1
|
McLeod AM, Leroux S, Little CL, Massol F, Vander Wal E, Wiersma YF, Gounand I, Loeuille N, Harvey E. Quantifying elemental diversity to study landscape ecosystem function. Trends Ecol Evol 2025; 40:57-66. [PMID: 39419673 DOI: 10.1016/j.tree.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 08/15/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024]
Abstract
The movement, distribution, and relative proportions of essential elements across the landscape should influence the structure and functioning of biological communities. Yet, our basic understanding of the spatial distribution of elements, particularly bioavailable elements, across landscapes is limited. Here, we propose a quantitative framework to study the causes and consequences of spatial patterns of elements. Specifically, we integrate distribution models, dissimilarity metrics, and spatial smoothing to predict how the distribution of bioavailable elements changes with spatial extent. Our community and landscape ecology perspective on elemental diversity highlights the characteristic relationships that emerge among elements in landscapes and that can be measured empirically to help us pinpoint ecosystem control points. This step forward provides a mechanistic link between community and ecosystem processes.
Collapse
Affiliation(s)
- Anne M McLeod
- IGB Leibniz-Institute of Freshwater Ecology and Inland Fisheries in the Forschungsverbund Berlin eV, 12587 Berlin, Germany; School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand.
| | - Shawn Leroux
- Department of Biology, Memorial University of Newfoundland, St John's, NL, Canada A1B 3X9
| | - Chelsea L Little
- School of Environmental Science, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
| | - François Massol
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Eric Vander Wal
- Department of Biology, Memorial University of Newfoundland, St John's, NL, Canada A1B 3X9
| | - Yolanda F Wiersma
- Department of Biology, Memorial University of Newfoundland, St John's, NL, Canada A1B 3X9
| | - Isabelle Gounand
- Sorbonne Université, Université Paris Cité, Université Paris Est Créteil, CNRS, INRAE, IRD, Institut d'Ecologie et des Sciences de l'Environnement de Paris (UMR7618), 75005 Paris, France
| | - Nicolas Loeuille
- Sorbonne Université, Université Paris Cité, Université Paris Est Créteil, CNRS, INRAE, IRD, Institut d'Ecologie et des Sciences de l'Environnement de Paris (UMR7618), 75005 Paris, France
| | - Eric Harvey
- Centre de Recherche sur les Interactions Bassins Versants - Écosystèmes Aquatiques (RIVE), Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada G9A 5H7.
| |
Collapse
|
2
|
Held NA, Krishna A, Crippa D, Battaje RR, Devaux AJ, Dragan A, Manhart M. Nutrient colimitation is a quantitative, dynamic property of microbial populations. Proc Natl Acad Sci U S A 2024; 121:e2400304121. [PMID: 39693349 DOI: 10.1073/pnas.2400304121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 11/05/2024] [Indexed: 12/20/2024] Open
Abstract
Resource availability dictates how fast and how much microbial populations grow. Quantifying the relationship between microbial growth and resource concentrations makes it possible to promote, inhibit, and predict microbial activity. Microbes require many resources, including macronutrients (e.g., carbon and nitrogen), micronutrients (e.g., metals), and complex nutrients like vitamins and amino acids. When multiple resources are scarce, as frequently occurs in nature, microbes may experience resource colimitation in which more than one resource simultaneously limits growth. Despite growing evidence for colimitation, the data are difficult to interpret and compare due to a lack of quantitative measures of colimitation and systematic tests of resource conditions. We hypothesize that microbes experience a continuum of nutrient limitation states and that nutrient colimitation is common in the laboratory and in nature. To address this, we develop a quantitative theory of resource colimitation that captures the range of possible limitation states and describes how they can change dynamically with resource conditions. We apply this approach to clonal populations of Escherichia coli to show that colimitation occurs in common laboratory conditions. We also show that growth rate and growth yield are colimited differently, reflecting the different underlying biology of these traits. Finally, we analyze environmental data to provide intuition for the continuum of limitation and colimitation conditions in nature. Altogether our results provide a quantitative framework for understanding and quantifying colimitation of microbes in biogeochemical, biotechnology, and human health contexts.
