisms, including DNA methylation, microRNAs and histone modifications, may modulate the genetic expression in migraine and its interaction with internal and external factors, such as lifestyle and environmental changes. OBJECTIVE To summarize, contextualize and critically analyze the published literature on the current state of epigenetic mechanisms in migraine in a narrative review. FINDINGS The studies published to date have used different approaches and methodologies to determine the role of epigenetic mechanisms in migraine. Epigenetic changes seem to be involved in migraine and are increasing our knowledge of the disease. CONCLUSIONS Changes in DNA methylation, microRNA expression and histone modifications could be utilized as biomarkers that would be highly valuable for patient stratification, molecular diagnosis, and precision medicine in migraine.
Collapse
Affiliation(s)
- Víctor José Gallardo
- Headache and Neurological Pain Research Group, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Spain
| | - Marta Vila-Pueyo
- Headache and Neurological Pain Research Group, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Spain
| | - Patricia Pozo-Rosich
- Headache and Neurological Pain Research Group, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Spain.,Headache Unit, Neurology Department, Vall d'Hebron University Hospital, Barcelona, Spain
| |
Collapse
|
19
|
Ren X, Zhou X. Circ_0000011 promotes cerebral ischemia/reperfusion injury via miR-27a-3p-dependent regulation of NRIP1. Metab Brain Dis 2023; 38:295-306. [PMID: 35925446 DOI: 10.1007/s11011-022-00972-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/21/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Cerebral ischemia/reperfusion (I/R) can result in brain function impairments. Circular RNAs (circRNAs) have emerged as vital regulators in cerebral I/R injury. However, the functions of mmu_circ_0000011 in cerebral I/R injury are still unclear. Thus, in this study, we aimed to explore the effect of mmu_circ_0000011 on cerebral I/R injury. METHODS Oxygen-glucose deprivation and reperfusion (OGD/R)-induced HT-22 cells were used to mimic the condition of cerebral I/R injury in vitro. Cell Counting Kit-8 (CCK-8) assay, lactate dehydrogenase (LDH) assay, 5'-ethynyl-2'-deoxyuridine (EdU) assay and flow cytometry analysis were utilized to assess cell viability, LDH release, proliferation and apoptosis, respectively. qRT-PCR and western blot were performed to determined the levels of circ_0000011, miR-27a-3p and NRIP1. Dual-luciferase reporter assay and RNA pull-down assay were utilized to analyze the targeting relation of circ_0000011, miR-27a-3p and NRIP1. RESULTS OGD/R treatment inhibited HT-22 cell viability and promoted LDH release, cell apoptosis and inflammation. Circ_0000011 level was increased in OGD/R-induced HT-22 cells. Silencing of circ_0000011 promoted cell proliferation and inhibited LDH release, apoptosis and inflammation in OGD/R-treated HT-22 cells. For mechanism analysis, circ_0000011 was demonstrated to sponge miR-27a-3p, which directly targeted NRIP1. MiR-27a-3p inhibition or NRIP1 overexpression ameliorated the impacts of circ_0000011 silencing on cell proliferation, LDH release, apoptosis and inflammation in OGD/R-treated HT-22 cells. CONCLUSIONS Circ_0000011 promotes OGD/R-induced HT-22 cell impairments by elevating NRIP1 through sponging miR-27a-3p.
Collapse
Affiliation(s)
- Xiaolin Ren
- Department of neurological function, the First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, China
| | - Xinyu Zhou
- Department of Neurology, the First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, China.
- Department of Neurology, the Affiliated Lianyungang Hospital of Xuzhou Medical University, No. 182, Tongguan North Road, Haizhou District, Lianyungang City, Jiangsu, China.
