1
|
Song B, Li Y, Yu Z, Jin J, Liu Z, Yang R, Adams JM, Razavi BS. Changes in enzyme activity, structure and growth strategies of the rhizosphere microbiome influenced by elevated temperature and CO 2. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176522. [PMID: 39326750 DOI: 10.1016/j.scitotenv.2024.176522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
The impacts of global warming and increased CO2 levels on soil processes and crop growth are concerning. Soil enzymes in the rhizosphere, produced mainly by microbes, play a vital role in nutrients mobilization for plants. Nevertheless, a comprehensive understanding of how microbial communities in the rhizosphere respond to increased temperatures and CO2 levels, particularly in relation to nutrient acquisition, is still lacking. Addressing this problem, we grew soybeans under elevated temperature (ET, +2 °C) and CO2 levels (eCO2, +300 ppm), both individually and in combination (eCO2 + eT), in rhizobox mesocosms. Enzyme activity and microbial communities in soybean rhizospheres were investigated using soil zymography. eCO2 increased enzyme activity by 2.5 % to 8.7 %, while eT expanded the hotspot area from 1.8 % to 3.3 %. The combined factors amplified both the hotspot area by 5.3 % to 10.1 % and enzyme activity by 35.4 % to 67.3 %. Compared to ambient conditions, rhizosphere communities under eCO2 were predominantly comprised of r-strategist keystone taxa, including Acidobacteria, Proteobacteria, and Ascomycota. On the contrary, eT induced a shift in the microbial community towards K-selected taxa, characterized by an increased relative abundance of Basidiomycota and Actinobacteria. Furthermore, the combination of eCO2 and eT led to an increase in the relative abundance of key bacterial species (Acidobacteria, Proteobacteria, and Actinobacteria) as well as fungi (Ascomycota and Basidiomycota). These findings indicate the potential significance of enzyme hotspots in modulating responses to climate change. Changes in enzyme activity and hotspot area could indicate the alteration in microbial growth strategies. The treatments exhibited distinct changes in the composition of microbial communities, in network organization, and in the proportion of species designated as r or K-strategists. Overall, these findings highlight the combined effects of global change factors on bacterial and fungal communities, providing insights into their growth strategies and nutrient mobilization under climate change scenarios.
Collapse
Affiliation(s)
- Bin Song
- School of Geography and Ocean Science, Nanjing University, Nanjing 210008, China; State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 138 Haping Road, Harbin 150081, China; College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Yansheng Li
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 138 Haping Road, Harbin 150081, China
| | - Zhenhua Yu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 138 Haping Road, Harbin 150081, China.
| | - Jian Jin
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 138 Haping Road, Harbin 150081, China; Centre for AgriBioscience, La Trobe University, Bundoora, Vic, 3086, Australia
| | - Zihao Liu
- School of Geography and Ocean Science, Nanjing University, Nanjing 210008, China
| | - Ruizhe Yang
- School of Geography and Ocean Science, Nanjing University, Nanjing 210008, China
| | - Jonathan M Adams
- School of Geography and Ocean Science, Nanjing University, Nanjing 210008, China.
| | - Bahar S Razavi
- Department of Soil and Plant Microbiome, Institute of Phytopathology, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| |
Collapse
|
2
|
Wang M, Li D, Frey B, Gao D, Liu X, Chen C, Sui X, Li M. Land use modified impacts of global change factors on soil microbial structure and function: A global hierarchical meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173286. [PMID: 38772492 DOI: 10.1016/j.scitotenv.2024.173286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/05/2024] [Accepted: 05/14/2024] [Indexed: 05/23/2024]
Abstract
Nitrogen cycling in terrestrial ecosystems is critical for biodiversity, vegetation productivity and biogeochemical cycling. However, little is known about the response of functional nitrogen cycle genes to global change factors in soils under different land uses. Here, we conducted a multiple hierarchical mixed effects meta-analyses of global change factors (GCFs) including warming (W+), mean altered precipitation (MAP+/-), elevated carbon dioxide concentrations (eCO2), and nitrogen addition (N+), using 2706 observations extracted from 200 peer-reviewed publications. The results showed that GCFs had significant and different effects on soil microbial communities under different types of land use. Under different land use types, such as Wetland, Tundra, Grassland, Forest, Desert and Agriculture, the richness and diversity of soil microbial communities will change accordingly due to differences in vegetation cover, soil management practices and environmental conditions. Notably, soil bacterial diversity is positively correlated with richness, but soil fungal diversity is negatively correlated with richness, when differences are driven by GCFs. For functional genes involved in nitrification, eCO2 in agricultural soils and the interaction of N+ with other GCFs in grassland soils stimulate an increase in the abundance of the AOA-amoA gene. In agricultural soil, MAP+ increases the abundance of nifH. W+ in agricultural soils and N+ in grassland soils decreased the abundance of nifH. The abundance of the genes nirS and nirK, involved in denitrification, was mainly negatively affected by W+ and positively affected by eCO2 in agricultural soil, but negatively affected by N+ in grassland soil. This meta-analysis was important for subsequent research related to global climate change. Considering data limitations, it is recommended to conduct multiple long-term integrated observational experiments to establish a scientific basis for addressing global changes in this context.