Collapse
Affiliation(s)
- Noelle A Held
- Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH) Zurich, Zurich 8006, Switzerland
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf 8600, Switzerland
- Department of Biological Sciences, Marine & Environmental Biology Section, University of Southern California, Los Angeles, CA 90089
| | - Aswin Krishna
- Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH) Zurich, Zurich 8006, Switzerland
- Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich 8006, Switzerland
| | - Donat Crippa
- Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH) Zurich, Zurich 8006, Switzerland
| | - Rachana Rao Battaje
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ 08854
| | - Alexander J Devaux
- Department of Biological Sciences, Marine & Environmental Biology Section, University of Southern California, Los Angeles, CA 90089
| | - Anastasia Dragan
- Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH) Zurich, Zurich 8006, Switzerland
| | - Michael Manhart
- Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH) Zurich, Zurich 8006, Switzerland
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf 8600, Switzerland
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ 08854
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854
| |
Collapse
|
3
|
Lievens EJP, Kühn S, Horas EL, Le Pennec G, Peter S, Petrosky AD, Künzel S, Feulner PGD, Becks L. High parasite diversity maintained after an alga-virus coevolutionary arms race. J Evol Biol 2024; 37:795-806. [PMID: 38699979 DOI: 10.1093/jeb/voae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/27/2024] [Accepted: 05/02/2024] [Indexed: 05/05/2024]
Abstract
Arms race dynamics are a common outcome of host-parasite coevolution. While they can theoretically be maintained indefinitely, realistic arms races are expected to be finite. Once an arms race has ended, for example due to the evolution of a generalist-resistant host, the system may transition into coevolutionary dynamics that favour long-term diversity. In microbial experiments, host-parasite arms races often transition into a stable coexistence of generalist-resistant hosts, (semi-)susceptible hosts, and parasites. While long-term host diversity is implicit in these cases, parasite diversity is usually overlooked. In this study, we examined parasite diversity after the end of an experimental arms race between a unicellular alga (Chlorella variabilis) and its lytic virus (PBCV-1). First, we isolated virus genotypes from multiple time points from two replicate microcosms. A time-shift experiment confirmed that the virus isolates had escalating host ranges, i.e., that arms races had occurred. We then examined the phenotypic and genetic diversity of virus isolates from the post-arms race phase. Post-arms race virus isolates had diverse host ranges, survival probabilities, and growth rates; they also clustered into distinct genetic groups. Importantly, host range diversity was maintained throughout the post-arms race phase, and the frequency of host range phenotypes fluctuated over time. We hypothesize that this dynamic polymorphism was maintained by a combination of fluctuating selection and demographic stochasticity. Together with previous work in prokaryotic systems, our results link experimental observations of arms races to natural observations of long-term host and parasite diversity.
Collapse
Affiliation(s)
- Eva J P Lievens
- Aquatic Ecology and Evolution Group, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Samuel Kühn
- Aquatic Ecology and Evolution Group, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Elena L Horas
- Aquatic Ecology and Evolution Group, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Guénolé Le Pennec
- Department of Fish Ecology and Evolution, EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Sarah Peter
- Aquatic Ecology and Evolution Group, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Azade D Petrosky
- Aquatic Ecology and Evolution Group, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Sven Künzel
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Philine G D Feulner
- Department of Fish Ecology and Evolution, EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
- Department of Biology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Lutz Becks
- Aquatic Ecology and Evolution Group, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
4
|
Muscatt G, Cook R, Millard A, Bending GD, Jameson E. Viral metagenomics reveals diverse virus-host interactions throughout the soil depth profile. mBio 2023; 14:e0224623. [PMID: 38032184 PMCID: PMC10746233 DOI: 10.1128/mbio.02246-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
IMPORTANCE Soil viruses can moderate the roles that their host microbes play in global carbon cycling. However, given that most studies investigate the surface layer (i.e., top 20 cm) of soil, the extent to which this occurs in subsurface soil (i.e., below 20 cm) is unknown. Here, we leveraged public sequencing data to investigate the interactions between viruses and their hosts at soil depth intervals, down to 115 cm. While most viruses were detected throughout the soil depth profile, their adaptation to host microbes varied. Nonetheless, we uncovered evidence for the potential of soil viruses to encourage their hosts to recycle plant-derived carbon in both surface and subsurface soils. This work reasons that our understanding of soil viral functions requires us to continue to dig deeper and compare viruses existing throughout soil ecosystems.