| |
Collapse
|
20
|
Li S, Wan L, Zhang J, Yan W, Wang J, Gao X, Li X, Ren C, Hao L. MicroRNAs in Blood as Diagnostic Biomarkers for Neonatal Hypoxic-Ischemic Encephalopathy. Indian J Pediatr 2023; 90:93. [PMID: 36355251 DOI: 10.1007/s12098-022-04392-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Shangbin Li
- Department of Pediatrics, The First Hospital of Hebei Medical University, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Li Wan
- Institute for Epidemic Disease Control, Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang, Hebei, China
| | - Jing Zhang
- Department of Pediatrics, The First Hospital of Hebei Medical University, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Weichen Yan
- Department of Pediatrics, The First Hospital of Hebei Medical University, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jie Wang
- Department of Pediatrics, The First Hospital of Hebei Medical University, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiong Gao
- Department of Pediatrics, The First Hospital of Hebei Medical University, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xueying Li
- Department of Pediatrics, The First Hospital of Hebei Medical University, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Changjun Ren
- Department of Pediatrics, The First Hospital of Hebei Medical University, Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Ling Hao
- Department of Pediatrics, The First Hospital of Hebei Medical University, Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
21
|
Yang K, Zeng L, Ge A, Wang S, Zeng J, Yuan X, Mei Z, Wang G, Ge J. A systematic review of the research progress of non-coding RNA in neuroinflammation and immune regulation in cerebral infarction/ischemia-reperfusion injury. Front Immunol 2022; 13:930171. [PMID: 36275741 PMCID: PMC9585453 DOI: 10.3389/fimmu.2022.930171] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/08/2022] [Indexed: 11/15/2022] Open
Abstract
Cerebral infarction/ischemia-reperfusion injury is currently the disease with the highest mortality and disability rate of cardiovascular disease. Current studies have shown that nerve cells die of ischemia several hours after ischemic stroke, which activates the innate immune response in the brain, promotes the production of neurotoxic substances such as inflammatory cytokines, chemokines, reactive oxygen species and − nitrogen oxide, and mediates the destruction of blood-brain barrier and the occurrence of a series of inflammatory cascade reactions. Meanwhile, the expression of adhesion molecules in cerebral vascular endothelial cells increased, and immune inflammatory cells such as polymorphonuclear neutrophils, lymphocytes and mononuclear macrophages passed through vascular endothelial cells and entered the brain tissue. These cells recognize antigens exposed by the central nervous system in the brain, activate adaptive immune responses, and further mediate secondary neuronal damage, aggravating neurological deficits. In order to reduce the above-mentioned damage, the body induces peripheral immunosuppressive responses through negative feedback, which increases the incidence of post-stroke infection. This process is accompanied by changes in the immune status of the ischemic brain tissue in local and systemic systems. A growing number of studies implicate noncoding RNAs (ncRNAs) as novel epigenetic regulatory elements in the dysfunction of various cell subsets in the neurovascular unit after cerebral infarction/ischemia-reperfusion injury. In particular, recent studies have revealed advances in ncRNA biology that greatly expand the understanding of epigenetic regulation of immune responses and inflammation after cerebral infarction/ischemia-reperfusion injury. Identification of aberrant expression patterns and associated biological effects of ncRNAs in patients revealed their potential as novel biomarkers and therapeutic targets for cerebral infarction/ischemia-reperfusion injury. Therefore, this review systematically presents recent studies on the involvement of ncRNAs in cerebral infarction/ischemia-reperfusion injury and neuroimmune inflammatory cascades, and elucidates the functions and mechanisms of cerebral infarction/ischemia-reperfusion-related ncRNAs, providing new opportunities for the discovery of disease biomarkers and targeted therapy. Furthermore, this review introduces clustered regularly interspaced short palindromic repeats (CRISPR)-Display as a possible transformative tool for studying lncRNAs. In the future, ncRNA is expected to be used as a target for diagnosing cerebral infarction/ischemia-reperfusion injury, judging its prognosis and treatment, thereby significantly improving the prognosis of patients.
Collapse
Affiliation(s)
- Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Liuting Zeng
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Anqi Ge
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Shanshan Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Jinsong Zeng
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Xiao Yuan
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Guozuo Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
- Hunan Academy of Chinese Medicine, Changsha, China
- *Correspondence: Jinwen Ge,
| |
Collapse
|
22
|
Khan H, Kaur Grewal A, Gurjeet Singh T. Mitochondrial dynamics related neurovascular approaches in cerebral ischemic injury. Mitochondrion 2022; 66:54-66. [DOI: 10.1016/j.mito.2022.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/14/2022] [Accepted: 08/02/2022] [Indexed: 12/30/2022]
|
23
|
Zhao X, Qiao D, Guan D, Wang K, Cui Y. Chrysophanol Ameliorates Hemin-Induced Oxidative Stress and Endoplasmic Reticulum Stress by Regulating MicroRNA-320-5p/Wnt3a Pathway in HT22 Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9399658. [PMID: 35936221 PMCID: PMC9355772 DOI: 10.1155/2022/9399658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022]
Abstract
Oxidative stress, endoplasmic reticulum (ER) stress, and neuronal cell apoptosis have been considered as the main pathogenesis factors of brain injury after intracerebral hemorrhage (ICH). Chrysophanol (CHR) has been proved to have neuroprotective effects, but the role and underlying mechanisms of CHR in ICH remain unclear. HT22 cells were dealt with hemin to mimic an in vitro ICH model and then subjected to treatment with or without CHR. The cell viability, apoptosis, ER stress, and oxidative stress were evaluated by conducting the cell counting kit-8 (CCK-8), TdT-mediated dUTP nick end labeling (TUNEL) staining assays, western blot, and corresponding kit, respectively. Further, microRNA-sequencing, bioinformatic analysis, dual-luciferase reporter method, and rescue experiments were conducted to explore the molecular mechanisms of CHR alleviating hemin-induced ER in HT22 cell. Our data revealed that CHR increased cells viability, antiapoptosis, anti-ER stress, and antioxidative stress under conditions of hemin-induced HT22 cell injury. Mechanically, it was observed that Wnt3a was competitively sponged by miR-320-5p, and CHR activated β-catenin pathway by regulating miR-320-5p/Wnt3a molecular axis. Finally, results from the rescue experiment suggested that CHR inhibited hemin-induced cells apoptosis, ER stress, and oxidative stress through regulating the miR-320-5p/Wnt3a axis in HT22 cells. In conclusion, CHR prevented hemin-induced apoptosis, ER stress, and oxidative stress via inhibiting the miR-320-5p/Wnt3a/β-catenin pathway in HT22 cells. Our results certified that CHR could be served as a promising treatment for brain damage following ICH.
