1
|
Becks L, Gaedke U, Klauschies T. Emergent feedback between symbiosis form and population dynamics. Trends Ecol Evol 2025; 40:449-459. [PMID: 40089449 DOI: 10.1016/j.tree.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/14/2025] [Accepted: 02/14/2025] [Indexed: 03/17/2025]
Abstract
Symbiotic relationships represent prolonged physical interactions between different species and include various forms such as mutualism, commensalism, exploitation, and competition. Here, we show that the form of symbiosis may change with the densities of the symbiotic partners as they influence the costs and benefits each species experiences. In turn, the form of symbiosis is expected to influence species persistence, population dynamics, and ultimately ecosystem stability. Based on this, we introduce the theoretical concept of a density-symbiosis feedback, where population densities affect the form of symbiosis, and symbiosis form in return affects population dynamics. This dynamic interplay calls for a re-evaluation of traditional ecological concepts and a framework considering the flexibility in symbiosis forms.
Collapse
Affiliation(s)
- Lutz Becks
- Department of Biology, University of Konstanz, Aquatic Ecology and Evolution, Konstanz, Germany.
| | - Ursula Gaedke
- University of Potsdam, Department of Ecology and Ecosystem Modelling, Potsdam, Germany
| | - Toni Klauschies
- University of Potsdam, Department of Ecology and Ecosystem Modelling, Potsdam, Germany
| |
Collapse
|
2
|
Felpeto AB, Rivera MF, Vasconcelos VM. The effects of the toxic dinoflagellate Alexandrium on feeding, reproduction and mortality of the copepod Acartia: A systematic review employing weighted linear models. HARMFUL ALGAE 2024; 137:102659. [PMID: 39003023 DOI: 10.1016/j.hal.2024.102659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/14/2024] [Accepted: 05/24/2024] [Indexed: 07/15/2024]
Abstract
The study of interactions between copepods of the genus Acartia and toxic dinoflagellates of the genus Alexandrium has been an important topic during the last four decades. Feeding behavior and physiological responses of copepods have been studied in laboratory and field experiments, sometimes with contradictory results. More recently, an evolutionary adaptive mechanism leading to enhanced tolerance of Alexandrium toxins in a population of Acartia experiencing chronic exposure to these dinoflagellates has been reported. In the present work, we collected data from the existing studies on the effects of Alexandrium on feeding, reproduction and mortality of Acartia. With these data, we performed a systematic review consisting of a secondary analysis employing general or generalized linear models, weighting data from different studies by the reciprocal of their standard deviation. Our first aim was to overcome shortcomings of individual studies: limited ranges of the variables and overlooked variables (experiment length, population adaptation). These shortcomings could have led to inconsistent conclusions by missing heterogeneous patterns in copepod responses and in the interactions between variables. Our second aim was to test the enhanced physiological performance of chronically exposed relative to naïve copepod populations over a wide geographic range. We found that the feeding rate is enhanced by increased food biomass, irrespective of the food type. Toxins do not have a clear effect on egg production and have a bi-phasic effect on egg hatching success, which was negative above a specific threshold. Toxins also increased mortality. Experiment length had a positive effect on egg production and negative on egg hatching. Naïve copepod populations showed consistently lower ingestion of Alexandrium and egg hatching rates, thereby supporting the spread of the aforementioned mechanism across populations over a wide geographic range.
Collapse
Affiliation(s)
- Aldo Barreiro Felpeto
- CIIMAR, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n 4450-208, Matosinhos, Portugal.
| | - Máximo Frangopulos Rivera
- Centro de Investigación GAIA Antártica (CIGA), Universidad de Magallanes, Avenida Bulnes 01855, Punta Arenas 6210427, Chile; Cape Horn International Center (CHIC), Universidad de Magallanes, Puerto Williams, Chile; Millenium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Las Palmeras 3425, CP 780003, Santiago, Chile
| | - Vitor Manuel Vasconcelos
- CIIMAR, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n 4450-208, Matosinhos, Portugal; Faculty of Sciences, Porto University, Porto, Portugal
| |
Collapse
|
3
|
Calcagno V, David P, Jarne P, Massol F. Coevolution of species colonisation rates controls food-chain length in spatially structured food webs. Ecol Lett 2023; 26 Suppl 1:S140-S151. [PMID: 37303299 DOI: 10.1111/ele.14263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 04/13/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023]
Abstract
How the complexity of food webs depends on environmental variables is a long-standing ecological question. It is unclear though how food-chain length should vary with adaptive evolution of the constitutive species. Here we model the evolution of species colonisation rates and its consequences on occupancies and food-chain length in metacommunities. When colonisation rates can evolve, longer food-chains can persist. Extinction, perturbation and habitat loss all affect evolutionarily stable colonisation rates, but the strength of the competition-colonisation trade-off has a major role: weaker trade-offs yield longer chains. Although such eco-evo dynamics partly alleviates the spatial constraint on food-chain length, it is no magic bullet: the highest, most vulnerable, trophic levels are also those that least benefit from evolution. We provide qualitative predictions regarding how trait evolution affects the response of communities to disturbance and habitat loss. This highlights the importance of eco-evolutionary dynamics at metacommunity level in determining food-chain length.
Collapse
Affiliation(s)
- Vincent Calcagno
- Institut Sophia Agrobiotech, Université Côte d'Azur - CNRS - INRAE, Sophia Antipolis Cedex, France
| | - Patrice David
- CEFE, UMR 5175, CNRS - Université de Montpellier - IRD - EPHE, Montpellier Cedex 5, France
| | - Philippe Jarne
- CEFE, UMR 5175, CNRS - Université de Montpellier - IRD - EPHE, Montpellier Cedex 5, France
| | - François Massol
- Institut Pasteur de Lille, Univ. Lille, CNRS, Inserm, CHU Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
4
|
Fronhofer EA, Corenblit D, Deshpande JN, Govaert L, Huneman P, Viard F, Jarne P, Puijalon S. Eco-evolution from deep time to contemporary dynamics: The role of timescales and rate modulators. Ecol Lett 2023; 26 Suppl 1:S91-S108. [PMID: 37840024 DOI: 10.1111/ele.14222] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 10/17/2023]
Abstract
Eco-evolutionary dynamics, or eco-evolution for short, are often thought to involve rapid demography (ecology) and equally rapid heritable phenotypic changes (evolution) leading to novel, emergent system behaviours. We argue that this focus on contemporary dynamics is too narrow: Eco-evolution should be extended, first, beyond pure demography to include all environmental dimensions and, second, to include slow eco-evolution which unfolds over thousands or millions of years. This extension allows us to conceptualise biological systems as occupying a two-dimensional time space along axes that capture the speed of ecology and evolution. Using Hutchinson's analogy: Time is the 'theatre' in which ecology and evolution are two interacting 'players'. Eco-evolutionary systems are therefore dynamic: We identify modulators of ecological and evolutionary rates, like temperature or sensitivity to mutation, which can change the speed of ecology and evolution, and hence impact eco-evolution. Environmental change may synchronise the speed of ecology and evolution via these rate modulators, increasing the occurrence of eco-evolution and emergent system behaviours. This represents substantial challenges for prediction, especially in the context of global change. Our perspective attempts to integrate ecology and evolution across disciplines, from gene-regulatory networks to geomorphology and across timescales, from today to deep time.
Collapse
Affiliation(s)
| | - Dov Corenblit
- GEOLAB, Université Clermont Auvergne, CNRS, Clermont-Ferrand, France
- Laboratoire écologie fonctionnelle et environnement, Université Paul Sabatier, CNRS, INPT, UPS, Toulouse, France
| | | | - Lynn Govaert
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Philippe Huneman
- Institut d'Histoire et de Philosophie des Sciences et des Techniques (CNRS/Université Paris I Sorbonne), Paris, France
| | - Frédérique Viard
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Philippe Jarne
- CEFE, UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - IRD - EPHE, Montpellier Cedex 5, France
| | - Sara Puijalon
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, France
| |
Collapse
|
5
|
Li X, Klauschies T, Yang W, Yang Z, Gaedke U. Trait adaptation enhances species coexistence and reduces bistability in an intraguild predation module. Ecol Evol 2023; 13:e9749. [PMID: 36703712 PMCID: PMC9871339 DOI: 10.1002/ece3.9749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/25/2023] Open
Abstract
Disentangling how species coexist in an intraguild predation (IGP) module is a great step toward understanding biodiversity conservation in complex natural food webs. Trait variation enabling individual species to adjust to ambient conditions may facilitate coexistence. However, it is still unclear how coadaptation of all species within the IGP module, constrained by complex trophic interactions and trade-offs among species-specific traits, interactively affects species coexistence and population dynamics. We developed an adaptive IGP model allowing prey and predator species to mutually adjust their species-specific defensive and offensive strategies to each other. We investigated species persistence, the temporal variation of population dynamics, and the occurrence of bistability in IGP models without and with trait adaptation along a gradient of enrichment represented by carrying capacity of the basal prey for different widths and speeds of trait adaptation within each species. Results showed that trait adaptation within multiple species greatly enhanced the coexistence of all three species in the module. A larger width of trait adaptation facilitated species coexistence independent of the speed of trait adaptation at lower enrichment levels, while a sufficiently large and fast trait adaptation promoted species coexistence at higher enrichment levels. Within the oscillating regime, increasing the speed of trait adaptation reduced the temporal variability of biomasses of all species. Finally, species coadaptation strongly reduced the presence of bistability and promoted the attractor with all three species coexisting. These findings resolve the contradiction between the widespread occurrence of IGP in nature and the theoretical predictions that IGP should only occur under restricted conditions and lead to unstable population dynamics, which broadens the mechanisms presumably underlying the maintenance of IGP modules in nature. Generally, this study demonstrates a decisive role of mutual adaptation among complex trophic interactions, for enhancing interspecific diversity and stabilizing food web dynamics, arising, for example, from intraspecific diversity.