Collapse
Affiliation(s)
- George Muscatt
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Ryan Cook
- School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom
| | - Andrew Millard
- Department of Genetics and Genome Biology, Leicester Centre for Phage Research, University of Leicester, Leicester, United Kingdom
| | - Gary D. Bending
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Eleanor Jameson
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- School of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| |
Collapse
|
5
|
Penuelas J, Sardans J. Human-driven global nutrient imbalances increase risks to health. ECO-ENVIRONMENT & HEALTH (ONLINE) 2023; 2:246-251. [PMID: 38435356 PMCID: PMC10902514 DOI: 10.1016/j.eehl.2023.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/06/2023] [Accepted: 08/12/2023] [Indexed: 03/05/2024]
Abstract
Human-induced inputs of nitrogen (N) and phosphorus (P) into the biosphere have reached unprecedented levels, particularly N, leading to an escalating global anthropogenic N:P ratio. This ratio has emerged as a significant driver of environmental change, impacting organisms, ecosystems, and global food security. However, the implications of this ratio for human health have been largely overlooked and remain uncertain. This article aims to fill this knowledge gap by exploring the potential effects of N:P ratios on both non-infectious and infectious diseases. Preliminary data emphasize the importance of investigating the influence of N:P ratios on human health, suggesting a potential role in the rise of non-infectious diseases, such as cancer, as well as the proliferation of infectious diseases, including Zika and malaria. These findings highlight the urgent need for increased attention from the scientific community and policymakers regarding the complex impacts of the human-induced biospheric N:P ratio. It is crucial to investigate and understand the underlying mechanisms and drivers behind these effects. Furthermore, there is significant potential for improving human health through the manipulation of N:P ratios and the availability of N and P. This applies not only to medical treatments but also to innovative fertilizer management strategies. These avenues present promising opportunities to address the challenges associated with human health in an ever-changing world.
Collapse
Affiliation(s)
- Josep Penuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, 08193 Bellaterra, Barcelona, Catalonia, Spain
- CREAF, 08193 Cerdanyola del Vallès, Barcelona, Catalonia, Spain
| | - Jordi Sardans
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, 08193 Bellaterra, Barcelona, Catalonia, Spain
- CREAF, 08193 Cerdanyola del Vallès, Barcelona, Catalonia, Spain
| |
Collapse
|
6
|
Chen V, Johnson MS, Hérissant L, Humphrey PT, Yuan DC, Li Y, Agarwala A, Hoelscher SB, Petrov DA, Desai MM, Sherlock G. Evolution of haploid and diploid populations reveals common, strong, and variable pleiotropic effects in non-home environments. eLife 2023; 12:e92899. [PMID: 37861305 PMCID: PMC10629826 DOI: 10.7554/elife.92899] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/21/2023] Open
Abstract
Adaptation is driven by the selection for beneficial mutations that provide a fitness advantage in the specific environment in which a population is evolving. However, environments are rarely constant or predictable. When an organism well adapted to one environment finds itself in another, pleiotropic effects of mutations that made it well adapted to its former environment will affect its success. To better understand such pleiotropic effects, we evolved both haploid and diploid barcoded budding yeast populations in multiple environments, isolated adaptive clones, and then determined the fitness effects of adaptive mutations in 'non-home' environments in which they were not selected. We find that pleiotropy is common, with most adaptive evolved lineages showing fitness effects in non-home environments. Consistent with other studies, we find that these pleiotropic effects are unpredictable: they are beneficial in some environments and deleterious in others. However, we do find that lineages with adaptive mutations in the same genes tend to show similar pleiotropic effects. We also find that ploidy influences the observed adaptive mutational spectra in a condition-specific fashion. In some conditions, haploids and diploids are selected with adaptive mutations in identical genes, while in others they accumulate mutations in almost completely disjoint sets of genes.