Collapse
Affiliation(s)
- Xu Zhao
- Department of Pharmacy, Henan Province Hospital of TCM (The Second Clinical Medical College, Henan University of Traditional Chinese Medicine), Zhengzhou 450002, China
| | - Dongge Qiao
- Nursing Department, Henan Province Hospital of TCM (The Second Clinical Medical College, Henan University of Traditional Chinese Medicine), Zhengzhou 450002, China
| | - Dongsheng Guan
- Department of Encephalopathy, Henan Province Hospital of TCM (The Second Clinical Medical College, Henan University of Traditional Chinese Medicine), Zhengzhou 450002, China
| | - Kun Wang
- Department of Pharmacy, Henan Province Hospital of TCM (The Second Clinical Medical College, Henan University of Traditional Chinese Medicine), Zhengzhou 450002, China
| | - Yinglin Cui
- Department of Encephalopathy, Henan Province Hospital of TCM (The Second Clinical Medical College, Henan University of Traditional Chinese Medicine), Zhengzhou 450002, China
| |
Collapse
|
24
|
Zhai W, Zhao M, Zhang G, Wang Z, Wei C, Sun L. MicroRNA-Based Diagnosis and Therapeutics for Vascular Cognitive Impairment and Dementia. Front Neurol 2022; 13:895316. [PMID: 35592472 PMCID: PMC9110834 DOI: 10.3389/fneur.2022.895316] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 03/28/2022] [Indexed: 12/17/2022] Open
Abstract
Vascular cognitive impairment and dementia (VCID) is a neurodegenerative disease that is recognized as the second leading cause of dementia after Alzheimer's disease (AD). The underlying pathological mechanism of VCID include crebromicrovascular dysfunction, blood-brain barrier (BBB) disruption, neuroinflammation, capillary rarefaction, and microhemorrhages, etc. Despite the high incidence of VCID, no effective therapies are currently available for preventing or delaying its progression. Recently, pathophysiological microRNAs (miRNAs) in VCID have shown promise as novel diagnostic biomarkers and therapeutic targets. Studies have revealed that miRNAs can regulate the function of the BBB, affect apoptosis and oxidative stress (OS) in the central nervous system, and modulate neuroinflammation and neurodifferentiation. Thus, this review summarizes recent findings on VCID and miRNAs, focusing on their correlation and contribution to the development of VCID pathology.
Collapse
|
25
|
Zeng J, Bao T, Yang K, Zhu X, Wang S, Xiang W, Ge A, Zeng L, Ge J. The mechanism of microglia-mediated immune inflammation in ischemic stroke and the role of natural botanical components in regulating microglia: A review. Front Immunol 2022; 13:1047550. [PMID: 36818470 PMCID: PMC9933144 DOI: 10.3389/fimmu.2022.1047550] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 12/05/2022] [Indexed: 02/05/2023] Open
Abstract
Ischemic stroke (IS) is one of the most fatal diseases. Neuroimmunity, inflammation, and oxidative stress play important roles in various complex mechanisms of IS. In particular, the early proinflammatory response resulting from the overactivation of resident microglia and the infiltration of circulating monocytes and macrophages in the brain after cerebral ischemia leads to secondary brain injury. Microglia are innate immune cells in the brain that constantly monitor the brain microenvironment under normal conditions. Once ischemia occurs, microglia are activated to produce dual effects of neurotoxicity and neuroprotection, and the balance of the two effects determines the fate of damaged neurons. The activation of microglia is defined as the classical activation (M1 type) or alternative activation (M2 type). M1 type microglia secrete pro-inflammatory cytokines and neurotoxic mediators to exacerbate neuronal damage, while M2 type microglia promote a repairing anti-inflammatory response. Fine regulation of M1/M2 microglial activation to minimize damage and maximize protection has important therapeutic value. This review focuses on the interaction between M1/M2 microglia and other immune cells involved in the regulation of IS phenotypic characteristics, and the mechanism of natural plant components regulating microglia after IS, providing novel candidate drugs for regulating microglial balance and IS drug development.