Collapse
Affiliation(s)
- Xiaoxiao Li
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and ResourcesGuangdong University of TechnologyGuangzhouChina
- State Key Laboratory of Water Environment Simulation, School of EnvironmentBeijing Normal UniversityBeijingChina
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)GuangzhouChina
| | - Toni Klauschies
- Department of Ecology and Ecosystem ModellingInstitute of Biochemistry and Biology, University of PotsdamPotsdamGermany
| | - Wei Yang
- State Key Laboratory of Water Environment Simulation, School of EnvironmentBeijing Normal UniversityBeijingChina
- Yellow River Estuary Wetland Ecosystem Observation and Research StationMinistry of EducationShandongChina
| | - Zhifeng Yang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and ResourcesGuangdong University of TechnologyGuangzhouChina
- State Key Laboratory of Water Environment Simulation, School of EnvironmentBeijing Normal UniversityBeijingChina
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)GuangzhouChina
| | - Ursula Gaedke
- Department of Ecology and Ecosystem ModellingInstitute of Biochemistry and Biology, University of PotsdamPotsdamGermany
| |
Collapse
|
6
|
Synodinos AD, Karnatak R, Aguilar‐Trigueros CA, Gras P, Heger T, Ionescu D, Maaß S, Musseau CL, Onandia G, Planillo A, Weiss L, Wollrab S, Ryo M. The rate of environmental change as an important driver across scales in ecology. OIKOS 2022. [DOI: 10.1111/oik.09616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Alexis D. Synodinos
- Theoretical and Experimental Ecology Station, CNRS Moulis France
- Plant Ecology and Nature Conservation, Univ. of Potsdam Potsdam Germany
- Berlin‐Brandenburg Inst. of Advanced Biodiversity Research Berlin Germany
| | - Rajat Karnatak
- Berlin‐Brandenburg Inst. of Advanced Biodiversity Research Berlin Germany
- Leibniz Inst. of Freshwater Ecology and Inland Fisheries Berlin Germany
| | - Carlos A. Aguilar‐Trigueros
- Berlin‐Brandenburg Inst. of Advanced Biodiversity Research Berlin Germany
- Freie Universität Berlin, Inst. of Biology Berlin Germany
| | - Pierre Gras
- Berlin‐Brandenburg Inst. of Advanced Biodiversity Research Berlin Germany
- Dept of Ecological Dynamics, Leibniz Inst. for Zoo and Wildlife Research (IZW) Berlin Germany
| | - Tina Heger
- Berlin‐Brandenburg Inst. of Advanced Biodiversity Research Berlin Germany
- Leibniz Inst. of Freshwater Ecology and Inland Fisheries Berlin Germany
- Freie Universität Berlin, Inst. of Biology Berlin Germany
- Biodiversity Research/Botany, Univ. of Potsdam Potsdam Germany
- Restoration Ecology, Technical Univ. of Munich Freising Germany
| | - Danny Ionescu
- Berlin‐Brandenburg Inst. of Advanced Biodiversity Research Berlin Germany
- Leibniz Inst. of Freshwater Ecology and Inland Fisheries (IGB) Neuglobsow Germany
| | - Stefanie Maaß
- Plant Ecology and Nature Conservation, Univ. of Potsdam Potsdam Germany
- Berlin‐Brandenburg Inst. of Advanced Biodiversity Research Berlin Germany
| | - Camille L. Musseau
- Berlin‐Brandenburg Inst. of Advanced Biodiversity Research Berlin Germany
- Dept of Biology, Chemistry, Pharmacy, Inst. of Biology, Freie Univ. Berlin Berlin Germany
- Leibniz Inst.I of Freshwater Ecology and Inland Fisheries (IGB) Berlin Germany
| | - Gabriela Onandia
- Berlin‐Brandenburg Inst. of Advanced Biodiversity Research Berlin Germany
- Research Platform Data Analysis and Simulation, Leibniz Centre for Agricultural Landscape Research (ZALF) Muencheberg Germany
| | - Aimara Planillo
- Berlin‐Brandenburg Inst. of Advanced Biodiversity Research Berlin Germany
- Dept of Ecological Dynamics, Leibniz Inst. for Zoo and Wildlife Research (IZW) Berlin Germany
| | - Lina Weiss
- Plant Ecology and Nature Conservation, Univ. of Potsdam Potsdam Germany
- Berlin‐Brandenburg Inst. of Advanced Biodiversity Research Berlin Germany
| | - Sabine Wollrab
- Berlin‐Brandenburg Inst. of Advanced Biodiversity Research Berlin Germany
- Leibniz Inst. of Freshwater Ecology and Inland Fisheries Berlin Germany
| | - Masahiro Ryo
- Berlin‐Brandenburg Inst. of Advanced Biodiversity Research Berlin Germany
- Research Platform Data Analysis and Simulation, Leibniz Centre for Agricultural Landscape Research (ZALF) Muencheberg Germany
- Environment and Natural Sciences, Brandenburg Univ. of Technology Cottbus‐Senftenberg Cottbus Germany
| |
Collapse
|
7
|
Hansson EM, Childs DZ, Beckerman AP. Mesostats—A multiplexed, low-cost, do-it-yourself continuous culturing system for experimental evolution of mesocosms. PLoS One 2022; 17:e0272052. [PMID: 35901067 PMCID: PMC9333204 DOI: 10.1371/journal.pone.0272052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/12/2022] [Indexed: 11/19/2022] Open
Abstract
Microbial experimental evolution allows studying evolutionary dynamics in action and testing theory predictions in the lab. Experimental evolution in chemostats (i.e. continuous flow through cultures) has recently gained increased interest as it allows tighter control of selective pressures compared to static batch cultures, with a growing number of efforts to develop systems that are easier and cheaper to construct. This protocol describes the design and construction of a multiplexed chemostat array (dubbed “mesostats”) designed for cultivation of algae in 16 concurrent populations, specifically intended for studying adaptation to herbicides. We also present control data from several experiments run on the system to show replicability, data illustrating the effects of common issues like leaks, contamination and clumps, and outline possible modifications and adaptations of the system for future research.
Collapse
Affiliation(s)
- Erika M. Hansson
- School of Biosciences, The University of Sheffield, Sheffield, South Yorkshire, United Kingdom
- * E-mail:
| | - Dylan Z. Childs
- School of Biosciences, The University of Sheffield, Sheffield, South Yorkshire, United Kingdom
| | - Andrew P. Beckerman
- School of Biosciences, The University of Sheffield, Sheffield, South Yorkshire, United Kingdom
| |
Collapse
|
8
|
Baker HK, Li SS, Samu SC, Jones NT, Symons CC, Shurin JB. Prey naiveté alters the balance of consumptive and non‐consumptive predator effects and shapes trophic cascades in freshwater plankton. OIKOS 2022. [DOI: 10.1111/oik.09173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Henry K. Baker
- Section of Ecology, Behavior and Evolution, Univ. of California San Diego CA USA
| | - Stephanie S. Li
- Section of Ecology, Behavior and Evolution, Univ. of California San Diego CA USA
- School of Environment and Natural Resources, The Ohio State Univ. Columbus OH USA
| | - Stefan C. Samu
- Section of Ecology, Behavior and Evolution, Univ. of California San Diego CA USA
| | - Natalie T. Jones
- Section of Ecology, Behavior and Evolution, Univ. of California San Diego CA USA
- School of Biological Sciences, Univ. of Queensland St. Lucia QLD Australia
| | - Celia C. Symons
- Dept of Ecology and Evolutionary Biology, Univ. of California Irvine CA USA
| | - Jonathan B. Shurin
- Section of Ecology, Behavior and Evolution, Univ. of California San Diego CA USA
| |
Collapse
|
9
|
Yamamichi M. How does genetic architecture affect eco-evolutionary dynamics? A theoretical perspective. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200504. [PMID: 35634922 PMCID: PMC9149794 DOI: 10.1098/rstb.2020.0504] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Recent studies have revealed the importance of feedbacks between contemporary rapid evolution (i.e. evolution that occurs through changes in allele frequencies) and ecological dynamics. Despite its inherent interdisciplinary nature, however, studies on eco-evolutionary feedbacks have been mostly ecological and tended to focus on adaptation at the phenotypic level without considering the genetic architecture of evolutionary processes. In empirical studies, researchers have often compared ecological dynamics when the focal species under selection has a single genotype with dynamics when it has multiple genotypes. In theoretical studies, common approaches are models of quantitative traits where mean trait values change adaptively along the fitness gradient and Mendelian traits with two alleles at a single locus. On the other hand, it is well known that genetic architecture can affect short-term evolutionary dynamics in population genetics. Indeed, recent theoretical studies have demonstrated that genetic architecture (e.g. the number of loci, linkage disequilibrium and ploidy) matters in eco-evolutionary dynamics (e.g. evolutionary rescue where rapid evolution prevents extinction and population cycles driven by (co)evolution). I propose that theoretical approaches will promote the synthesis of functional genomics and eco-evolutionary dynamics through models that combine population genetics and ecology as well as nonlinear time-series analyses using emerging big data.