Collapse
Affiliation(s)
- Vivian Chen
- Department of Biology, Stanford UniversityStanfordUnited States
| | - Milo S Johnson
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
- Quantitative Biology Initiative, Harvard UniversityCambridgeUnited States
- NSF-Simons Center for Mathematical and Statistical Analysis of Biology, Harvard UniversityBostonUnited States
| | - Lucas Hérissant
- Department of Genetics, Stanford UniversityStanfordUnited States
| | - Parris T Humphrey
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - David C Yuan
- Department of Biology, Stanford UniversityStanfordUnited States
| | - Yuping Li
- Department of Biology, Stanford UniversityStanfordUnited States
| | - Atish Agarwala
- Department of Physics, Stanford UniversityStanfordUnited States
| | | | - Dmitri A Petrov
- Department of Biology, Stanford UniversityStanfordUnited States
| | - Michael M Desai
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
- Quantitative Biology Initiative, Harvard UniversityCambridgeUnited States
- NSF-Simons Center for Mathematical and Statistical Analysis of Biology, Harvard UniversityBostonUnited States
- Department of Physics, Harvard UniversityCambridgeUnited States
| | - Gavin Sherlock
- Department of Genetics, Stanford UniversityStanfordUnited States
| |
Collapse
|
7
|
El-Sabaawi RW, Lemmen KD, Jeyasingh PD, Declerck SAJ. SEED: A framework for integrating ecological stoichiometry and eco-evolutionary dynamics. Ecol Lett 2023; 26 Suppl 1:S109-S126. [PMID: 37840025 DOI: 10.1111/ele.14285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 06/01/2023] [Accepted: 06/04/2023] [Indexed: 10/17/2023]
Abstract
Characterising the extent and sources of intraspecific variation and their ecological consequences is a central challenge in the study of eco-evolutionary dynamics. Ecological stoichiometry, which uses elemental variation of organisms and their environment to understand ecosystem patterns and processes, can be a powerful framework for characterising eco-evolutionary dynamics. However, the current emphasis on the relative content of elements in the body (i.e. organismal stoichiometry) has constrained its application. Intraspecific variation in the rates at which elements are acquired, assimilated, allocated or lost is often greater than the variation in organismal stoichiometry. There is much to gain from studying these traits together as components of an 'elemental phenotype'. Furthermore, each of these traits can have distinct ecological effects that are underappreciated in the current literature. We propose a conceptual framework that explores how microevolutionary change in the elemental phenotype occurs, how its components interact with each other and with other traits, and how its changes can affect a wide range of ecological processes. We demonstrate how the framework can be used to generate novel hypotheses and outline pathways for future research that enhance our ability to explain, analyse and predict eco-evolutionary dynamics.
Collapse
Affiliation(s)
- Rana W El-Sabaawi
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Kimberley D Lemmen
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Punidan D Jeyasingh
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Steven A J Declerck
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Department of Biology, Laboratory of Aquatic Ecology, Evolution and Conservation, KULeuven, Leuven, Belgium
| |
Collapse
|
8
|
Schwartz DA, Shoemaker WR, Măgălie A, Weitz JS, Lennon JT. Bacteria-phage coevolution with a seed bank. THE ISME JOURNAL 2023:10.1038/s41396-023-01449-2. [PMID: 37286738 DOI: 10.1038/s41396-023-01449-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023]
Abstract
Dormancy is an adaptation to living in fluctuating environments. It allows individuals to enter a reversible state of reduced metabolic activity when challenged by unfavorable conditions. Dormancy can also influence species interactions by providing organisms with a refuge from predators and parasites. Here we test the hypothesis that, by generating a seed bank of protected individuals, dormancy can modify the patterns and processes of antagonistic coevolution. We conducted a factorially designed experiment where we passaged a bacterial host (Bacillus subtilis) and its phage (SPO1) in the presence versus absence of a seed bank consisting of dormant endospores. Owing in part to the inability of phages to attach to spores, seed banks stabilized population dynamics and resulted in minimum host densities that were 30-fold higher compared to bacteria that were unable to engage in dormancy. By supplying a refuge to phage-sensitive strains, we show that seed banks retained phenotypic diversity that was otherwise lost to selection. Dormancy also stored genetic diversity. After characterizing allelic variation with pooled population sequencing, we found that seed banks retained twice as many host genes with mutations, whether phages were present or not. Based on mutational trajectories over the course of the experiment, we demonstrate that seed banks can dampen bacteria-phage coevolution. Not only does dormancy create structure and memory that buffers populations against environmental fluctuations, it also modifies species interactions in ways that can feed back onto the eco-evolutionary dynamics of microbial communities.