Collapse
Affiliation(s)
- Jinsong Zeng
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Tingting Bao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | | | - Shanshan Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Wang Xiang
- Department of Rheumatology, The First People's Hospital Changde City, Changde, Hunan, China
| | - Anqi Ge
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Liuting Zeng
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China.,Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
26
|
Voelz C, Ebrahimy N, Zhao W, Habib P, Zendedel A, Pufe T, Beyer C, Slowik A. Transient Focal Cerebral Ischemia Leads to miRNA Alterations in Different Brain Regions, Blood Serum, Liver, and Spleen. Int J Mol Sci 2021; 23:ijms23010161. [PMID: 35008586 PMCID: PMC8745086 DOI: 10.3390/ijms23010161] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022] Open
Abstract
Ischemic stroke is characterized by an occlusion of a cerebral blood vessel resulting in neuronal cell death due to nutritional and oxygen deficiency. Additionally, post-ischemic cell death is augmented after reperfusion. These events are paralleled by dysregulated miRNA expression profiles in the peri-infarct area. Understanding the underlying molecular mechanism in the peri-infarct region is crucial for developing promising therapeutics. Utilizing a tMCAo (transient Middle Cerebral Artery occlusion) model in rats, we studied the expression levels of the miRNAs (miR) 223-3p, 155-5p, 3473, and 448-5p in the cortex, amygdala, thalamus, and hippocampus of both the ipsi- and contralateral hemispheres. Additionally, the levels in the blood serum, spleen, and liver and the expression of their target genes, namely, Nlrp3, Socs1, Socs3, and Vegfa, were assessed. We observed an increase in all miRNAs on the ipsilateral side of the cerebral cortex in a time-dependent manner and increased miRNAs levels (miR-223-3p, miR-3473, and miR-448-5p) in the contralateral hemisphere after 72 h. Besides the cerebral cortex, the amygdala presented increased expression levels, whereas the thalamus and hippocampus showed no alterations. Different levels of the investigated miRNAs were detected in blood serum, liver, and spleen. The gene targets were altered not only in the peri-infarct area of the cortex but selectively increased in the investigated non-affected brain regions along with the spleen and liver during the reperfusion time up to 72 h. Our results suggest a supra-regional influence of miRNAs following ischemic stroke, which should be studied to further identify whether miRNAs are transported or locally upregulated.
Collapse
Affiliation(s)
- Clara Voelz
- Institute of Neuroanatomy, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (C.V.); (N.E.); (W.Z.); (A.Z.); (C.B.)
| | - Nahal Ebrahimy
- Institute of Neuroanatomy, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (C.V.); (N.E.); (W.Z.); (A.Z.); (C.B.)
| | - Weiyi Zhao
- Institute of Neuroanatomy, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (C.V.); (N.E.); (W.Z.); (A.Z.); (C.B.)
| | - Pardes Habib
- Department of Neurology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany;
- JARA-BRAIN Institute of Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH, RWTH Aachen University, 52074 Aachen, Germany
| | - Adib Zendedel
- Institute of Neuroanatomy, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (C.V.); (N.E.); (W.Z.); (A.Z.); (C.B.)
| | - Thomas Pufe
- Department of Anatomy and Cell Biology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany;
| | - Cordian Beyer
- Institute of Neuroanatomy, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (C.V.); (N.E.); (W.Z.); (A.Z.); (C.B.)
| | - Alexander Slowik
- Department of Anatomy and Cell Biology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany;
- Correspondence: ; Tel.: +49-(0)241-80-89112
| |
Collapse
|
27
|
Regulatory role of miR-129 and miR-384-5p on apoptosis induced by oxygen and glucose deprivation in PC12 cell. Exp Brain Res 2021; 240:97-111. [PMID: 34661743 DOI: 10.1007/s00221-021-06236-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 09/25/2021] [Indexed: 10/20/2022]
Abstract
This study aimed to establish the role of miR-129 and miR-384-5p in cerebral ischemia-induced apoptosis. Using PC12 cells transfected with miR-129 or miR-384-5p mimics or inhibitors, oxygen glucose deprivation (OGD) conditions were applied for 4 h to simulate transient cerebral ischemia. Apoptotic phenotypes were assessed via lactate dehydrogenase (LDH) assay, MTT cell metabolism assay, and fluorescence-activated cell sorting (FACS). The effect of miR overexpression and inhibition was evaluated by protein and mRNA detection of bcl-2 and caspase-3, critical apoptosis factors. Finally, the direct relationship of miR-129 and bcl-2 and miR-384-5p and caspase-3 was measured by luciferase reporter assay. The overexpression of miR-384-5p and miR-129 deficiency significantly enhanced cell viability, reduced LDH release, and inhibited apoptosis. By contrast, overexpression of miR-129 and miR-384-5p deficiency aggravated hypoxia-induced apoptosis and cell injury. miR-129 overexpression significantly reduced mRNA and protein levels of bcl-2 and miR-129 inhibition significantly increased mRNA and protein levels of bcl-2 in hypoxic cells.miR-384-5p overexpression significantly reduced protein levels of caspase-3 while miR-384-5p deficiency significantly increased protein levels of caspase-3. However, no changes were observed in caspase-3 mRNA in either transfection paradigm. Finally, luciferase reporter assay confirmed caspase-3 to be a direct target of miR-384-5p; however, no binding activity was detected between bcl-2 and miR-129.Transient cerebral ischemia induces differential expression of miR-129 and miR-384-5p which influences apoptosis by regulating apoptotic factors caspase-3 and bcl-2, thereby participating in the pathological mechanism of cerebral ischemia, and becoming potential targets for the treatment of ischemic cerebral injury in the future.