Collapse
Affiliation(s)
- Mingyu Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Detian Li
- Griffith School of Environment and Science and the Australian Rivers Institute, Griffith University, Nathan, QLD, Australia
| | - Beat Frey
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
| | - Decai Gao
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, PR China
| | - Xiangyu Liu
- Griffith School of Environment and Science and the Australian Rivers Institute, Griffith University, Nathan, QLD, Australia
| | - Chengrong Chen
- Griffith School of Environment and Science and the Australian Rivers Institute, Griffith University, Nathan, QLD, Australia
| | - Xin Sui
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China.
| | - Maihe Li
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland; Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, PR China; School of Life Science, Hebei University, Baoding, China.
| |
Collapse
|
3
|
Liu P, Zeng H, Qi L, Degen AA, Boone RB, Luo B, Huang M, Peng Z, Qi T, Wang W, Jing X, Shang Z. Vegetation redistribution is predicted to intensify soil organic carbon loss under future climate changes on the Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:173034. [PMID: 38719061 DOI: 10.1016/j.scitotenv.2024.173034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/02/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Vegetation redistribution may bring unexpected climate-soil carbon cycling in terrestrial biomes. However, whether and how vegetation redistribution alters the soil carbon pool under climate change is still poorly understood on the Tibetan Plateau. Here, we applied the G-Range model to simulate the cover of herbs, shrubs and trees, net primary productivity (NPP) and soil organic carbon density (SOCD) at the depth of 60 cm on Tibetan Plateau for the individual years 2020 and 2060, using climate projection for Representative Concentration Pathways (RCP) 4.5 and RCP8.5 scenarios with the RegCM4.6 model system. Vegetation redistribution was defined as the transitions in bare ground, herbs, shrubs and trees between 2020 and 2060, with approximately 57.9 % (RCP4.5) and 59 % (RCP8.5) of the area will redistribute vegetation over the whole Tibetan Plateau. The vegetation cover will increase by about 2.4 % (RCP4.5) and 1.9 % (RCP8.5), while the NPP and SOCD will decrease by about -14.3 g C m-2 yr-1 and -907 g C m-2 (RCP4.5), and -1.8 g C m-2 yr-1and -920 g C m-2 (RCP8.5). Shrubs and trees will expand in the east, and herbs will expand in the northwest part of the Plateau. These areas are projected to be hotspots with greater SOCD reduction in response to future climate change, and will include lower net plant carbon input due to the negative NPP. Our study indicates that the SOC pool will become a carbon source under increased air temperature and rainfall on the Tibetan Plateau by 2060, especially for the area with vegetation redistribution. These results revealed the potential risk of vegetation redistribution under climate change in alpine ecosystems, indicating the policymakers need to pay attention on the vegetation redistribution to mitigate the soil carbon emission and achieve the goal of carbon neutrality on the Tibetan Plateau.
