1
|
Micheau J, Catheline G, Barse E, Hiba B, Marcilhac A, Allard M, Platt B, Riedel G. PLB2 Tau mice are impaired in novel and temporal object recognition and show corresponding traits in brain MRI. Brain Res Bull 2025; 220:111161. [PMID: 39645049 DOI: 10.1016/j.brainresbull.2024.111161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/28/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Recent clinical trials targeting tau protein aggregation have heightened interest in tau-based therapies for dementia. Success of such treatments depends crucially on translation from non-clinical animal models. Here, we present the age profile of the PLB2Tau knock-in model of fronto-temporal dementia in terms of cognition, and by utilising a directly translatable magnetic resonance imaging approach. Separate cohorts of mice aged 3, 6 and 12 months were tested in an object recognition protocol interrogating visual, spatial, and temporal discrimination in consecutive tests. Upon completion of their behavioural testing, animals were recorded in a 7 T MRI for brain structural integrity and diffusion tensor imaging (DTI) analysis. We report that PLB2Tau mice presented with an age-dependent deficit in novel object discrimination relative to wild-type controls at 6 and 12 months. Spatial and temporal discrimination, though not significantly different from controls, appeared extremely challenging for PLB2Tau subjects, especially at 12 months, since they explored objects less than controls and were devoid of memory. Controls readily recalled all relevant object-related information. At the same time, the T2 weighted voxel-based image analysis revealed a progressive shrinkage of total brain volumes in 6- and 12-month-old PLB2Tau mice as well as relative striatal, but not hippocampal volumes. A regional DTI analysis yielded only reduced mean diffusivity of the fimbria, but not CA1 or dentate gyrus, amygdala, cingulate cortex, or corpus callosum. These data confirm the PLB2Tau mouse as a translationally useful model for dementia research and suggest the importance of the hippocampal input as a determinant for novel object discrimination.
Collapse
Affiliation(s)
- Jacques Micheau
- University of Bordeaux, UMR CNRS 5287, EPHE-PSL, 176 rue Léo Saignat, Bordeaux Cedex 33076, France; Aquitaine Institute for Cognitive and Integrative Neurosciences, UMR CNRS 5287, EPHE-PSL, 176 rue Léo Saignat, Bordeaux Cedex 33076, France; Present address: Neurocentre Magendie, University of Bordeaux, INSERM U862, 146, rue Léo Saignat, Bordeaux cedex 33076, France
| | - Gwenaelle Catheline
- University of Bordeaux, UMR CNRS 5287, EPHE-PSL, 176 rue Léo Saignat, Bordeaux Cedex 33076, France; Aquitaine Institute for Cognitive and Integrative Neurosciences, UMR CNRS 5287, EPHE-PSL, 176 rue Léo Saignat, Bordeaux Cedex 33076, France
| | - Elodie Barse
- Aquitaine Institute for Cognitive and Integrative Neurosciences, UMR CNRS 5287, EPHE-PSL, 176 rue Léo Saignat, Bordeaux Cedex 33076, France
| | - Bassem Hiba
- Institute of Cognitive Sciences Marc Jeannerod, University of Lyon 1, UMR CNRS 5229, Bron 69500, France
| | - Anne Marcilhac
- MMDN, University of Montpellier 2, INSERM U1198 - EPHE-PSL University, Montpellier 34095, France
| | - Michèle Allard
- Aquitaine Institute for Cognitive and Integrative Neurosciences, UMR CNRS 5287, EPHE-PSL, 176 rue Léo Saignat, Bordeaux Cedex 33076, France
| | - Bettina Platt
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Gernot Riedel
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| |
Collapse
|
2
|