This article is part of the theme issue ‘Genetic basis of adaptation and speciation: from loci to causative mutations’.
Collapse
Affiliation(s)
- Masato Yamamichi
- School of Biological Sciences, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| |
Collapse
|
10
|
Bisschop K, Alzate A, Bonte D, Etienne RS. The demographic consequences of adaptation: evidence from experimental evolution. Am Nat 2022; 199:729-742. [DOI: 10.1086/719183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Velzen E, Gaedke U, Klauschies T. Quantifying the capacity for contemporary trait changes to drive intermittent predator‐prey cycles. ECOL MONOGR 2022. [DOI: 10.1002/ecm.1505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ellen Velzen
- Department of Ecology and Ecosystem Modelling, Institute of Biochemistry and Biology University of Potsdam, Maulbeerallee 2 Potsdam Germany
| | - Ursula Gaedke
- Department of Ecology and Ecosystem Modelling, Institute of Biochemistry and Biology University of Potsdam, Maulbeerallee 2 Potsdam Germany
| | - Toni Klauschies
- Department of Ecology and Ecosystem Modelling, Institute of Biochemistry and Biology University of Potsdam, Maulbeerallee 2 Potsdam Germany
| |
Collapse
|
12
|
Dwyer G, Mihaljevic JR, Dukic V. Can Eco-Evo Theory Explain Population Cycles in the Field? Am Nat 2022; 199:108-125. [DOI: 10.1086/717178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Wood ZT, Lopez LK, Symons CC, Robinson RR, Palkovacs EP, Kinnison MT. Drivers and cascading ecological consequences of Gambusia affinis trait variation. Am Nat 2021; 199:E91-E110. [DOI: 10.1086/717866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
14
|
Abstract
AbstractMany organisms are specialized, and these narrow niches are often explained with trade-offs-the inability for one organism to express maximal performance in two or more environments. However, evidence is lacking that trade-offs are sufficient to explain specialists. Several lines of theoretical inquiry suggest that populations can specialize without explicit trade-offs, as a result of relaxed selection in generalists for their performance in rare environments. Here, I synthesize and extend these approaches, showing that emergent asymmetries in evolvability can push a population toward specialization in the absence of trade-offs and in the presence of substantial ecological costs of specialism. Simulations are used to demonstrate how adaptation to a more common environment interferes with adaptation to a less common but otherwise equal alternative environment and that this interference is greatly exacerbated at low recombination rates. This adaptive process of specialization can effectively trap populations in a suboptimal niche. These modeling results predict that transient differences in evolvability across traits during a single episode of adaptation could have long-term consequences for a population's niche.
Collapse
|
15
|
Wood ZT, Palkovacs EP, Olsen BJ, Kinnison MT. The Importance of Eco-evolutionary Potential in the Anthropocene. Bioscience 2021. [DOI: 10.1093/biosci/biab010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Humans are dominant global drivers of ecological and evolutionary change, rearranging ecosystems and natural selection. In the present article, we show increasing evidence that human activity also plays a disproportionate role in shaping the eco-evolutionary potential of systems—the likelihood of ecological change generating evolutionary change and vice versa. We suggest that the net outcome of human influences on trait change, ecology, and the feedback loops that link them will often (but not always) be to increase eco-evolutionary potential, with important consequences for stability and resilience of populations, communities, and ecosystems. We also integrate existing ecological and evolutionary metrics to predict and manage the eco-evolutionary dynamics of human-affected systems. To support this framework, we use a simple eco–evo feedback model to show that factors affecting eco-evolutionary potential are major determinants of eco-evolutionary dynamics. Our framework suggests that proper management of anthropogenic effects requires a science of human effects on eco-evolutionary potential.
Collapse
Affiliation(s)
- Zachary T Wood
- School of Biology and Ecology and with the Maine Center for Genetics in the Environment at the University of Maine, Orono, Maine, United States
| | - Eric P Palkovacs
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, United States
| | - Brian J Olsen
- School of Biology and Ecology and with the Maine Center for Genetics in the Environment at the University of Maine, Orono, Maine, United States
| | - Michael T Kinnison
- School of Biology and Ecology and with the Maine Center for Genetics in the Environment at the University of Maine, Orono, Maine, United States
| |
Collapse
|
16
|
The evolution of niche overlap and competitive differences. Nat Ecol Evol 2021; 5:330-337. [PMID: 33495591 DOI: 10.1038/s41559-020-01383-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 12/11/2020] [Indexed: 01/29/2023]
Abstract
Competition can result in evolutionary changes to coexistence between competitors but there are no theoretical models that predict how the components of coexistence change during this eco-evolutionary process. Here we study the evolution of the coexistence components, niche overlap and competitive differences, in a two-species eco-evolutionary model based on consumer-resource interactions and quantitative genetic inheritance. Species evolve along a one-dimensional trait axis that allows for changes in both niche position and species intrinsic growth rates. There are three main results. First, the breadth of the environment has a strong effect on the dynamics, with broader environments leading to reduced niche overlap and enhanced coexistence. Second, coexistence often involves a reduction in niche overlap while competitive differences stay relatively constant or vice versa; in general changes in competitive differences maintain coexistence only when niche overlap remains constant. Large simultaneous changes in niche overlap and competitive difference often result in one of the species being excluded. Third, provided that the species evolve to a state where they coexist, the final niche overlap and competitive difference values are independent of the system's initial state, although they do depend on the model's parameters. The model suggests that evolution is often a destructive force for coexistence due to evolutionary changes in competitive differences, a finding that expands the paradox of diversity maintenance.
Collapse
|
17
|
Perälä T, Kuparinen A. Eco-evolutionary dynamics driven by fishing: From single species models to dynamic evolution within complex food webs. Evol Appl 2020; 13:2507-2520. [PMID: 33294005 PMCID: PMC7691468 DOI: 10.1111/eva.13058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 06/16/2020] [Accepted: 06/23/2020] [Indexed: 01/04/2023] Open
Abstract
Evidence of contemporary evolution across ecological time scales stimulated research on the eco-evolutionary dynamics of natural populations. Aquatic systems provide a good setting to study eco-evolutionary dynamics owing to a wealth of long-term monitoring data and the detected trends in fish life-history traits across intensively harvested marine and freshwater systems. In the present study, we focus on modelling approaches to simulate eco-evolutionary dynamics of fishes and their ecosystems. Firstly, we review the development of modelling from single species to multispecies approaches. Secondly, we advance the current state-of-the-art methodology by implementing evolution of life-history traits of a top predator into the context of complex food web dynamics as described by the allometric trophic network (ATN) framework. The functioning of our newly developed eco-evolutionary ATNE framework is illustrated using a well-studied lake food web. Our simulations show how both natural selection arising from feeding interactions and size-selective fishing cause evolutionary changes in the top predator and how those feed back to its prey species and further cascade down to lower trophic levels. Finally, we discuss future directions, particularly the need to integrate genomic discoveries into eco-evolutionary projections.
Collapse
Affiliation(s)
- Tommi Perälä
- Department of Biological and Environmental SciencesUniversity of JyväskyläJyväskyläFinland
| | - Anna Kuparinen
- Department of Biological and Environmental SciencesUniversity of JyväskyläJyväskyläFinland
| |
Collapse
|
18
|
de Roos AM. Effects of life history and individual development on community dynamics: A review of counterintuitive consequences. Ecol Res 2020; 35:930-946. [PMID: 33380774 PMCID: PMC7756606 DOI: 10.1111/1440-1703.12174] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/30/2020] [Accepted: 08/07/2020] [Indexed: 11/27/2022]
Abstract
Even though individual life history is the focus of much ecological research, its importance for the dynamics and structure of ecological communities is unclear, or is it a topic of much ongoing research. In this paper I highlight the key life history traits that may lead to effects of life history or ontogeny on ecological communities. I show that asymmetries in the extent of food limitation between individuals in different life stage can give rise to an increase in efficiency with which resources are used for population growth when conditions change. This change in efficiency may result in a positive relationship between stage-specific density and mortality. The positive relationship between density and mortality in turn leads to predictions about community structure that are not only diametrically opposite to the expectations based on theory that ignores population structure but are also intuitively hard to accept. I provide a few examples that illustrate how taking into account intraspecific differences due to ontogeny radically changes the theoretical expectations regarding the possible outcomes of community dynamics. As the most compelling example I show how a so-called double-handicapped looser, that is, a consumer species that is both competitively inferior in the absence of predators and experiences higher mortality when predators are present, can nonetheless oust its opponent that it competes with for the same resource and is exposed to the same predator.