Collapse
Affiliation(s)
- Peipei Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Haijun Zeng
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Lingyan Qi
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - A Allan Degen
- Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva 8410500, Israel
| | - Randall B Boone
- Department of Ecosystem Science and Sustainability and Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO 80523-1476, USA
| | - Binyu Luo
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Mei Huang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Zhen Peng
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Tianyun Qi
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Wenyin Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Xiaoping Jing
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Zhanhuan Shang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
4
|
Jensen KH, Grandy AS, Sparks JP. Elevated atmospheric CO 2 drives decreases in stable soil organic carbon in arid ecosystems: Evidence from a physical fractionation and organic compound analysis. GLOBAL CHANGE BIOLOGY 2024; 30:e17175. [PMID: 38337156 DOI: 10.1111/gcb.17175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024]
Abstract
The increasing concentration of CO2 in the atmosphere is perturbing the global carbon (C) cycle, altering stocks of organic C, including soil organic matter (SOM). The effect of this disturbance on soils in arid ecosystems may differ from other ecosystems due to water limitation. In this study, we conducted a density fractionation on soils previously harvested from the Nevada Desert FACE Facility (NDFF) to understand how elevated atmospheric CO2 (eCO2 ) affects SOM stability. Soils from beneath the perennial shrub, Larrea tridentata, and from unvegetated interspace were subjected to a sodium polytungstate density fractionation to separate light, particulate organic matter (POM, <1.85 g/cm3 ) from heavier, mineral associated organic matter (MAOM, >1.85 g/cm3 ). These fractions were analyzed for organic C, total N, δ13 C and δ15 N, to understand the mechanisms behind changes. The heavy fraction was further analyzed by pyrolysis GC/MS to assess changes in organic compound composition. Elevated CO2 decreased POM-C and MAOM-C in soils beneath L. tridentata while interspace soils exhibited only a small increase in MAOM-N. Analysis of δ13 C revealed incorporation of new C into both POM and MAOM pools indicating eCO2 stimulated rapid turnover of both POM and MAOM. The largest losses of POM-C and MAOM-C observed under eCO2 occurred in soils 20-40 cm in depth, highlighting that belowground C inputs may be a significant driver of SOM decomposition in this ecosystem. Pyrolysis GC/MS analysis revealed a decrease in organic compound diversity in the MAOM fraction of L. tridentata soils, becoming more similar to interspace soils under eCO2 . These results provide further evidence that MAOM stability may be compromised under disturbance and that SOC stocks in arid ecosystems are vulnerable under continued climate change.
Collapse
Affiliation(s)
- Kelsey H Jensen
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - A Stuart Grandy
- Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire, USA
| | - Jed P Sparks
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
5
|
Tang S, Tian D, Wang J, Zhang R, Wang S, Song J, Wan S, Zhang J, Zhang S, Li Z, Niu S. Synergistic effects of multiple global change drivers on terrestrial ecosystem carbon sink. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167554. [PMID: 37820794 DOI: 10.1016/j.scitotenv.2023.167554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 09/25/2023] [Accepted: 09/30/2023] [Indexed: 10/13/2023]
Abstract
Multiple global change drivers typically co-occur in terrestrial ecosystems, usually with complex interactions on ecosystem carbon fluxes. However, how they interactively impact terrestrial carbon sinks remains unknown. Here, we synthesized 82 field experiments that studied the individual and pairwise effects among nitrogen addition (N), increased precipitation (IP), elevated CO2 (eCO2) and warming, with direct measurements of net ecosystem productivity (NEP), gross ecosystem productivity (GEP) and ecosystem respiration (ER). We found that synergistic interactions mostly occurred between pairs of global change drivers on carbon fluxes. Moreover, these interactions varied with treatment magnitude, experimental duration and background precipitation. Specifically, the synergistic effect of N × IP became stronger with experimental precipitation magnitude and background rainfall. With an increasing N addition rate, N and eCO2 had weaker interactive effects on NEP. Warming and IP were more synergic to enhance NEP with higher levels of warming magnitude. However, the interactive effects of N × eCO2 on ER decreased over the experimental duration. Overall, this study provides new insights into the context-dependent occurrence of interactions among multiple global change drivers on ecosystem carbon sinks. These new findings are valuable to validate land C-cycle models with complex global change interactions and advance the next generations of future experimental design.
Collapse
Affiliation(s)
- Shiming Tang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affuirs, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, China
| | - Dashuan Tian
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Yuquanlu, Beijing 100049, China.