Collapse
|
28
|
Wu C, Zhao L, Li X, Xu Y, Guo H, Huang Z, Wang Q, Liu H, Chen D, Zhu M. Integrated Bioinformatics Analysis of Potential mRNA and miRNA Regulatory Networks in Mice With Ischemic Stroke Treated by Electroacupuncture. Front Neurol 2021; 12:719354. [PMID: 34566862 PMCID: PMC8461332 DOI: 10.3389/fneur.2021.719354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/22/2021] [Indexed: 12/02/2022] Open
Abstract
Background: The complicated molecular mechanisms underlying the therapeutic effect of electroacupuncture (EA) on ischemic stroke are still unclear. Recently, more evidence has revealed the essential role of the microRNA (miRNA)–mRNA networks in ischemic stroke. However, a systematic analysis of novel key genes, miRNAs, and miRNA–mRNA networks regulated by EA in ischemic stroke is still absent. Methods: We established a middle cerebral artery occlusion (MCAO) mouse model and performed EA therapy on ischemic stroke mice. Behavior tests and measurement of infarction area were applied to measure the effect of EA treatment. Then, we performed RNA sequencing to analyze differentially expressed genes (DEGs) and functional enrichment between the EA and control groups. In addition, a protein–protein interaction (PPI) network was built, and hub genes were screened by Cytoscape. Upstream miRNAs were predicted by miRTarBase. Then hub genes and predicted miRNAs were verified as key biomarkers by RT-qPCR. Finally, miRNA–mRNA networks were constructed to explore the potential mechanisms of EA in ischemic stroke. Results: Our analysis revealed that EA treatment could significantly alleviate neurological deficits in the affected limbs and reduce infarct area of the MCAO model mice. A total of 174 significant DEGs, including 53 upregulated genes and 121 downregulated genes, were identified between the EA and control groups. Functional enrichment analysis showed that these DEGs were associated with the FOXO signaling pathway, NF-kappa B signaling pathway, T-cell receptor signaling pathway, and other vital pathways. The top 10 genes with the highest degree scores were identified as hub genes based on the degree method, but only seven genes were verified as key genes according to RT-qPCR. Twelve upstream miRNAs were predicted to target the seven key genes. However, only four miRNAs were significantly upregulated and indicated favorable effects of EA treatment. Finally, comprehensive analysis of the results identified the miR-425-5p-Cdk1, mmu-miR-1186b-Prc1, mmu-miR-434-3p-Prc1, and mmu-miR-453-Prc1 miRNA–mRNA networks as key networks that are regulated by EA and linked to ischemic stroke. These networks might mainly take place in neuronal cells regulated by EA in ischemic stroke. Conclusion: In summary, our study identified key DEGs, miRNAs, and miRNA–mRNA regulatory networks that may help to facilitate the understanding of the molecular mechanism underlying the effect of EA treatment on ischemic stroke.
Collapse
Affiliation(s)
- Chunxiao Wu
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Guangdong, China.,The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lijun Zhao
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Xinrong Li
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Yingshan Xu
- Clinical Medical of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongji Guo
- Clinical Medical of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zifeng Huang
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Qizhang Wang
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Helu Liu
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Dongfeng Chen
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Meiling Zhu
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Guangdong, China
| |
Collapse
|
29
|
Zhu L, Zhu L, Tan J, Chen K, Yu B. Suppression of miR-130a-3p Attenuates Oxygen-Glucose Deprivation/Reoxygenation-Induced Dendritic Spine Loss by Promoting APP. Front Neurosci 2021; 15:601850. [PMID: 34413720 PMCID: PMC8369929 DOI: 10.3389/fnins.2021.601850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 07/09/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Cerebral stroke induces neuronal dysfunction as a consequence of neuronal morphology changes. Emerging evidence suggests that microRNAs (miRNAs) may play an important role in regulating dysfunction in stroke, yet there are still few studies examining the association between whole blood miRNAs and neuronal morphology. The present study aimed to ascertain the potential roles and mechanisms of action of miR-130a-3p in ischemic stroke. METHODS The miRNA datasets of peripheral serum in the GEO database and the mRNA datasets of the human brain after ischemia were analyzed to identify differentially expressed RNAs, and their functions were verified in cultured neurons in vitro. Furthermore, the target gene was validated by dual-luciferase reporter assay, RT-PCR, Western blot, and immunofluorescence experiments. The identified miRNA was further verified by the OGD test to restore neuronal changes after ischemia through APP. RESULTS The expression of whole blood miR-130a-3p was found significantly lower in participants with ischemic stroke than in controls by analyzing expression profiling datasets of cerebral ischemia stroke obtained from the Gene Expression Omnibus (GEO) DataSets portal, which was confirmed in the MCAO model in mice. Furthermore, GO analysis showed that miR-130a-3p might directly affect neuronal function. Indeed, we demonstrated that miR-130a-3p played a central role in the inhibition of dendritic morphogenesis and in the growth of dendritic spines in vitro. We also confirmed that miR-130a-3p could regulate the expression of APP by luciferase reporter assay, RT-PCR, Western blot, and immunofluorescence experiments, which were consistent with the bioinformatic analysis. Last but not least, we also demonstrated that reducing miR-130a-3p expression partially rescued neuronal morphological changes after OGD in vitro. CONCLUSION miR-130a-3p is a potential biomarker of cerebral stroke, can affect neuronal morphology through APP, and promote the repair of neurons by promoting APP expression after cerebral ischemia.