Collapse
Affiliation(s)
- André M. de Roos
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamNetherlands
- The Santa Fe InstituteSanta FeNew MexicoUSA
| |
Collapse
|
19
|
Wasserman BA, Paccard A, Apgar TM, Des Roches S, Barrett RDH, Hendry AP, Palkovacs EP. Ecosystem size shapes antipredator trait evolution in estuarine threespine stickleback. OIKOS 2020. [DOI: 10.1111/oik.07482] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Ben A. Wasserman
- Dept of Ecology and Evolutionary Biology, Univ. of California Santa Cruz CA USA
| | | | - Travis M. Apgar
- Dept of Ecology and Evolutionary Biology, Univ. of California Santa Cruz CA USA
| | - Simone Des Roches
- Dept of Urban Design and Planning, Univ. of Washington Seattle WA USA
| | | | - Andrew P. Hendry
- Redpath Museum and Dept of Biology, McGill Univ. Montreal QC Canada
| | - Eric P. Palkovacs
- Dept of Ecology and Evolutionary Biology, Univ. of California Santa Cruz CA USA
| |
Collapse
|
20
|
Martinez ND. Allometric Trophic Networks From Individuals to Socio-Ecosystems: Consumer–Resource Theory of the Ecological Elephant in the Room. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
21
|
Karakoç C, Clark AT, Chatzinotas A. Diversity and coexistence are influenced by time-dependent species interactions in a predator-prey system. Ecol Lett 2020; 23:983-993. [PMID: 32243074 DOI: 10.1111/ele.13500] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/08/2019] [Accepted: 02/23/2020] [Indexed: 12/17/2022]
Abstract
Although numerous studies show that communities are jointly influenced by predation and competitive interactions, few have resolved how temporal variability in these interactions influences community assembly and stability. Here, we addressed this challenge in experimental microbial microcosms by employing empirical dynamic modelling tools to: (1) detect causal interactions between prey species in the absence and presence of a predator; (2) quantify the time-varying strength of these interactions and (3) explore stability in the resulting communities. Our findings show that predators boost the number of causal interactions among community members, and lead to reduced dynamic stability, but higher coexistence among prey species. These results correspond to time-varying changes in species interactions, including emergence of morphological characteristics that appeared to reduce predation, and indirectly facilitate growth of predator-susceptible species. Jointly, our findings suggest that careful consideration of both context and time may be necessary to predict and explain outcomes in multi-trophic systems.
Collapse
Affiliation(s)
- Canan Karakoç
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318, Leipzig, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
| | - Adam Thomas Clark
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany.,Department of Physiological Diversity, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318, Leipzig, Germany.,Synthesis Centre for Biodiversity Sciences (sDiv), Deutscher Platz 5e, 04103, Leipzig, Germany
| | - Antonis Chatzinotas
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318, Leipzig, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany.,Institute of Biology, Leipzig University, Talstrasse 33, 04103, Leipzig, Germany
| |
Collapse
|
22
|
Wood ZT, Fryxell DC, Moffett ER, Kinnison MT, Simon KS, Palkovacs EP. Prey adaptation along a competition-defense tradeoff cryptically shifts trophic cascades from density- to trait-mediated. Oecologia 2020; 192:767-778. [PMID: 31989320 DOI: 10.1007/s00442-020-04610-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 01/16/2020] [Indexed: 11/25/2022]
Abstract
Trophic cascades have become a dominant paradigm in ecology, yet considerable debate remains about the relative strength of density- (consumptive) and trait-mediated (non-consumptive) effects in trophic cascades. This debate may, in part, be resolved by considering prey experience, which shapes prey traits (through genetic and plastic change) and influences prey survival (and therefore density). Here, we investigate the cascading role of prey experience through the addition of mosquitofish (Gambusia affinis) from predator-experienced or predator-naïve sources to mesocosms containing piscivorous largemouth bass (Micropterus salmoides), zooplankton, and phytoplankton. These two sources were positioned along a competition-defense tradeoff. Results show that predator-naïve mosquitofish suffered higher depredation rates, which drove a density-mediated cascade, whereas predator-experienced mosquitofish exhibited higher survival but fed less, which drove a trait-mediated cascade. Both cascades were similar in strength, leading to indistinguishable top-down effects on lower trophic levels. Therefore, the accumulation of prey experience with predators can cryptically shift cascade mechanisms from density- to trait-mediated.
Collapse
Affiliation(s)
- Zachary T Wood
- School of Biology and Ecology, Ecology and Environmental Sciences Program, University of Maine, Orono, ME, 04469, USA.
| | - David C Fryxell
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
- School of Environment, University of Auckland, Auckland, 1142, New Zealand
| | - Emma R Moffett
- School of Environment, University of Auckland, Auckland, 1142, New Zealand
| | - Michael T Kinnison
- School of Biology and Ecology, Ecology and Environmental Sciences Program, University of Maine, Orono, ME, 04469, USA
| | - Kevin S Simon
- School of Environment, University of Auckland, Auckland, 1142, New Zealand
| | - Eric P Palkovacs
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| |
Collapse
|
23
|
Cortez MH, Patel S, Schreiber SJ. Destabilizing evolutionary and eco-evolutionary feedbacks drive empirical eco-evolutionary cycles. Proc Biol Sci 2020; 287:20192298. [PMID: 31964307 DOI: 10.1098/rspb.2019.2298] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We develop a method to identify how ecological, evolutionary, and eco-evolutionary feedbacks influence system stability. We apply our method to nine empirically parametrized eco-evolutionary models of exploiter-victim systems from the literature and identify which particular feedbacks cause some systems to converge to a steady state or to exhibit sustained oscillations. We find that ecological feedbacks involving the interactions between all species and evolutionary and eco-evolutionary feedbacks involving only the interactions between exploiter species (predators or pathogens) are typically stabilizing. In contrast, evolutionary and eco-evolutionary feedbacks involving the interactions between victim species (prey or hosts) are destabilizing more often than not. We also find that while eco-evolutionary feedbacks rarely altered system stability from what would be predicted from just ecological and evolutionary feedbacks, eco-evolutionary feedbacks have the potential to alter system stability at faster or slower speeds of evolution. As the number of empirical studies demonstrating eco-evolutionary feedbacks increases, we can continue to apply these methods to determine whether the patterns we observe are common in other empirical communities.
Collapse
Affiliation(s)
- Michael H Cortez
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA.,Department of Mathematics and Statistics and Ecology Center, Utah State University, Logan UT 84322, USA
| | - Swati Patel
- Department of Mathematics, Tulane University, New Orleans, LA 70115, USA
| | - Sebastian J Schreiber
- Department of Evolution and Ecology and Center for Population Biology, University of California, Davis, CA 95616, USA
| |
Collapse
|
24
|
Bono LM, Draghi JA, Turner PE. Evolvability Costs of Niche Expansion. Trends Genet 2019; 36:14-23. [PMID: 31699305 DOI: 10.1016/j.tig.2019.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/22/2019] [Accepted: 10/07/2019] [Indexed: 01/31/2023]
Abstract
What prevents generalists from displacing specialists, despite obvious competitive advantages of utilizing a broad niche? The classic genetic explanation is antagonistic pleiotropy: genes underlying the generalism produce 'jacks-of-all-trades' that are masters of none. However, experiments challenge this assumption that mutations enabling niche expansion must reduce fitness in other environments. Theory suggests an alternative cost of generalism: decreased evolvability, or the reduced capacity to adapt. Generalists using multiple environments experience relaxed selection in any one environment, producing greater relative lag load. Additionally, mutations fixed by generalist lineages early during their evolution that avoid or compensate for antagonistic pleiotropy may limit access to certain future evolutionary trajectories. Hypothesized evolvability costs of generalism warrant further exploration, and we suggest outstanding questions meriting attention.