Casciano F, Zauli E, Celeghini C, Caruso L, Gonelli A, Zauli G, Pignatelli A. Retinal Alterations Predict Early Prodromal Signs of Neurodegenerative Disease. Int J Mol Sci 2024; 25:1689. [PMID: 38338966 PMCID: PMC10855697 DOI: 10.3390/ijms25031689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Neurodegenerative diseases are an increasingly common group of diseases that occur late in life with a significant impact on personal, family, and economic life. Among these, Alzheimer's disease (AD) and Parkinson's disease (PD) are the major disorders that lead to mild to severe cognitive and physical impairment and dementia. Interestingly, those diseases may show onset of prodromal symptoms early after middle age. Commonly, the evaluation of these neurodegenerative diseases is based on the detection of biomarkers, where functional and structural magnetic resonance imaging (MRI) have shown a central role in revealing early or prodromal phases, although it can be expensive, time-consuming, and not always available. The aforementioned diseases have a common impact on the visual system due to the pathophysiological mechanisms shared between the eye and the brain. In Parkinson's disease, α-synuclein deposition in the retinal cells, as well as in dopaminergic neurons of the substantia nigra, alters the visual cortex and retinal function, resulting in modifications to the visual field. Similarly, the visual cortex is modified by the neurofibrillary tangles and neuritic amyloid β plaques typically seen in the Alzheimer's disease brain, and this may reflect the accumulation of these biomarkers in the retina during the early stages of the disease, as seen in postmortem retinas of AD patients. In this light, the ophthalmic evaluation of retinal neurodegeneration could become a cost-effective method for the early diagnosis of those diseases, overcoming the limitations of functional and structural imaging of the deep brain. This analysis is commonly used in ophthalmic practice, and interest in it has risen in recent years. This review will discuss the relationship between Alzheimer's disease and Parkinson's disease with retinal degeneration, highlighting how retinal analysis may represent a noninvasive and straightforward method for the early diagnosis of these neurodegenerative diseases.
Collapse
Affiliation(s)
- Fabio Casciano
- Department of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Enrico Zauli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Claudio Celeghini
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Lorenzo Caruso
- Department of Environment and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Arianna Gonelli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialistic Hospital, Riyadh 12329, Saudi Arabia
| | - Angela Pignatelli
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44124 Ferrara, Italy
| |
Collapse
|
3
|
Geng F, Zhao N, Chen X, Liu X, Zhu M, Jiang Y, Ren Q. Transcriptome analysis identifies the role of Class I histone deacetylase in Alzheimer's disease. Heliyon 2023; 9:e18008. [PMID: 37449137 PMCID: PMC10336799 DOI: 10.1016/j.heliyon.2023.e18008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/08/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023] Open
Abstract
Epigenetics modification is a process that does not change the sequence of deoxyribonucleic acid (DNA) in disease progression but can alter the genetic expression of the brain in Alzheimer's disease (AD). In this study, we deployed the weighted gene co-expression network analysis (WGCNA) to explore the role of Class I histone deacetylases (HDACs) in AD, which included HDAC1, HDAC2, HDAC3, and HDAC8. The aim of the study was to find how Class I HDACs affected AD pathology by analyzing the Gene Expression Omnibus (GEO) microarray datasets GSE33000. We found that HDAC1 and HDAC8 were more highly expressed in the cortex of AD patients than in Controls, while HDAC2 and HDAC3 were lower expressed. By WGCNA analysis, we found the blue module was associated with HDAC1 and HDAC8, and the turquoise module was related to HDAC2 and HDAC3. Functional enrichment analysis revealed that the Wnt signaling pathway and synaptic plasticity played an important role in the modification of HDAC1 and HDAC8 while gap junction and cell-cell junction were involved in the regulation of HDAC2 and HDAC3 in the disease progression of AD. By Receiver Operating Characteristics (ROC) analysis, we concluded that HDAC1 might be the most probable diagnostic biomarker of Class I HDACs for AD. Our study provided a comprehensive understanding of Class I HDACs and provided new insight into the function of HDAC1 in AD disease progression.