| | - Jinsong Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Yuquanlu, Beijing 100049, China
| | - Ruiyang Zhang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Song Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian Song
- College of Life Sciences, Hebei University, Baoding, Hebei 071002, China
| | - Shiqiang Wan
- College of Life Sciences, Hebei University, Baoding, Hebei 071002, China
| | - Jinxin Zhang
- Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry/Grassland Research Center, National Forestry and Grassland Administration, Beijing 100091, China
| | - Shuang Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Zhaolei Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuli Niu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Yuquanlu, Beijing 100049, China
| |
Collapse
|
6
|
Bai T, Wang P, Qiu Y, Zhang Y, Hu S. Nitrogen availability mediates soil carbon cycling response to climate warming: A meta-analysis. GLOBAL CHANGE BIOLOGY 2023; 29:2608-2626. [PMID: 36744998 DOI: 10.1111/gcb.16627] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/10/2023] [Indexed: 05/31/2023]
Abstract
Global climate warming may induce a positive feedback through increasing soil carbon (C) release to the atmosphere. Although warming can affect both C input to and output from soil, direct and convincing evidence illustrating that warming induces a net change in soil C is still lacking. We synthesized the results from field warming experiments at 165 sites across the globe and found that climate warming had no significant effect on soil C stock. On average, warming significantly increased root biomass and soil respiration, but warming effects on root biomass and soil respiration strongly depended on soil nitrogen (N) availability. Under high N availability (soil C:N ratio < 15), warming had no significant effect on root biomass, but promoted the coupling between effect sizes of root biomass and soil C stock. Under relative N limitation (soil C:N ratio > 15), warming significantly enhanced root biomass. However, the enhancement of root biomass did not induce a corresponding C accumulation in soil, possibly because warming promoted microbial CO2 release that offset the increased root C input. Also, reactive N input alleviated warming-induced C loss from soil, but elevated atmospheric CO2 or precipitation increase/reduction did not. Together, our findings indicate that the relative availability of soil C to N (i.e., soil C:N ratio) critically mediates warming effects on soil C dynamics, suggesting that its incorporation into C-climate models may improve the prediction of soil C cycling under future global warming scenarios.
Collapse
Affiliation(s)
- Tongshuo Bai
- Ecosystem Ecology Laboratory, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Peng Wang
- Ecosystem Ecology Laboratory, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yunpeng Qiu
- Ecosystem Ecology Laboratory, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yi Zhang
- Ecosystem Ecology Laboratory, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Shuijin Hu
- Ecosystem Ecology Laboratory, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
7
|
Yang X, Wang D, Tao Y, Shen M, Wei W, Cai C, Ding C, Li J, Song L, Yin B, Zhu C. Effects of elevated CO 2 on the Cd uptake by rice in Cd-contaminated paddy soils. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130140. [PMID: 36241499 DOI: 10.1016/j.jhazmat.2022.130140] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
The rising atmospheric CO2 is a major driver for climate change, directly affects rice production. Cadmium (Cd) in paddy soils also serves as a persistent concern. Currently, few studies consider the rice response to coupled stresses of elevated CO2 (eCO2) and soil Cd. Experimental evidence understanding the effects and mechanisms of eCO2 on Cd uptake by rice is lacking yet. In a free-air CO2 enrichment (FACE) system, a 3-year pot experiment was conducted to explore the Cd uptake by rice under two CO2 conditions (ambient and ambient + 200 µmol·mol-1) using combinations of in-situ Cd-contaminated soils and associated rice varieties. Results showed that more low-crystalline Fe oxides (Feh) in iron plaque (IP) were deposited on root surface with the increased dissolved Fe2+ due to lower soil redox status under eCO2. The Cd accumulation in rice was hindered due to more Cd associated with Feh (Feh-Cd) rather than uptake by roots. Taken together, the relative effects of eCO2 on Cd uptake by rice were consistent across years under different Cd-contaminated soils. Our findings will help to better understand the Cd uptake by rice under future climate conditions, and thus push the development of climate-crop-soil models and accurate prediction for food security.
Collapse
Affiliation(s)
- Xiong Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100010, China.
| | - Dongming Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100010, China
| | - Ye Tao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100010, China
| | - Min Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100010, China
| | - Wei Wei
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100010, China
| | - Chuang Cai
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Changfeng Ding
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jiuyu Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Lian Song
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Bin Yin
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Chunwu Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
8
|
Blumenthal DM, Carrillo Y, Kray JA, Parsons MC, Morgan JA, Pendall E. Soil disturbance and invasion magnify CO 2 effects on grassland productivity, reducing diversity. GLOBAL CHANGE BIOLOGY 2022; 28:6741-6751. [PMID: 36093790 DOI: 10.1111/gcb.16383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Climate change, disturbance, and plant invasion threaten grassland ecosystems, but their combined and interactive effects are poorly understood. Here, we examine how the combination of disturbance and plant invasion influences the sensitivity of mixed-grass prairie to elevated carbon dioxide (eCO2 ) and warming. We established subplots of intact prairie and disturbed/invaded prairie within a free-air CO2 enrichment (to 600 ppmv) by infrared warming (+1.5°C day, 3°C night) experiment and followed plant and soil responses for 5 years. Elevated CO2 initially led to moderate increases in biomass and plant diversity in both intact and disturbed/invaded prairie, but these effects shifted due to strong eCO2 responses of the invasive forb Centaurea diffusa. In the final 3 years, biomass responses to eCO2 in disturbed/invaded prairie were 10 times as large as those in intact prairie (+186% vs. +18%), resulting in reduced rather than increased plant diversity (-17% vs. +10%). At the same time, warming interacted with disturbance/invasion and year, reducing the rate of topsoil carbon recovery following disturbance. The strength of these interactions demonstrates the need to incorporate disturbance into predictions of climate change effects. In contrast to expectations from studies in intact ecosystems, eCO2 may threaten plant diversity in ecosystems subject to soil disturbance and invasion.