Collapse
Affiliation(s)
- Lisa M Bono
- Department of Ecology, Evolution, and Natural Resources, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Jeremy A Draghi
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY 11210, USA; Program in Ecology, Evolutionary Biology and Behavior, Graduate Center, City University of New York, New York, NY 10016, USA
| | - Paul E Turner
- Microbiology Program, Yale School of Medicine, New Haven, CT 06510, USA; Yale University, Department of Ecology and Evolutionary Biology, New Haven, CT 06511, USA.
| |
Collapse
|
25
|
Urban MC, Scarpa A, Travis JMJ, Bocedi G. Maladapted Prey Subsidize Predators and Facilitate Range Expansion. Am Nat 2019; 194:590-612. [PMID: 31490731 DOI: 10.1086/704780] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Dispersal of prey from predator-free patches frequently supplies a trophic subsidy to predators by providing more prey than are produced locally. Prey arriving from predator-free patches might also have evolved weaker defenses against predators and thus enhance trophic subsidies by providing easily captured prey. Using local models assuming a linear or accelerating trade-off between defense and population growth rate, we demonstrate that immigration of undefended prey increased predator abundances and decreased defended prey through eco-evolutionary apparent competition. In individual-based models with spatial structure, explicit genetics, and gene flow along an environmental gradient, prey became maladapted to predators at the predator's range edge, and greater gene flow enhanced this maladaptation. The predator gained a subsidy from these easily captured prey, which enhanced its abundance, facilitated its persistence in marginal habitats, extended its range extent, and enhanced range shifts during environmental changes, such as climate change. Once the predator expanded, prey adapted to it and the advantage disappeared, resulting in an elastic predator range margin driven by eco-evolutionary dynamics. Overall, the results indicate a need to consider gene flow-induced maladaptation and species interactions as mutual forces that frequently determine ecological and evolutionary dynamics and patterns in nature.
Collapse
|
26
|
Consumer-resource dynamics is an eco-evolutionary process in a natural plankton community. Nat Ecol Evol 2019; 3:1351-1358. [DOI: 10.1038/s41559-019-0960-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/11/2019] [Indexed: 11/08/2022]
|
27
|
The effects of functional diversity on biomass production, variability, and resilience of ecosystem functions in a tritrophic system. Sci Rep 2019; 9:7541. [PMID: 31101880 PMCID: PMC6525189 DOI: 10.1038/s41598-019-43974-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 05/07/2019] [Indexed: 11/23/2022] Open
Abstract
Diverse communities can adjust their trait composition to altered environmental conditions, which may strongly influence their dynamics. Previous studies of trait-based models mainly considered only one or two trophic levels, whereas most natural system are at least tritrophic. Therefore, we investigated how the addition of trait variation to each trophic level influences population and community dynamics in a tritrophic model. Examining the phase relationships between species of adjacent trophic levels informs about the strength of top-down or bottom-up control in non-steady-state situations. Phase relationships within a trophic level highlight compensatory dynamical patterns between functionally different species, which are responsible for dampening the community temporal variability. Furthermore, even without trait variation, our tritrophic model always exhibits regions with two alternative states with either weak or strong nutrient exploitation, and correspondingly low or high biomass production at the top level. However, adding trait variation increased the basin of attraction of the high-production state, and decreased the likelihood of a critical transition from the high- to the low-production state with no apparent early warning signals. Hence, our study shows that trait variation enhances resource use efficiency, production, stability, and resilience of entire food webs.
Collapse
|
28
|
Pulkkinen K, Pekkala N, Ashrafi R, Hämäläinen DM, Nkembeng AN, Lipponen A, Hiltunen T, Valkonen JK, Taskinen J. Effect of resource availability on evolution of virulence and competition in an environmentally transmitted pathogen. FEMS Microbiol Ecol 2019; 94:4962392. [PMID: 29659817 DOI: 10.1093/femsec/fiy060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 04/04/2018] [Indexed: 01/21/2023] Open
Abstract
Understanding ecological and epidemiological factors driving pathogen evolution in contemporary time scales is a major challenge in modern health management. Pathogens that replicate outside the hosts are subject to selection imposed by ambient environmental conditions. Increased nutrient levels could increase pathogen virulence by pre-adapting for efficient use of resources upon contact to a nutrient rich host or by favouring transmission of fast-growing virulent strains. We measured changes in virulence and competition in Flavobacterium columnare, a bacterial pathogen of freshwater fish, under high and low nutrient levels. To test competition between strains in genotype mixtures, we developed a quantitative real-time PCR assay. We found that a virulent strain maintained its virulence and outcompeted less virulent strains independent of the nutrient level and resource renewal rate while a less virulent strain further lost virulence in chemostats under low nutrient level and over long-term serial culture under high nutrient level. Our results suggest that increased outside-host nutrient levels might maintain virulence in less virulent strains and increase their contribution to epidemics in aquaculture. The results highlight a need to further explore the role of resource in the outside-host environment in maintaining strain diversity and driving evolution of virulence among environmentally growing pathogens.
Collapse
Affiliation(s)
- Katja Pulkkinen
- Department of Biological and Environmental Science, P. O. Box 35, (Survontie 9), University of Jyväskylä, Jyväskylä, Finland
| | - Nina Pekkala
- Department of Biological and Environmental Science, P. O. Box 35, (Survontie 9), University of Jyväskylä, Jyväskylä, Finland
| | - Roghaieh Ashrafi
- Department of Biological and Environmental Science, P. O. Box 35, (Survontie 9), University of Jyväskylä, Jyväskylä, Finland.,Centre of Excellence in Biological Interactions, P. O. Box 35, (Survontie 9), University of Jyväskylä, Jyväskylä,Finland
| | - Dorrit M Hämäläinen
- Department of Biological and Environmental Science, P. O. Box 35, (Survontie 9), University of Jyväskylä, Jyväskylä, Finland
| | - Aloysius N Nkembeng
- Department of Biological and Environmental Science, P. O. Box 35, (Survontie 9), University of Jyväskylä, Jyväskylä, Finland
| | - Anssi Lipponen
- A. I. Virtanen Institute for Molecular Sciences, P. O. Box 1627, (Neulaniementie 2), University of Eastern Finland, Kuopio, Finland
| | - Teppo Hiltunen
- Department of Microbiology, P. O. Box 56, (Viikinkaari 9), University of Helsinki, Helsinki, Finland
| | - Janne K Valkonen
- Department of Biological and Environmental Science, P. O. Box 35, (Survontie 9), University of Jyväskylä, Jyväskylä, Finland.,Centre of Excellence in Biological Interactions, P. O. Box 35, (Survontie 9), University of Jyväskylä, Jyväskylä,Finland
| | - Jouni Taskinen
- Department of Biological and Environmental Science, P. O. Box 35, (Survontie 9), University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
29
|
Pennekamp F, Iles AC, Garland J, Brennan G, Brose U, Gaedke U, Jacob U, Kratina P, Matthews B, Munch S, Novak M, Palamara GM, Rall BC, Rosenbaum B, Tabi A, Ward C, Williams R, Ye H, Petchey OL. The intrinsic predictability of ecological time series and its potential to guide forecasting. ECOL MONOGR 2019. [DOI: 10.1002/ecm.1359] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Frank Pennekamp
- University of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Alison C. Iles
- Oregon State University 3029 Cordley Hall Corvallis Oregon 97331 USA
- EcoNetLab – Theory in Biodiversity Science German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Deutscher Platz 5e 04103 Leipzig Germany
- Institute of Biodiversity Friedrich Schiller University Jena Dornburger‐Street 159 07743 Jena Germany
| | - Joshua Garland
- Santa Fe Institute 1399 Hyde Park Road Santa Fe New Mexico 87501 USA
| | - Georgina Brennan
- Molecular Ecology and Fisheries Genetics Laboratory School of Biological Sciences Bangor University Bangor LL57 2UW United Kingdom
| | - Ulrich Brose
- EcoNetLab – Theory in Biodiversity Science German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Deutscher Platz 5e 04103 Leipzig Germany
- Institute of Biodiversity Friedrich Schiller University Jena Dornburger‐Street 159 07743 Jena Germany
| | - Ursula Gaedke
- Institute for Biology University of Potsdam Am Neuen Palais 10 D‐14469 Potsdam Germany
| | - Ute Jacob
- Department of Biology University of Hamburg D‐22767 Hamburg Germany
| | - Pavel Kratina
- Queen Mary University of London Mile End Road London E1 4NS United Kingdom
| | - Blake Matthews
- Department of Aquatic Ecology Center for Ecology, Evolution and Biogeochemistry Eawag Seestrasse 79 6047 Kastanienbaum Switzerland
| | - Stephan Munch
- Fisheries Ecology Division Southwest Fisheries Science Center National Marine Fisheries Service National Oceanic and Atmospheric Administration 110 Shaffer Road Santa Cruz California 95060 USA
- Department of Ecology and Evolutionary Biology University of California Santa Cruz California 95064 USA
| | - Mark Novak
- Oregon State University 3029 Cordley Hall Corvallis Oregon 97331 USA
| | - Gian Marco Palamara
- University of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
- Department Systems Analysis, Integrated Assessment and Modelling Eawag Überlandstrasse 133 8600 Dübendorf Switzerland
| | - Björn C. Rall
- EcoNetLab – Theory in Biodiversity Science German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Deutscher Platz 5e 04103 Leipzig Germany
- Institute of Biodiversity Friedrich Schiller University Jena Dornburger‐Street 159 07743 Jena Germany
| | - Benjamin Rosenbaum
- EcoNetLab – Theory in Biodiversity Science German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Deutscher Platz 5e 04103 Leipzig Germany
- Institute of Biodiversity Friedrich Schiller University Jena Dornburger‐Street 159 07743 Jena Germany
| | - Andrea Tabi
- University of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Colette Ward
- University of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Richard Williams
- Slice Technologies 800 Concar Drive San Mateo California 94402 USA
| | - Hao Ye
- Wildlife Ecology and Conservation University of Florida 110 Newins‐Ziegler Hall, P.O. Box 110430 Gainesville Florida 32611‐0430 USA
| | - Owen L. Petchey
- University of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| |
Collapse
|
30
|
Loeuille N. Eco-evolutionary dynamics in a disturbed world: implications for the maintenance of ecological networks. F1000Res 2019; 8:F1000 Faculty Rev-97. [PMID: 30728953 PMCID: PMC6347037 DOI: 10.12688/f1000research.15629.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/17/2019] [Indexed: 11/20/2022] Open
Abstract
Past management of exploited species and of conservation issues has often ignored the evolutionary dynamics of species. During the 70s and 80s, evolution was mostly considered a slow process that may be safely ignored for most management issues. However, in recent years, examples of fast evolution have accumulated, suggesting that time scales of evolutionary dynamics (variations in genotype frequencies) and of ecological dynamics (variations in species densities) are often largely comparable, so that complex feedbacks commonly exist between the ecological and the evolutionary context ("eco-evolutionary dynamics"). While a first approach is of course to consider the evolution of a given species, in ecological communities, species are interlinked by interaction networks. In the present article, I discuss how species (co)evolution in such a network context may alter our understanding and predictions for species coexistence, given the disturbed world we live in. I review some concepts and examples suggesting that evolution may enhance the robustness of ecological networks and then show that, in many situations, the reverse may also happen, as evolutionary dynamics can harm diversity maintenance in various ways. I particularly focus on how evolution modifies indirect effects in ecological networks, then move to coevolution and discuss how the outcome of coevolution for species coexistence depends on the type of interaction (mutualistic or antagonistic) that is considered. I also review examples of phenotypes that are known to be important for ecological networks and shown to vary rapidly given global changes. Given all these components, evolution produces indirect eco-evolutionary effects within networks that will ultimately influence the optimal management of the current biodiversity crisis.