Collapse
Affiliation(s)
- Liang Zhu
- Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Lei Zhu
- Department of Vascular Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinyun Tan
- Department of Vascular Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Kui Chen
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bo Yu
- Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| |
Collapse
|
30
|
Bormann D, Stojanovic T, Cicvaric A, Schuld GJ, Cabatic M, Ankersmit HJ, Monje FJ. miRNA-132/212 Gene-Deletion Aggravates the Effect of Oxygen-Glucose Deprivation on Synaptic Functions in the Female Mouse Hippocampus. Cells 2021; 10:1709. [PMID: 34359879 PMCID: PMC8306255 DOI: 10.3390/cells10071709] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 12/29/2022] Open
Abstract
Cerebral ischemia and its sequelae, which include memory impairment, constitute a leading cause of disability worldwide. Micro-RNAs (miRNA) are evolutionarily conserved short-length/noncoding RNA molecules recently implicated in adaptive/maladaptive neuronal responses to ischemia. Previous research independently implicated the miRNA-132/212 cluster in cholinergic signaling and synaptic transmission, and in adaptive/protective mechanisms of neuronal responses to hypoxia. However, the putative role of miRNA-132/212 in the response of synaptic transmission to ischemia remained unexplored. Using hippocampal slices from female miRNA-132/212 double-knockout mice in an established electrophysiological model of ischemia, we here describe that miRNA-132/212 gene-deletion aggravated the deleterious effect of repeated oxygen-glucose deprivation insults on synaptic transmission in the dentate gyrus, a brain region crucial for learning and memory functions. We also examined the effect of miRNA-132/212 gene-deletion on the expression of key mediators in cholinergic signaling that are implicated in both adaptive responses to ischemia and hippocampal neural signaling. miRNA-132/212 gene-deletion significantly altered hippocampal AChE and mAChR-M1, but not α7-nAChR or MeCP2 expression. The effects of miRNA-132/212 gene-deletion on hippocampal synaptic transmission and levels of cholinergic-signaling elements suggest the existence of a miRNA-132/212-dependent adaptive mechanism safeguarding the functional integrity of synaptic functions in the acute phase of cerebral ischemia.
Collapse
Affiliation(s)
- Daniel Bormann
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria; (D.B.); (T.S.); (G.J.S.); (M.C.)
- Laboratory for Cardiac and Thoracic Diagnosis, Department of Surgery, Regeneration and Applied Immunology, Medical University of Vienna, Research Laboratories Vienna General Hospital, Waehringer Guertel 18-20, 1090 Vienna, Austria;
- Division of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Tamara Stojanovic
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria; (D.B.); (T.S.); (G.J.S.); (M.C.)
| | - Ana Cicvaric
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, NY 10461, USA;
| | - Gabor J. Schuld
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria; (D.B.); (T.S.); (G.J.S.); (M.C.)
| | - Maureen Cabatic
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria; (D.B.); (T.S.); (G.J.S.); (M.C.)
| | - Hendrik Jan Ankersmit
- Laboratory for Cardiac and Thoracic Diagnosis, Department of Surgery, Regeneration and Applied Immunology, Medical University of Vienna, Research Laboratories Vienna General Hospital, Waehringer Guertel 18-20, 1090 Vienna, Austria;
- Division of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
- Aposcience AG, Dresdner Straße 87/A 21, 1200 Vienna, Austria
| | - Francisco J. Monje
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria; (D.B.); (T.S.); (G.J.S.); (M.C.)
| |
Collapse
|
31
|
Mahmoud MM, Sanad EF, Hamdy NM. MicroRNAs' role in the environment-related non-communicable diseases and link to multidrug resistance, regulation, or alteration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:36984-37000. [PMID: 34046834 DOI: 10.1007/s11356-021-14550-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/19/2021] [Indexed: 05/28/2023]
Abstract
The discovery of microRNAs (miRNAs) 20 years ago has advocated a new era of "small molecular genetics." About 2000 miRNAs are present that regulate one third of the genome. MiRNA dysregulated expression arising as a response to our environment insult or stress or changes may contribute to several diseases, namely non-communicable diseases, including tumor growth. Their presence in body fluids, reflecting level alteration in various cancers, merit circulating miRNAs as the "next-generation biomarkers" for early-stage tumor diagnosis and/or prognosis. Herein, we performed a comprehensive literature search focusing on the origin, biosynthesis, and role of miRNAs and summarized the foremost studies centering on miR value as non-invasive biomarkers in different environment-related non-communicable diseases, including various cancer types. Moreover, during chemotherapy, many miRNAs were linked to multidrug resistance, via modulating numerous, environment triggered or not, biological processes and/or pathways that will be highlighted as well.