Collapse
Affiliation(s)
- Fan Geng
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Na Zhao
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Xiu Chen
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - XueTing Liu
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - MengMeng Zhu
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Ying Jiang
- Department of Neurology, The 962nd Hospital of the PLA Joint Logistic Support Force, Harbin 150080, China
| | - QingGuo Ren
- School of Medicine, Southeast University, Nanjing, 210009, China
- Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, 210009, China
| |
Collapse
|
4
|
Fatemeh B, Koorosh S, Amir S, Yaghoub F, Javad MZ. Intra-hippocampal cis-P tau microinjection induces long-term changes in behavior and synaptic plasticity in mice. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2023; 19:9. [PMID: 37231523 DOI: 10.1186/s12993-023-00211-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 05/15/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Alzheimer's disease is accompanied by an abnormal high accumulation of cis-P tau. However, the long-term changes in behavior following tau accumulation remains under debate. The present study investigated the long-term effects of tauopathy on learning and memory, synaptic plasticity, and hippocampal cell numbers. RESULTS Cis-P tau was microinjected into the dorsal hippocampus to generate Alzheimer's like-disease model in C57BL/6 mice. Cis-P tau injected animals showed a significant impairment in learning and memory in Y-maze and Barnes maze tests. In another group of animals, the generation of long-term potentiation (LTP) was evaluated in hippocampal slices 7 months after cis-P tau injection. LTP induction was disrupted only in the dorsal but not ventral hippocampal slices. The basal synaptic transmission was also reduced in dorsal hippocampal slices. In addition, hippocampal sampling was done, and the number of cells was assessed by Nissl staining. Obtained results indicated that the number of survived cells was significantly reduced in the dorsal and ventral hippocampus of cis P-tau injected animals compared to the animals in control group. However, the decrement of cell number was higher in the dorsal compared to the ventral hippocampus. CONCLUSIONS In conclusion, intra-hippocampal cis-P tau injection produced learning and memory impairment at 7 months after its injection. This impairment might result from LTP disruption and a significant decrease in the number of neurons in the dorsal hippocampus.
Collapse
Affiliation(s)
- Bakhtiarzadeh Fatemeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, 14115-331, Tehran, 1411713116, Iran
| | - Shahpasand Koorosh
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Shojaei Amir
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, 14115-331, Tehran, 1411713116, Iran
- Institute for Brain Sciences and Cognition, Tarbiat Modares University, Tehran, Iran
| | - Fathollahi Yaghoub
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, 14115-331, Tehran, 1411713116, Iran
| | - Mirnajafi-Zadeh Javad
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, 14115-331, Tehran, 1411713116, Iran.
- Institute for Brain Sciences and Cognition, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
5
|
Williams E, Mutlu-Smith M, Alex A, Chin XW, Spires-Jones T, Wang SH. Mid-Adulthood Cognitive Training Improves Performance in a Spatial Task but Does Not Ameliorate Hippocampal Pathology in a Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2023; 93:683-704. [PMID: 37066912 DOI: 10.3233/jad-221185] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
BACKGROUND Prior experience in early life has been shown to improve performance in aging and mice with Alzheimer's disease (AD) pathology. However, whether cognitive training at a later life stage would benefit subsequent cognition and reduce pathology in AD mice needs to be better understood. OBJECTIVE This study aimed to verify if behavioral training in mid-adulthood would improve subsequent cognition and reduce AD pathology and astrogliosis. METHODS Mixed-sex APP/PS1 and wildtype littermate mice received a battery of behavioral training, composed of spontaneous alternation in the Y-maze, novel object recognition and location tasks, and spatial training in the water maze, or handling only at 7 months of age. The impact of AD genotype and prior training on subsequent learning and memory of aforementioned tasks were assessed at 9 months. RESULTS APP/PS1 mice made more errors than wildtype littermates in the radial-arm water maze (RAWM) task. Prior training prevented this impairment in APP/PS1 mice. Prior training also contributed to better efficiency in finding the escape platform in both APP/PS1 mice and wildtype littermates. Short-term and long-term memory of this RAWM task, of a reversal task, and of a transfer task were comparable among APP/PS1 and wildtype mice, with or without prior training. Amyloid pathology and astrogliosis in the hippocampus were also comparable between the APP/PS1 groups. CONCLUSION These data suggest that cognitive training in mid-adulthood improves subsequent accuracy in AD mice and efficiency in all mice in the spatial task. Cognitive training in mid-adulthood provides no clear benefit on memory or on amyloid pathology in midlife.
Collapse
Affiliation(s)
- Elizabeth Williams
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Menekşe Mutlu-Smith
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Ashli Alex
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Xi Wei Chin
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Tara Spires-Jones
- Centre for Discovery Brain Sciences, UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Szu-Han Wang
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|