Collapse
Affiliation(s)
- Nicolas Loeuille
- iEES Paris (UMR7618), Sorbonne Université, CNRS, 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
31
|
Abstract
Biodiversity in natural systems can be maintained either because niche differentiation among competitors facilitates stable coexistence or because equal fitness among neutral species allows for their long-term cooccurrence despite a slow drift toward extinction. Whereas the relative importance of these two ecological mechanisms has been well-studied in the absence of evolution, the role of local adaptive evolution in maintaining biological diversity through these processes is less clear. Here we study the contribution of local adaptive evolution to coexistence in a landscape of interconnected patches subject to disturbance. Under these conditions, early colonists to empty patches may adapt to local conditions sufficiently fast to prevent successful colonization by other preadapted species. Over the long term, the iteration of these local-scale priority effects results in niche convergence of species at the regional scale even though species tend to monopolize local patches. Thus, the dynamics evolve from stable coexistence through niche differentiation to neutral cooccurrence at the landscape level while still maintaining strong local niche segregation. Our results show that neutrality can emerge at the regional scale from local, niche-based adaptive evolution, potentially resolving why ecologists often observe neutral distribution patterns at the landscape level despite strong niche divergence among local communities.
Collapse
|
32
|
Affiliation(s)
- Andrew P. Hendry
- Redpath Museum and Department of BiologyMcGill University Montreal Quebec Canada
| |
Collapse
|
33
|
Yamamichi M, Klauschies T, Miner BE, Velzen E. Modelling inducible defences in predator–prey interactions: assumptions and dynamical consequences of three distinct approaches. Ecol Lett 2018; 22:390-404. [DOI: 10.1111/ele.13183] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/29/2018] [Accepted: 10/16/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Masato Yamamichi
- Department of General Systems Studies University of Tokyo 3‐8‐1 Komaba Meguro Tokyo153‐8902 Japan
| | - Toni Klauschies
- Department of Ecology and Ecosystem Modelling Institute of Biochemistry and Biology University of Potsdam Am Neuen Palais 10 Potsdam 14469 Germany
| | - Brooks E. Miner
- Department of Biology Ithaca College 953 Danby Rd. Ithaca NY14850 USA
| | - Ellen Velzen
- Department of Ecology and Ecosystem Modelling Institute of Biochemistry and Biology University of Potsdam Am Neuen Palais 10 Potsdam 14469 Germany
| |
Collapse
|
34
|
Govaert L, Fronhofer EA, Lion S, Eizaguirre C, Bonte D, Egas M, Hendry AP, De Brito Martins A, Melián CJ, Raeymaekers JAM, Ratikainen II, Saether B, Schweitzer JA, Matthews B. Eco‐evolutionary feedbacks—Theoretical models and perspectives. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13241] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Lynn Govaert
- Laboratory of Aquatic Ecology, Evolution and Conservation KU Leuven Leuven Belgium
- Department of Aquatic Ecology Eawag: Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zürich Switzerland
| | | | - Sébastien Lion
- Centre d'Ecologie Fonctionnelle et Evolutive CNRS, IRD, EPHE Université de Montpellier Montpellier France
| | | | - Dries Bonte
- Department of Biology Ghent University Ghent Belgium
| | - Martijn Egas
- Institute for Biodiversity and Ecosystem Dynamics University of Amsterdam Amsterdam The Netherlands
| | - Andrew P. Hendry
- Redpath Museum and Department of Biology McGill University Montreal Quebec Canada
| | - Ayana De Brito Martins
- Fish Ecology and Evolution DepartmentCenter for Ecology, Evolution and BiogeochemistryEawag: Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland
| | - Carlos J. Melián
- Fish Ecology and Evolution DepartmentCenter for Ecology, Evolution and BiogeochemistryEawag: Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland
| | | | - Irja I. Ratikainen
- Department of Biology Centre for Biodiversity Dynamics Norwegian University of Science and Technology Trondheim Norway
- Institute of Biodiversity, Animal Health and Comparative Medicine University of Glasgow Glasgow UK
| | - Bernt‐Erik Saether
- Department of Biology Centre for Biodiversity Dynamics Norwegian University of Science and Technology Trondheim Norway
| | - Jennifer A. Schweitzer
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee
| | - Blake Matthews
- Department of Aquatic Ecology Eawag: Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland
| |
Collapse
|
35
|
Thiel T, Brechtel A, Brückner A, Heethoff M, Drossel B. The effect of reservoir-based chemical defense on predator-prey dynamics. THEOR ECOL-NETH 2018. [DOI: 10.1007/s12080-018-0402-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
36
|
Coloma S, Gaedke U, Sivonen K, Hiltunen T. Frequency of virus-resistant hosts determines experimental community dynamics. Ecology 2018; 100:e02554. [PMID: 30411791 DOI: 10.1002/ecy.2554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 09/19/2018] [Accepted: 10/01/2018] [Indexed: 11/11/2022]
Abstract
Parasites, such as bacterial viruses (phages), can have large effects on host populations both at the ecological and evolutionary levels. In the case of cyanobacteria, phages can reduce primary production and infected hosts release intracellular nutrients influencing planktonic food web structure, community dynamics, and biogeochemical cycles. Cyanophages may be of great importance in aquatic food webs during large cyanobacterial blooms unless the host population becomes resistant to phage infection. The consequences on plankton community dynamics of the evolution of phage resistance in bloom forming cyanobacterial populations are still poorly studied. Here, we examined the effect of different frequencies of a phage-resistant genotype within a filamentous nitrogen-fixing Nodularia spumigena population on an experimental plankton community. Three Nodularia populations with different initial frequencies (0%, 5%, and 50%) of phage-resistant genotypes were inoculated in separate treatments with the phage 2AV2, the green alga Chlorella vulgaris, and the rotifer Brachionus plicatilis, which formed the experimental plankton community subjected to either nitrogen-limited or nitrogen-rich conditions. We found that the frequency of the phage-resistant Nodularia genotype determined experimental community dynamics. Cyanobacterial populations with a high frequency (50%) of the phage-resistant genotype dominated the cultures despite the presence of phages, retaining most of the intracellular nitrogen in the plankton community. In contrast, populations with low frequencies (0% and 5%) of the phage-resistant genotype were lysed and reduced to extinction by the phage, transferring the intracellular nitrogen held by Nodularia to Chlorella and rotifers, and allowing Chlorella to dominate the communities and rotifers to survive. This study shows that even though phages represent minuscule biomass, they can have key effects on community composition and eco-evolutionary feedbacks in plankton communities.