Collapse
Affiliation(s)
- Marwa M Mahmoud
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, 11566, Abassia, Cairo, Egypt
| | - Eman F Sanad
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, 11566, Abassia, Cairo, Egypt
| | - Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, 11566, Abassia, Cairo, Egypt.
| |
Collapse
|
32
|
Hussein M, Magdy R. MicroRNAs in central nervous system disorders: current advances in pathogenesis and treatment. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2021. [DOI: 10.1186/s41983-021-00289-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
AbstractMicroRNAs (miRNAs) are a class of short, non-coding, regulatory RNA molecules that function as post transcriptional regulators of gene expression. Altered expression of multiple miRNAs was found to be extensively involved in the pathogenesis of different neurological disorders including Alzheimer’s disease, Parkinson’s disease, stroke, epilepsy, multiple sclerosis, amyotrophic lateral sclerosis, and Huntington’s disease. miRNAs are implicated in the pathogenesis of excitotoxicity, apoptosis, oxidative stress, inflammation, neurogenesis, angiogenesis, and blood–brain barrier protection. Consequently, miRNAs can serve as biomarkers for different neurological disorders. In recent years, advances in the miRNA field led to identification of potentially novel prospects in the development of new therapies for incurable CNS disorders. MiRNA-based therapeutics include miRNA mimics and inhibitors that can decrease or increase the expression of target genes. Better understanding of the mechanisms by which miRNAs are implicated in the pathogenesis of neurological disorders may provide novel targets to researchers for innovative therapeutic strategies.
Collapse
|
33
|
Xie Q, Ma R, Guo X, Chen H, Wang J. Benzoinum from Styrax tonkinensis (Pierre) Craib ex Hart exerts a NVU protective effect by inhibiting cell apoptosis in cerebral ischaemia rats. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113355. [PMID: 32891816 DOI: 10.1016/j.jep.2020.113355] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/21/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Benzoinum (Styraceae) is a traditional Chinese medicine used to treat stroke and other cardio-cerebrovascular diseases for thousands of years. Benzoinum has also proven to have diverse pharmacological activity, but the neuroprotection mechanism of apoptosis in ischaemic stroke was not determined. AIM OF THIS STUDY To investigate the protective effect of a neurovascular unit (NVU) and the mechanisms of benzoinum on cerebral ischaemic rats. MATERIALS AND METHODS The neuroprotective activity of benzoinum against middle cerebral artery occlusion (MCAO)-induced cerebral ischaemic injury. Neurological scores, 2,3,5-Triphenyltetrazolium chloride (TTC) staining, and hematoxylin-eosin staining (HE) staining were conducted to evaluate the neurological damage. Infarction rate and denatured cell index (DCI) were also calculated. The ultrastructure of neuron and blood-brain-barrier (BBB) was observed by transmission electron microscopy (TEM). Immunohistochemistry and reverse transcription-polymerase chain reaction (RT-PCR) were used to detect Bax, Bcl-2 and Caspase 3 expression. Furthermore, Claudin 5 also was detected through immunohistochemistry. RESULTS Benzoinum could significantly improve neurological function score and reduce cerebral infarction rate and DCI. In addition, benzoinum alleviated pathomorphological change and apoptosis in the brain tissue of MCAO rats. The results of TEM and claudin 5 expression of immunohistochemistry showed that benzoinum could play a neuroprotective effect in NVU. Also, benzoinum-enhanced Bcl2, and reduced Bax and Bax/Bcl-2 and Caspase 3, suggest that benzoinum provided a neuroprotective effect by inhibited cell apoptosis. CONCLUSION Benzoinum could play a neuroprotective role and regulate apoptosis for repair and stabilisation of NVU. This anti-apoptosis activity might be associated with the downregulation of Bax and Caspase 3, and the upregulation of Bcl2. Our present findings provide a promising medication for the treatment of ischaemic stroke.