Collapse
Affiliation(s)
- Dana M Blumenthal
- Rangeland Resources & Systems Research Unit, USDA Agricultural Research Service, Fort Collins, Colorado, USA
| | - Yolima Carrillo
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Julie A Kray
- Rangeland Resources & Systems Research Unit, USDA Agricultural Research Service, Fort Collins, Colorado, USA
| | - Matthew C Parsons
- Rangeland Resources & Systems Research Unit, USDA Agricultural Research Service, Fort Collins, Colorado, USA
- Resource Environmental Solutions, LLC, Brodhead, Wisconsin, USA
| | - Jack A Morgan
- Rangeland Resources & Systems Research Unit, USDA Agricultural Research Service, Fort Collins, Colorado, USA
| | - Elise Pendall
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| |
Collapse
|
9
|
Nugent A, Allison SD. A framework for soil microbial ecology in urban ecosystems. Ecosphere 2022. [DOI: 10.1002/ecs2.3968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Andie Nugent
- Department of Ecology and Evolutionary Biology University of California–Irvine Irvine California USA
| | - Steven D. Allison
- Department of Ecology and Evolutionary Biology University of California–Irvine Irvine California USA
- Department of Earth System Science University of California–Irvine Irvine California USA
| |
Collapse
|
10
|
Chen Y, Han M, Yuan X, Hou Y, Qin W, Zhou H, Zhao X, Klein JA, Zhu B. Warming has a minor effect on surface soil organic carbon in alpine meadow ecosystems on the Qinghai-Tibetan Plateau. GLOBAL CHANGE BIOLOGY 2022; 28:1618-1629. [PMID: 34755425 DOI: 10.1111/gcb.15984] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
The alpine meadow ecosystem on the Qinghai-Tibetan Plateau (QTP) is very sensitive to warming and plays a key role in regulating global carbon (C) cycling. However, how warming affects the soil organic carbon (SOC) pool and related C inputs and outputs in alpine meadow ecosystems on the QTP remains unclear. Here, we combined two field experiments and a meta-analysis on field experiments to synthesize the responses of the SOC pool and related C cycling processes to warming in alpine meadow ecosystems on the QTP. We found that the SOC content of surface soil (0-10 cm) showed a minor response to warming, but plant respiration was accelerated by warming. In addition, the warming effect on SOC was not correlated with experimental and environmental variables, such as the method, magnitude and duration of warming, initial SOC content, mean annual temperature, and mean annual precipitation. We conclude that the surface SOC content is resistant to climate warming in alpine meadow ecosystems on the QTP.