Collapse
Affiliation(s)
- Sebastián Coloma
- Department of Microbiology, University of Helsinki, Viikinkaari 9, 00014, Helsinki, Finland
| | - Ursula Gaedke
- Department of Ecology and Ecosystem Modelling, Institute for Biochemistry and Biology, University of Potsdam, Am Neuen Palais 10, 14469, Potsdam, Germany
| | - Kaarina Sivonen
- Department of Microbiology, University of Helsinki, Viikinkaari 9, 00014, Helsinki, Finland
| | - Teppo Hiltunen
- Department of Microbiology, University of Helsinki, Viikinkaari 9, 00014, Helsinki, Finland.,Department of Biology, University of Turku, 20014, Turku, Finland
| |
Collapse
|
37
|
Fleischer SR, terHorst CP, Li J. Pick your trade-offs wisely: Predator-prey eco-evo dynamics are qualitatively different under different trade-offs. J Theor Biol 2018; 456:201-212. [PMID: 30099079 DOI: 10.1016/j.jtbi.2018.08.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 07/30/2018] [Accepted: 08/08/2018] [Indexed: 11/30/2022]
Abstract
In recent decades, myriad studies have explored the population dynamics of coevolving populations of predator and prey. A variety of choices are made in these models: exponential or logistic prey growth in the absence of a predator, various forms of predator functional response, and uni- or bi-directional trait axes. In addition, some form of trade-offs are assumed in order to prevent run-away evolution of the prey and predator traits. While there is a considerable amount of theory regarding various forms of prey growth rates and predator functional responses, only a few studies have explored how different types of trade-offs affect predator-prey dynamics. Here, we compared two ditrophic coevolution models incorporating different trade-offs via dual effects of the prey trait on attack rate and either prey carrying capacity or intrinsic growth rate. We employed a standard dynamical systems approach to analyze the equilibrium conditions of each model and find conditions for non-equilibrium oscillatory coexistence. The exact effect of various parameters on the outcome of predator-prey interactions depends on whether the trade-offs affect the intrinsic growth rate or carrying capacity. In particular, coexistence is more likely when prey growth rate is affected by the evolving trait. In addition, in parameter regimes where cycles occur in both models, oscillations typically have larger periods and amplitudes when prey growth rate is affected by the evolving trait.
Collapse
Affiliation(s)
- Samuel R Fleischer
- Department of Mathematics, University of California, Davis, Davis, 95616, California.
| | - Casey P terHorst
- Department of Biological Sciences, California State University, Northridge, Northridge, 91330, California
| | - Jing Li
- Department of Mathematics, California State University, Northridge, Northridge, 91330, California
| |
Collapse
|
38
|
van Velzen E, Gaedke U. Reversed predator-prey cycles are driven by the amplitude of prey oscillations. Ecol Evol 2018; 8:6317-6329. [PMID: 29988457 PMCID: PMC6024131 DOI: 10.1002/ece3.4184] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/10/2018] [Accepted: 04/18/2018] [Indexed: 01/09/2023] Open
Abstract
Ecoevolutionary feedbacks in predator-prey systems have been shown to qualitatively alter predator-prey dynamics. As a striking example, defense-offense coevolution can reverse predator-prey cycles, so predator peaks precede prey peaks rather than vice versa. However, this has only rarely been shown in either model studies or empirical systems. Here, we investigate whether this rarity is a fundamental feature of reversed cycles by exploring under which conditions they should be found. For this, we first identify potential conditions and parameter ranges most likely to result in reversed cycles by developing a new measure, the effective prey biomass, which combines prey biomass with prey and predator traits, and represents the prey biomass as perceived by the predator. We show that predator dynamics always follow the dynamics of the effective prey biomass with a classic ¼-phase lag. From this key insight, it follows that in reversed cycles (i.e., ¾-lag), the dynamics of the actual and the effective prey biomass must be in antiphase with each other, that is, the effective prey biomass must be highest when actual prey biomass is lowest, and vice versa. Based on this, we predict that reversed cycles should be found mainly when oscillations in actual prey biomass are small and thus have limited impact on the dynamics of the effective prey biomass, which are mainly driven by trait changes. We then confirm this prediction using numerical simulations of a coevolutionary predator-prey system, varying the amplitude of the oscillations in prey biomass: Reversed cycles are consistently associated with regions of parameter space leading to small-amplitude prey oscillations, offering a specific and highly testable prediction for conditions under which reversed cycles should occur in natural systems.
Collapse
Affiliation(s)
- Ellen van Velzen
- Department of Ecology and Ecosystem ModellingInstitute of Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
| | - Ursula Gaedke
- Department of Ecology and Ecosystem ModellingInstitute of Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
| |
Collapse
|
39
|
Wood ZT, Palkovacs EP, Kinnison MT. Eco-evolutionary Feedbacks from Non-target Species Influence Harvest Yield and Sustainability. Sci Rep 2018; 8:6389. [PMID: 29686227 PMCID: PMC5913267 DOI: 10.1038/s41598-018-24555-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 03/21/2018] [Indexed: 11/22/2022] Open
Abstract
Evolution in harvested species has become a major concern for its potential to affect yield, sustainability, and recovery. However, the current singular focus on harvest-mediated evolution in target species overlooks the potential for evolution in non-target members of communities. Here we use an individual-based model to explore the scope and pattern of harvest-mediated evolution at non-target trophic levels and its potential feedbacks on abundance and yield of the harvested species. The model reveals an eco-evolutionary trophic cascade, in which harvest at top trophic levels drives evolution of greater defense or competitiveness at subsequently lower trophic levels, resulting in alternating feedbacks on the abundance and yield of the harvested species. The net abundance and yield effects of these feedbacks depends on the intensity of harvest and attributes of non-target species. Our results provide an impetus and framework to evaluate the role of non-target species evolution in determining fisheries yield and sustainability.
Collapse
Affiliation(s)
- Zachary T Wood
- School of Biology and Ecology, University of Maine, Orono, ME, USA. .,Ecology and Environmental Sciences Program, University of Maine, Orono, ME, USA.
| | - Eric P Palkovacs
- Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Michael T Kinnison
- School of Biology and Ecology, University of Maine, Orono, ME, USA.,Ecology and Environmental Sciences Program, University of Maine, Orono, ME, USA
| |
Collapse
|
40
|
Biomonitoring for the 21st Century: Integrating Next-Generation Sequencing Into Ecological Network Analysis. ADV ECOL RES 2018. [DOI: 10.1016/bs.aecr.2017.12.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
41
|
Hiltunen T, Virta M, Laine AL. Antibiotic resistance in the wild: an eco-evolutionary perspective. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0039. [PMID: 27920384 PMCID: PMC5182435 DOI: 10.1098/rstb.2016.0039] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2016] [Indexed: 12/18/2022] Open
Abstract
The legacy of the use and misuse of antibiotics in recent decades has left us with a global public health crisis: antibiotic-resistant bacteria are on the rise, making it harder to treat infections. At the same time, evolution of antibiotic resistance is probably the best-documented case of contemporary evolution. To date, research on antibiotic resistance has largely ignored the complexity of interactions that bacteria engage in. However, in natural populations, bacteria interact with other species; for example, competition and grazing are import interactions influencing bacterial population dynamics. Furthermore, antibiotic leakage to natural environments can radically alter bacterial communities. Overall, we argue that eco-evolutionary feedback loops in microbial communities can be modified by residual antibiotics and evolution of antibiotic resistance. The aim of this review is to connect some of the well-established key concepts in evolutionary biology and recent advances in the study of eco-evolutionary dynamics to research on antibiotic resistance. We also identify some key knowledge gaps related to eco-evolutionary dynamics of antibiotic resistance, and review some of the recent technical advantages in molecular microbiology that offer new opportunities for tackling these questions. Finally, we argue that using the full potential of evolutionary theory and active communication across the different fields is needed for solving this global crisis more efficiently. This article is part of the themed issue ‘Human influences on evolution, and the ecological and societal consequences'.