Collapse
Affiliation(s)
- Daniel A Schwartz
- Department of Biology, Indiana University, Bloomington, Indiana, IN, USA
| | - William R Shoemaker
- The Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy
| | - Andreea Măgălie
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Joshua S Weitz
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
- Institut de Biologie, École Normale Supérieure, Paris, France
| | - Jay T Lennon
- Department of Biology, Indiana University, Bloomington, Indiana, IN, USA.
| |
Collapse
|
9
|
Microbial and Viral Genome and Proteome Nitrogen Demand Varies across Multiple Spatial Scales within a Marine Oxygen Minimum Zone. mSystems 2023; 8:e0109522. [PMID: 36920198 PMCID: PMC10134851 DOI: 10.1128/msystems.01095-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Nutrient availability can significantly influence microbial genomic and proteomic streamlining, for example, by selecting for lower nitrogen to carbon ratios. Oligotrophic open ocean microbes have streamlined genomic nitrogen requirements relative to those of their counterparts in nutrient-rich coastal waters. However, steep gradients in nutrient availability occur at meter-level, and even micron-level, spatial scales. It is unclear whether such gradients also structure genomic and proteomic stoichiometry. Focusing on the eastern tropical North Pacific oxygen minimum zone (OMZ), we use comparative metagenomics to examine how nitrogen availability shapes microbial and viral genome properties along the vertical gradient across the OMZ and between two size fractions, distinguishing free-living microbes versus particle-associated microbes. We find a substantial increase in the nitrogen content of encoded proteins in particle-associated over free-living bacteria and archaea across nitrogen availability regimes over depth. Within each size fraction, we find that bacterial and viral genomic nitrogen tends to increase with increasing nitrate concentrations with depth. In contrast to cellular genes, the nitrogen content of virus proteins does not differ between size fractions. We identified arginine as a key amino acid in the modulation of the C:N ratios of core genes for bacteria, archaea, and viruses. Functional analysis reveals that particle-associated bacterial metagenomes are enriched for genes that are involved in arginine metabolism and organic nitrogen compound catabolism. Our results are consistent with nitrogen streamlining in both cellular and viral genomes on spatial scales of meters to microns. These effects are similar in magnitude to those previously reported across scales of thousands of kilometers. IMPORTANCE The genomes of marine microbes can be shaped by nutrient cycles, with ocean-scale gradients in nitrogen availability being known to influence microbial amino acid usage. It is unclear, however, how genomic properties are shaped by nutrient changes over much smaller spatial scales, for example, along the vertical transition into oxygen minimum zones (OMZs) or from the exterior to the interior of detrital particles. Here, we measure protein nitrogen usage by marine bacteria, archaea, and viruses by using metagenomes from the nitracline of the eastern tropical North Pacific OMZ, including both particle-associated and nonassociated biomass. Our results show higher genomic and proteomic nitrogen content in particle-associated microbes and at depths with higher nitrogen availability for cellular and viral genomes. This discovery suggests that stoichiometry influences microbial and viral evolution across multiple scales, including the micrometer to millimeter scale associated with particle-associated versus free-living lifestyles.
Collapse
|
10
|
Xu X, He C, Zhong C, Zhang Q, Yuan X, Hu X, Deng W, Wang J, Du Q, Zhang L. Soil N 2O emission in Cinnamomum camphora plantations along an urbanization gradient altered by changes in litter input and microbial community composition. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 299:118876. [PMID: 35074458 DOI: 10.1016/j.envpol.2022.118876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Urbanization alters land use, increasing the rate of greenhouse gas (GHG) emissions and hence atmospheric compositions. Nitrous oxide (N2O) is a major GHG that contributes substantially to global warming. N2O emissions are sensitive to changes in substrate availabilities, such as litter and N input, as well as micro-environmental factors caused by land-use change upon urbanization. However, the potential impacts of changing litter and N on soil N2O emissions along urban-rural gradients is not well understood. Here, we conducted an in situ study over 19 months in Cinnamomum camphora plantations along an urban-rural gradient, to examine the effects of the urban-rural gradient, N and litter input on N2O emissions from C. camphora plantation soils and the underlying mechanisms via N, litter and microbial communities. The results showed that urban soil N2O emissions were 105% and 196% higher than those from suburban and rural soil, respectively, and co-occurred with a higher abundance of AOA, nirS and nirK genes. Litter removal increased cumulative N2O emissions by 59.7%, 50.9% and 43.3% from urban, suburban and rural soils, respectively. Compared with litter kept treatment, increases in AOA and nirK abundance were observed in urban soil, and higher rural nirS abundance occurred following litter removal. Additionally, the relatively higher soil temperature and available N content in the urban soil increased N2O emissions compared with the suburban and rural soil. Therefore, in addition to changes in microbial communities and abiotic environmental factors, litter kept in C. camphora plantations along an urban-rural gradient is also important in mitigating N2O emissions, providing a potential strategy for the mitigation of N2O emissions.