Collapse
Affiliation(s)
- Ying Chen
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Mengguang Han
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Xia Yuan
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Yanhui Hou
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Wenkuan Qin
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Huakun Zhou
- Qinghai Provincial Key Laboratory of Restoration Ecology of Cold Area, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Xinquan Zhao
- Qinghai Provincial Key Laboratory of Restoration Ecology of Cold Area, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Julia A Klein
- Department of Ecosystem Science & Sustainability, Colorado State University, Fort Collins, CO, USA
| | - Biao Zhu
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| |
Collapse
|
11
|
Alves RJE, Callejas IA, Marschmann GL, Mooshammer M, Singh HW, Whitney B, Torn MS, Brodie EL. Kinetic Properties of Microbial Exoenzymes Vary With Soil Depth but Have Similar Temperature Sensitivities Through the Soil Profile. Front Microbiol 2021; 12:735282. [PMID: 34917043 PMCID: PMC8669745 DOI: 10.3389/fmicb.2021.735282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/03/2021] [Indexed: 11/13/2022] Open
Abstract
Current knowledge of the mechanisms driving soil organic matter (SOM) turnover and responses to warming is mainly limited to surface soils, although over 50% of global soil carbon is contained in subsoils. Deep soils have different physicochemical properties, nutrient inputs, and microbiomes, which may harbor distinct functional traits and lead to different SOM dynamics and temperature responses. We hypothesized that kinetic and thermal properties of soil exoenzymes, which mediate SOM depolymerization, vary with soil depth, reflecting microbial adaptation to distinct substrate and temperature regimes. We determined the Michaelis-Menten (MM) kinetics of three ubiquitous enzymes involved in carbon (C), nitrogen (N) and phosphorus (P) acquisition at six soil depths down to 90 cm at a temperate forest, and their temperature sensitivity based on Arrhenius/Q10 and Macromolecular Rate Theory (MMRT) models over six temperatures between 4–50°C. Maximal enzyme velocity (Vmax) decreased strongly with depth for all enzymes, both on a dry soil mass and a microbial biomass C basis, whereas their affinities increased, indicating adaptation to lower substrate availability. Surprisingly, microbial biomass-specific catalytic efficiencies also decreased with depth, except for the P-acquiring enzyme, indicating distinct nutrient demands at depth relative to microbial abundance. These results suggested that deep soil microbiomes encode enzymes with intrinsically lower turnover and/or produce less enzymes per cell, reflecting distinct life strategies. The relative kinetics between different enzymes also varied with depth, suggesting an increase in relative P demand with depth, or that phosphatases may be involved in C acquisition. Vmax and catalytic efficiency increased consistently with temperature for all enzymes, leading to overall higher SOM-decomposition potential, but enzyme temperature sensitivity was similar at all depths and between enzymes, based on both Arrhenius/Q10 and MMRT models. In a few cases, however, temperature affected differently the kinetic properties of distinct enzymes at discrete depths, suggesting that it may alter the relative depolymerization of different compounds. We show that soil exoenzyme kinetics may reflect intrinsic traits of microbiomes adapted to distinct soil depths, although their temperature sensitivity is remarkably uniform. These results improve our understanding of critical mechanisms underlying SOM dynamics and responses to changing temperatures through the soil profile.
Collapse
Affiliation(s)
- Ricardo J Eloy Alves
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Ileana A Callejas
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.,Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Gianna L Marschmann
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Maria Mooshammer
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA, United States
| | - Hans W Singh
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.,Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Bizuayehu Whitney
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.,Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Margaret S Torn
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.,Energy and Resources Group, University of California, Berkeley, Berkeley, CA, United States
| | - Eoin L Brodie
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.,Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
12
|
Castañeda‐Gómez L, Powell JR, Ellsworth DS, Pendall E, Carrillo Y. The influence of roots on mycorrhizal fungi, saprotrophic microbes and carbon dynamics in a low‐phosphorus
Eucalyptus
forest under elevated CO
2. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Laura Castañeda‐Gómez
- Hawkesbury Institute for the EnvironmentWestern Sydney University Penrith NSW Canada
| | - Jeff R. Powell
- Hawkesbury Institute for the EnvironmentWestern Sydney University Penrith NSW Canada
| | - David S. Ellsworth
- Hawkesbury Institute for the EnvironmentWestern Sydney University Penrith NSW Canada
| | | | - Yolima Carrillo
- Hawkesbury Institute for the EnvironmentWestern Sydney University Penrith NSW Canada
| |
Collapse
|
13
|
Luo J, Guo X, Liang J, Song Y, Liu Y, Li J, Du Y, Mu Q, Jiang Y, Zhao H, Li T. The influence of elevated CO 2 on bacterial community structure and its co-occurrence network in soils polluted with Cr 2O 3 nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146430. [PMID: 33752002 DOI: 10.1016/j.scitotenv.2021.146430] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/10/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Elevated CO2 (eCO2) and nanoparticles release are considered among the most noteworthy global concerns as they may impose negative effects on human health and ecosystem functioning. A mechanistic understanding of their combined impacts on soil microbiota is essential due to the profound eCO2 effect on soil biogeochemical processes. In this study, the impacts of Cr2O3 nanoparticles (nano-Cr2O3) on the activity, structure and co-occurrence networks of bacterial communities under ambient and eCO2 were compared between a clay loam and a sandy loam soil. We showed that eCO2 substantially mitigated nano-Cr2O3 toxicity, with microbial biomass, enzyme activity and bacterial alpha-diversity in clay loam soil were much higher than those in sandy loam soil. Nano-Cr2O3 addition caused an increase in alpha-diversity except for clay loam soil samples under eCO2. 16S rRNA gene profiling data found eCO2 remarkably reduced community divergences induced by nano-Cr2O3 more efficiently in clay loam soil (P < 0.05). Network analyses revealed more complex co-occurrence network architectures in clay loam soil than in sandy loam soil, however, nano-Cr2O3 decreased but eCO2 increased modularity and network complexity. Rising CO2 favoured the growth of oligotrophic (Acidobacteriaceae, Bryobacteraceae) rather than the copiotrophic bacteria (Sphingomonadaceae, Caulobacteraceae, Bacteroidaceae), which may contribute to community recovery and increase available carbon utilization efficiency. Our results suggested that the degree to which eCO2 mitigates nano-Cr2O3 toxicity is soil dependent, which could be related to the variation in clay and organic matter content, resilience of the resistant bacterial taxa, and microbial network complexity in distinct soils.