Collapse
Affiliation(s)
- Qian Xie
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Rong Ma
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Xiaoqing Guo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Hai Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Jian Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| |
Collapse
|
34
|
Ren X, Wang Z, Guo C. MiR-195-5p Ameliorates Cerebral Ischemia-Reperfusion Injury by Regulating the PTEN-AKT Signaling Pathway. Neuropsychiatr Dis Treat 2021; 17:1231-1242. [PMID: 33958865 PMCID: PMC8093143 DOI: 10.2147/ndt.s297975] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/07/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND MiR-195-5p has been shown to play crucial roles in tumor inhibition, but its biological functions in cerebral ischemia-reperfusion (I/R) injury are unclear. METHODS To mimic cerebral I/R injury, mice were induced by transient middle cerebral artery occlusion (MCAO). Human brain microvascular endothelial cells (HBMVECs) were treated with oxygen-glucose deprivation (OGD) to mimic I/R injury in vitro. The expression of miR-195-5p and PTEN was detected by qRT-PCR or Western blot. Cell viability was evaluated by CCK-8 assay. Cell apoptosis was detected by flow cytometer. Cell death was detected using specific lactate dehydrogenase (LDH) cytotoxicity kit. Infarct volume in mice brains was evaluated by TTC staining. Histopathological analysis was performed by HE staining and TUNEL staining. The interaction between miR-195-5p and PTEN was determined by TargetScan and luciferase reporter assay. RESULTS MiR-195-5p was significantly downregulated and PTEN was upregulated during cerebral I/R injury both in vitro and in vivo. Overexpression of miR-195-5p efficiently enhanced cell viability, while reduced LDH release and apoptotic rate of OGD-treated HBMVECs in vitro. MiR-195-5p could negatively regulate the expression of PTEN by directly binding to its 3'-UTR. Overexpression of PTEN obviously attenuated the protective effect of miR-195-5p mimics on cell viability, LDH release and apoptosis in OGD-treated HBMVECs. Meanwhile, overexpression of miR-195-5p increased the expression levels of p-AKT in OGD-treated HBMVECs, while this effect was reversed by overexpression of PTEN. Moreover, overexpression of miR-195-5p efficiently ameliorated brain injury of mice after MCAO treatment in vivo. CONCLUSION Overexpression of miR-195-5p ameliorated cerebral I/R injury by regulating the PTEN-AKT signaling pathway, providing a potential therapeutic target for cerebral I/R injury.
Collapse
Affiliation(s)
- Xiaoli Ren
- Department of Neurology, Tianjin First Central Hospital, Tianjin, 300192, People's Republic of China
| | - Zhiyun Wang
- Department of Neurology, Tianjin First Central Hospital, Tianjin, 300192, People's Republic of China
| | - Congfang Guo
- Department of Emergency, Tianjin First Central Hospital, Tianjin, 300192, People's Republic of China
| |
Collapse
|
35
|
Chen X, Wang J, Xie F, Mou T, Zhong P, Hua H, Liu P, Yang Q. Long noncoding RNA LINC01559 promotes pancreatic cancer progression by acting as a competing endogenous RNA of miR-1343-3p to upregulate RAF1 expression. Aging (Albany NY) 2020; 12:14452-14466. [PMID: 32678071 PMCID: PMC7425501 DOI: 10.18632/aging.103487] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/27/2020] [Indexed: 12/17/2022]
Abstract
Background: An increasing number of studies have shown that lncRNAs are involved in the biological processes of pancreatic cancer (PC). Hence, we investigated the role of a novel noncoding RNA, LINC01559, involved in PC progression. Results: LINC01559 and RAF1 were highly expressed in PC, while miR-1343-3p had low expression. High expression of LINC01559 was significantly associated with large tumors, lymph node metastasis, and poor prognosis. Functional experiment results revealed that silencing of LINC01559 significantly suppressed PC cell proliferation and metastasis. Meanwhile, LINC01559 could act as a ceRNA to competitively sponge miR-1343-3p to up-regulate RAF1 and activate its downstream ERK pathway Conclusions: LINC01559 functions as an oncogene in PC progression through acting as a ceRNA of miR-1343-3p. Hence, LINC01559 is a potential diagnostic and therapeutic target. Methods: RT-qPCR was performed to determine the expression of LINC01559 and miR-1343-3p in PC. Individual patient data were collected to investigate the correlation between clinicopathological features and LINC01559 expression. Subsequently, the expression of LINC01559, miR-1343-3p, and RAF1 was altered using transfection of vectors or inhibitors. Gain- and loss-of-function assays and mechanistic assays were applied to verify the effects of LINC01559, miR-1343-3p, and RAF1 on PC cell proliferation and metastasis in vivo and in vitro.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Osteology, The First Peoples Hospital of Neijiang, Neijiang, Sichuan, China
| | - Jie Wang
- Department of Hepatic-Biliary-Pancreatic Surgery, The First Peoples Hospital of Neijiang, Neijiang, Sichuan, China
| | - Fei Xie
- Department of Hepatic-Biliary-Pancreatic Surgery, The First Peoples Hospital of Neijiang, Neijiang, Sichuan, China
| | - Tinggang Mou
- Department of Hepatic-Biliary-Pancreatic Surgery, The First Peoples Hospital of Neijiang, Neijiang, Sichuan, China
| | - Pingyong Zhong
- Department of Hepatic-Biliary-Pancreatic Surgery, The First Peoples Hospital of Neijiang, Neijiang, Sichuan, China
| | - Hao Hua
- Department of Hepatic-Biliary-Pancreatic Surgery, The First Peoples Hospital of Neijiang, Neijiang, Sichuan, China
| | - Pan Liu
- Department of Hepatic-Biliary-Pancreatic Surgery, The First Peoples Hospital of Neijiang, Neijiang, Sichuan, China
| | - Qin Yang
- Department of Gastroenterology, The First Peoples Hospital of Neijiang, Neijiang, Sichuan, China
| |
Collapse
|