Collapse
Affiliation(s)
- Xintong Xu
- Key Laboratory of Silviculture, Collaborative Innovation Center of Jiangxi Typical Trees Cultivation and Utilization, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Chang He
- Key Laboratory of Silviculture, Collaborative Innovation Center of Jiangxi Typical Trees Cultivation and Utilization, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Chuan Zhong
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qiang Zhang
- Key Laboratory of Silviculture, Collaborative Innovation Center of Jiangxi Typical Trees Cultivation and Utilization, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xi Yuan
- Key Laboratory of Silviculture, Collaborative Innovation Center of Jiangxi Typical Trees Cultivation and Utilization, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiaofei Hu
- School of Management, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Wenping Deng
- Key Laboratory of Silviculture, Collaborative Innovation Center of Jiangxi Typical Trees Cultivation and Utilization, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jiawei Wang
- Key Laboratory of Silviculture, Collaborative Innovation Center of Jiangxi Typical Trees Cultivation and Utilization, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Qu Du
- Key Laboratory of Silviculture, Collaborative Innovation Center of Jiangxi Typical Trees Cultivation and Utilization, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Ling Zhang
- Key Laboratory of Silviculture, Collaborative Innovation Center of Jiangxi Typical Trees Cultivation and Utilization, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
11
|
Bi L, Yu DT, Han LL, Du S, Yuan CY, He JZ, Hu HW. Unravelling the ecological complexity of soil viromes: Challenges and opportunities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152217. [PMID: 34890674 DOI: 10.1016/j.scitotenv.2021.152217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/26/2021] [Accepted: 12/02/2021] [Indexed: 06/13/2023]
Abstract
Viruses are extremely abundant and ubiquitous in soil, and significantly contribute to various terrestrial ecosystem processes such as biogeochemical nutrient cycling, microbiome regulation and community assembly, and host evolutionary dynamics. Despite their numerous dominance and functional importance, understanding soil viral ecology is a formidable challenge, because of the technological challenges to characterize the abundance, diversity and community compositions of viruses, and their interactions with other organisms in the complex soil environment. Viruses may engage in a myriad of biological interactions within soil food webs across a broad range of spatiotemporal scales and are exposed to various biotic and abiotic disturbances. Current studies on the soil viromes, however, often describe the complexity of their tremendous diversity, but lack of exploring their potential ecological roles. In this article, we summarized the major methods to decipher the ecology of soil viruses, discussed biotic and abiotic factors and global change factors that shape the diversity and composition of soil viromes, and the ecological roles of soil viruses. We also proposed a new framework to understand the ecological complexity of viruses from micro to macro ecosystem scales and to predict and unravel their activities in terrestrial ecosystems.
Collapse
Affiliation(s)
- Li Bi
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Dan-Ting Yu
- State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, Fujian Normal University, Fujian 350007, China; School of Geographical Sciences, Fujian Normal University, Fujian 350007, China.