Collapse
Affiliation(s)
- Jipeng Luo
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinyu Guo
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiabin Liang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuchao Song
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuankun Liu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jinxing Li
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yilin Du
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qili Mu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yue Jiang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Heping Zhao
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tingqiang Li
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China; National Demonstration Center for Experimental Environment and Resources Education, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
14
|
A trade-off between plant and soil carbon storage under elevated CO 2. Nature 2021; 591:599-603. [PMID: 33762765 DOI: 10.1038/s41586-021-03306-8] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/27/2021] [Indexed: 02/01/2023]
Abstract
Terrestrial ecosystems remove about 30 per cent of the carbon dioxide (CO2) emitted by human activities each year1, yet the persistence of this carbon sink depends partly on how plant biomass and soil organic carbon (SOC) stocks respond to future increases in atmospheric CO2 (refs. 2,3). Although plant biomass often increases in elevated CO2 (eCO2) experiments4-6, SOC has been observed to increase, remain unchanged or even decline7. The mechanisms that drive this variation across experiments remain poorly understood, creating uncertainty in climate projections8,9. Here we synthesized data from 108 eCO2 experiments and found that the effect of eCO2 on SOC stocks is best explained by a negative relationship with plant biomass: when plant biomass is strongly stimulated by eCO2, SOC storage declines; conversely, when biomass is weakly stimulated, SOC storage increases. This trade-off appears to be related to plant nutrient acquisition, in which plants increase their biomass by mining the soil for nutrients, which decreases SOC storage. We found that, overall, SOC stocks increase with eCO2 in grasslands (8 ± 2 per cent) but not in forests (0 ± 2 per cent), even though plant biomass in grasslands increase less (9 ± 3 per cent) than in forests (23 ± 2 per cent). Ecosystem models do not reproduce this trade-off, which implies that projections of SOC may need to be revised.
Collapse
|
15
|
Microbial growth and carbon use efficiency show seasonal responses in a multifactorial climate change experiment. Commun Biol 2020; 3:584. [PMID: 33067550 PMCID: PMC7567817 DOI: 10.1038/s42003-020-01317-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 09/10/2020] [Indexed: 11/08/2022] Open
Abstract
Microbial growth and carbon use efficiency (CUE) are central to the global carbon cycle, as microbial remains form soil organic matter. We investigated how future global changes may affect soil microbial growth, respiration, and CUE. We aimed to elucidate the soil microbial response to multiple climate change drivers across the growing season and whether effects of multiple global change drivers on soil microbial physiology are additive or interactive. We measured soil microbial growth, CUE, and respiration at three time points in a field experiment combining three levels of temperature and atmospheric CO2, and a summer drought. Here we show that climate change-driven effects on soil microbial physiology are interactive and season-specific, while the coupled response of growth and respiration lead to stable microbial CUE (average CUE = 0.39). These results suggest that future research should focus on microbial growth across different seasons to understand and predict effects of global changes on soil carbon dynamics.