Collapse
Affiliation(s)
- Teppo Hiltunen
- Department of Food and Environmental Sciences/Microbiology and Biotechnology, University of Helsinki, PO Box 65, 00014 Helsinki, Finland
| | - Marko Virta
- Department of Food and Environmental Sciences/Microbiology and Biotechnology, University of Helsinki, PO Box 65, 00014 Helsinki, Finland
| | - Anna-Liisa Laine
- Department of Biosciences, Metapopulation Research Centre, University of Helsinki, PO Box 65, 00014 Helsinki, Finland
| |
Collapse
|
42
|
Griffiths JI, Petchey OL, Pennekamp F, Childs DZ. Linking intraspecific trait variation to community abundance dynamics improves ecological predictability by revealing a growth–defence trade‐off. Funct Ecol 2017. [DOI: 10.1111/1365-2435.12997] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jason I. Griffiths
- Department of Animal and Plant SciencesUniversity of Sheffield Sheffield UK
| | - Owen L. Petchey
- Department of Evolutionary Biology and Environmental StudiesUniversity of Zurich Zurich Switzerland
| | - Frank Pennekamp
- Department of Evolutionary Biology and Environmental StudiesUniversity of Zurich Zurich Switzerland
| | - Dylan Z. Childs
- Department of Animal and Plant SciencesUniversity of Sheffield Sheffield UK
| |
Collapse
|
43
|
Rapid evolution of hosts begets species diversity at the cost of intraspecific diversity. Proc Natl Acad Sci U S A 2017; 114:11193-11198. [PMID: 28973943 DOI: 10.1073/pnas.1701845114] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ecosystems are complex food webs in which multiple species interact and ecological and evolutionary processes continuously shape populations and communities. Previous studies on eco-evolutionary dynamics have shown that the presence of intraspecific diversity affects community structure and function, and that eco-evolutionary feedback dynamics can be an important driver for its maintenance. Within communities, feedbacks are, however, often indirect, and they can feed back over many generations. Here, we studied eco-evolutionary feedbacks in evolving communities over many generations and compared two-species systems (virus-host and prey-predator) with a more complex three-species system (virus-host-predator). Both indirect density- and trait-mediated effects drove the dynamics in the complex system, where host-virus coevolution facilitated coexistence of predator and virus, and where coexistence, in return, lowered intraspecific diversity of the host population. Furthermore, ecological and evolutionary dynamics were significantly altered in the three-species system compared with the two-species systems. We found that the predator slowed host-virus coevolution in the complex system and that the virus' effect on the overall population dynamics was negligible when the three species coexisted. Overall, we show that a detailed understanding of the mechanism driving eco-evolutionary feedback dynamics is necessary for explaining trait and species diversity in communities, even in communities with only three species.
Collapse
|
44
|
Bengfort M, van Velzen E, Gaedke U. Slight phenotypic variation in predators and prey causes complex predator-prey oscillations. ECOLOGICAL COMPLEXITY 2017. [DOI: 10.1016/j.ecocom.2017.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
45
|
Cortez MH, Patel S. The Effects of Predator Evolution and Genetic Variation on Predator-Prey Population-Level Dynamics. Bull Math Biol 2017; 79:1510-1538. [PMID: 28639169 DOI: 10.1007/s11538-017-0297-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/17/2017] [Indexed: 11/25/2022]
Abstract
This paper explores how predator evolution and the magnitude of predator genetic variation alter the population-level dynamics of predator-prey systems. We do this by analyzing a general eco-evolutionary predator-prey model using four methods: Method 1 identifies how eco-evolutionary feedbacks alter system stability in the fast and slow evolution limits; Method 2 identifies how the amount of standing predator genetic variation alters system stability; Method 3 identifies how the phase lags in predator-prey cycles depend on the amount of genetic variation; and Method 4 determines conditions for different cycle shapes in the fast and slow evolution limits using geometric singular perturbation theory. With these four methods, we identify the conditions under which predator evolution alters system stability and shapes of predator-prey cycles, and how those effect depend on the amount of genetic variation in the predator population. We discuss the advantages and disadvantages of each method and the relations between the four methods. This work shows how the four methods can be used in tandem to make general predictions about eco-evolutionary dynamics and feedbacks.
Collapse
Affiliation(s)
- Michael H Cortez
- Department of Mathematics and Statistics, Utah State University, Logan, UT, 84322, USA.
| | - Swati Patel
- Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090, Wien, Austria
| |
Collapse
|
46
|
Barraquand F, Louca S, Abbott KC, Cobbold CA, Cordoleani F, DeAngelis DL, Elderd BD, Fox JW, Greenwood P, Hilker FM, Murray DL, Stieha CR, Taylor RA, Vitense K, Wolkowicz GS, Tyson RC. Moving forward in circles: challenges and opportunities in modelling population cycles. Ecol Lett 2017. [DOI: 10.1111/ele.12789] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Frédéric Barraquand
- Department of Arctic and Marine Biology University of Tromsø Tromsø Norway
- Integrative and Theoretical Ecology Chair, LabEx COTE University of Bordeaux Pessac France
| | - Stilianos Louca
- Institute of Applied Mathematics University of British Columbia Vancouver BC Canada
| | - Karen C. Abbott
- Department of Biology Case Western Reserve University Cleveland OH USA
| | | | - Flora Cordoleani
- Institute of Marine Science University of California Santa Cruz Santa Cruz CA USA
- Southwest Fisheries Science Center Santa Cruz CA USA
| | | | - Bret D. Elderd
- Department of Biological Sciences Lousiana State University Baton Rouge LA USA
| | - Jeremy W. Fox
- Department of Biological Sciences University of Calgary Calgary ABCanada
| | | | - Frank M. Hilker
- Institute of Environmental Systems Research, School of Mathematics/Computer Science Osnabrück University Osnabrück Germany
| | - Dennis L. Murray
- Integrative Wildlife Conservation Lab Trent University Peterborough ONCanada
| | - Christopher R. Stieha
- Department of Biology Case Western Reserve University Cleveland OH USA
- Department of Entomology Cornell University Ithaca NY USA
| | - Rachel A. Taylor
- Department of Integrative Biology University of South Florida Tampa FLUSA
| | - Kelsey Vitense
- Department of Fisheries, Wildlife, and Conservation Biology University of Minnesota Saint Paul MN USA
| | - Gail S.K. Wolkowicz
- Department of Mathematics and Statistics McMaster University Hamilton ON Canada
| | - Rebecca C. Tyson
- Department of Mathematics and Statistics University of British Columbia Okanagan Kelowna BC Canada
| |
Collapse
|
47
|
Affiliation(s)
- Michael Raatz
- Inst. for Biochemistry and Biology, Univ. of Potsdam; Am Neuen Palais 10 DE-14469 Potsdam Germany
| | - Ursula Gaedke
- Inst. for Biochemistry and Biology, Univ. of Potsdam; Am Neuen Palais 10 DE-14469 Potsdam Germany
| | - Alexander Wacker
- Inst. for Biochemistry and Biology, Univ. of Potsdam; Am Neuen Palais 10 DE-14469 Potsdam Germany
| |
Collapse
|
48
|
Predator trait evolution alters prey community composition. Ecosphere 2017. [DOI: 10.1002/ecs2.1803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
49
|
Páez DJ, Dukic V, Dushoff J, Fleming-Davies A, Dwyer G. Eco-Evolutionary Theory and Insect Outbreaks. Am Nat 2017; 189:616-629. [PMID: 28514636 DOI: 10.1086/691537] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Eco-evolutionary theory argues that population cycles in consumer-resource interactions are partly driven by natural selection, such that changes in densities and changes in trait values are mutually reinforcing. Evidence that the theory explains cycles in nature, however, is almost nonexistent. Experimental tests of model assumptions are logistically impractical for most organisms, while for others, evidence that population cycles occur in nature is lacking. For insect baculoviruses in contrast, tests of model assumptions are straightforward, and there is strong evidence that baculoviruses help drive population cycles in many insects, including the gypsy moth that we study here. We therefore used field experiments with the gypsy moth baculovirus to test two key assumptions of eco-evolutionary models of host-pathogen population cycles: that reduced host infection risk is heritable and that it is costly. Our experiments confirm both assumptions, and inserting parameters estimated from our data into eco-evolutionary insect-outbreak models gives cycles closely resembling gypsy moth outbreak cycles in North America, whereas standard models predict unrealistic stable equilibria. Our work shows that eco-evolutionary models are useful for explaining outbreaks of forest insect defoliators, while widespread observations of intense selection on defoliators in nature and of heritable and costly resistance in defoliators in the lab together suggest that eco-evolutionary dynamics may play a general role in defoliator outbreaks.
Collapse
|
50
|
Betini GS, McAdam AG, Griswold CK, Norris DR. A fitness trade-off between seasons causes multigenerational cycles in phenotype and population size. eLife 2017; 6:e18770. [PMID: 28164780 PMCID: PMC5340529 DOI: 10.7554/elife.18770] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 02/06/2017] [Indexed: 11/17/2022] Open
Abstract
Although seasonality is widespread and can cause fluctuations in the intensity and direction of natural selection, we have little information about the consequences of seasonal fitness trade-offs for population dynamics. Here we exposed populations of Drosophila melanogaster to repeated seasonal changes in resources across 58 generations and used experimental and mathematical approaches to investigate how viability selection on body size in the non-breeding season could affect demography. We show that opposing seasonal episodes of natural selection on body size interacted with both direct and delayed density dependence to cause populations to undergo predictable multigenerational density cycles. Our results provide evidence that seasonality can set the conditions for life-history trade-offs and density dependence, which can, in turn, interact to cause multigenerational population cycles.
Collapse
Affiliation(s)
- Gustavo S Betini
- Department of Integrative Biology, University of Guelph, Guelph, Canada
| | - Andrew G McAdam
- Department of Integrative Biology, University of Guelph, Guelph, Canada
| | | | - D Ryan Norris
- Department of Integrative Biology, University of Guelph, Guelph, Canada
| |
Collapse
|