Collapse
|
16
|
Drake JE, Furze ME, Tjoelker MG, Carrillo Y, Barton CVM, Pendall E. Climate warming and tree carbon use efficiency in a whole-tree 13 CO 2 tracer study. THE NEW PHYTOLOGIST 2019; 222:1313-1324. [PMID: 30840319 DOI: 10.1111/nph.15721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/21/2019] [Indexed: 06/09/2023]
Abstract
Autotrophic respiration is a major driver of the global C cycle and may contribute a positive climate warming feedback through increased atmospheric concentrations of CO2 . The extent of this feedback depends on plants' ability to acclimate respiration to maintain a constant carbon use efficiency (CUE). We quantified respiratory partitioning of gross primary production (GPP) and CUE of field-grown trees in a long-term warming experiment (+3°C). We delivered a 13 C-CO2 pulse to whole tree crowns and chased that pulse in the respiration of leaves, whole crowns, roots, and soil. We also measured the isotopic composition of soil microbial biomass and the respiration rates of leaves and whole crowns. We documented homeostatic respiratory acclimation of foliar and whole-crown respiration rates; the trees adjusted to experimental warming such that leaf-level respiration rates were not increased. Experimental warming had no detectable impact on respiratory partitioning or mean residence times. Of the 13 C label acquired by the trees, aboveground respiration consumed 10%, belowground respiration consumed 40%, and the remaining 50% was retained. Experimental warming of +3°C did not alter respiratory partitioning at the scale of entire trees, suggesting that complete acclimation of respiration to warming is likely to dampen a positive climate warming feedback.
Collapse
Affiliation(s)
- John E Drake
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
- Department of Forest and Natural Resources Management, College of Environmental Science and Forestry, State University of New York, Syracuse, NY, 13210, USA
| | - Morgan E Furze
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Mark G Tjoelker
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Yolima Carrillo
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Craig V M Barton
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Elise Pendall
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| |
Collapse
|
17
|
Song J, Wan S, Piao S, Hui D, Hovenden MJ, Ciais P, Liu Y, Liu Y, Zhong M, Zheng M, Ma G, Zhou Z, Ru J. Elevated CO2
does not stimulate carbon sink in a semi-arid grassland. Ecol Lett 2019; 22:458-468. [DOI: 10.1111/ele.13202] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/17/2018] [Accepted: 10/23/2018] [Indexed: 01/19/2023]
Affiliation(s)
- Jian Song
- International Joint Research Laboratory for Global Change Ecology; School of Life Sciences; Henan University; Kaifeng Henan 475004 China
- College of Life Sciences; Hebei University; Baoding Hebei 071002 China
| | - Shiqiang Wan
- International Joint Research Laboratory for Global Change Ecology; School of Life Sciences; Henan University; Kaifeng Henan 475004 China
- College of Life Sciences; Hebei University; Baoding Hebei 071002 China
| | - Shilong Piao
- Sino-French Institute for Earth System Science; College of Urban and Environmental Sciences; Peking University; Beijing 100871 China
- Key Laboratory of Alpine Ecology and Biodiversity; Institute of Tibetan Plateau Research; Chinese Academy of Sciences; Beijing 100085 China
- Centre for Excellence in Tibetan Earth Science; Chinese Academy of Sciences; Beijing 100085 China
| | - Dafeng Hui
- Department of Biological Sciences; Tennessee State University; Nashville TN 37209 USA
| | - Mark J. Hovenden
- Biological Sciences; School of Natural Sciences; University of Tasmania; Private Bag 55 Hobart Tas 7001 Australia
| | - Philippe Ciais
- Laboratoire des Sciences du Climat et de l'Environnement; CEA CNRS UVSQ; Gif-sur-Yvette France
| | - Yongwen Liu
- Key Laboratory of Alpine Ecology and Biodiversity; Institute of Tibetan Plateau Research; Chinese Academy of Sciences; Beijing 100101 China
| | - Yinzhan Liu
- International Joint Research Laboratory for Global Change Ecology; School of Life Sciences; Henan University; Kaifeng Henan 475004 China
| | - Mingxing Zhong
- International Joint Research Laboratory for Global Change Ecology; School of Life Sciences; Henan University; Kaifeng Henan 475004 China
| | - Mengmei Zheng
- International Joint Research Laboratory for Global Change Ecology; School of Life Sciences; Henan University; Kaifeng Henan 475004 China
| | - Gaigai Ma
- International Joint Research Laboratory for Global Change Ecology; School of Life Sciences; Henan University; Kaifeng Henan 475004 China
| | - Zhenxing Zhou
- International Joint Research Laboratory for Global Change Ecology; School of Life Sciences; Henan University; Kaifeng Henan 475004 China
| | - Jingyi Ru
- International Joint Research Laboratory for Global Change Ecology; School of Life Sciences; Henan University; Kaifeng Henan 475004 China
| |
Collapse
|