| | - Li-Li Han
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shuai Du
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Cheng-Yu Yuan
- State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, Fujian Normal University, Fujian 350007, China; School of Geographical Sciences, Fujian Normal University, Fujian 350007, China
| | - Ji-Zheng He
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Hang-Wei Hu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
12
|
Dewald-Wang EA, Parr N, Tiley K, Lee A, Koskella B. Multiyear Time-Shift Study of Bacteria and Phage Dynamics in the Phyllosphere. Am Nat 2022; 199:126-140. [DOI: 10.1086/717181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Liang X, Wang Y, Zhang Y, Li B, Radosevich M. Bacteriophage-host depth distribution patterns in soil are maintained after nutrient stimulation in vitro. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147589. [PMID: 33991924 DOI: 10.1016/j.scitotenv.2021.147589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/16/2021] [Accepted: 05/01/2021] [Indexed: 06/12/2023]
Abstract
Previous research has revealed the ecological importance of viruses in different ecosystems. However, bacteriophage-host distribution patterns in soil depth profiles have not been investigated. Environmental factors such as nutrient availability and physiological stress can impact the mode (either lytic or lysogenic) of viral reproduction and subsequent influence of virus infection on ecological processes. Soil depth profiles with distinct geochemical properties are ideal models to investigate the virus-host relationships as a function of environmental trophic status and cell abundance. Batch enrichment experiments using soil collected at varying depths (0-140 cm) as inoculum were performed to explore the interactions between viruses and co-occurring microbial hosts under nutrient stimulation. Both viral and bacterial abundance increased in the nutrient media compared with those in the original soils. Bacterial abundance was similar in mixed-cultures of soils regardless of sampling depth, whereas viral abundance was negatively correlated with the depth of soil samples which caused a decreasing virus-to-bacteria ratio. The lysogenetic fraction increased with soil depth in a similar manner as in the original soils assessed directly without nutrient stimulation. The bacterial diversity decreased with soil depth, and was influenced primarily by soil type, viral abundance, and virus-to-bacteria ratio. The bacterial communities were dominated by Bacilli, Beta-, Gamma-Proteobacteria, and Clostridia after nutrient stimulation. Viral and bacterial community structure also varied with soil horizons (i.e., depth). The results showed that the patterns for virus-host interactions shaped by the geochemical properties in the original environment were conserved or similar after in vitro nutrient stimulation. These findings suggest that short-term changes in trophic status alone may not significantly alter the balance of viral reproductive strategies in terrestrial ecosystems as in the antecedent environmental conditions that the host community has long adapted to, and other factors such as stress, host diversity or adaptation may be necessary to trigger community-level shifts in the interactions between viruses and hosts that responded most favorably to nutrient addition.
Collapse
Affiliation(s)
- Xiaolong Liang
- Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, TN 37996, USA.
| | - Yusong Wang
- Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, TN 37996, USA
| | - Ying Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning Province 110016, China
| | - Bingxue Li
- College of Land and Environment, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Mark Radosevich
- Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
14
|
Dynamics in Stoichiometric Traits and Carbon, Nitrogen, and Phosphorus Pools across Three Different-Aged Picea asperata Mast. Plantations on the Eastern Tibet Plateau. FORESTS 2020. [DOI: 10.3390/f11121346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Understanding the variations in soil and plants with stand aging is important for improving management measures to promote the sustainable development of plantations. However, few studies have been conducted on the dynamics of stoichiometric traits and carbon (C), nitrogen (N), and phosphorus (P) pools across Picea asperata Mast plantations of different ages in subalpine regions. In the present study, we examined the stoichiometric traits and C, N, and P stocks in different components of three different aged (22-, 32-, and 42-year-old) P. asperata plantations by plot-level inventories. We hypothesized that the stoichiometric traits in mineral soil could shape the corresponding stoichiometric traits in soil microbes, tree roots and foliage, and the C, N, and P stocks of the total P. asperata plantation ecosystem would increase with increasing stand age. Our results show that the N:P ratio in mineral soil was significantly correlated with that in tree foliage and herbs. Additionally, the C:N ratio and C:P ratio in mineral soil only correlated with the corresponding stoichiometric traits in soil microbes and forest floor, respectively. Both the fractions of microbial biomass C in soil organic C and microbial biomass N in soil total N decreased with increasing stand age. The C, N, and P stocks of the total ecosystem did not continuously increase across stand development. In particular, the P stock of the total ecosystem exhibited a trend of increasing first and then decreasing. The aboveground tree biomass C accounted for more than 55% of the total ecosystem C stock regardless of stand age. In contrast, mineral soil and forest floor were the major contributors to the total ecosystem N and P stocks in all stands. This study suggested that all three different stands were N limited, and the stoichiometric homeostasis in the roots of P. asperata was more stable than that in the foliage. In addition, the soil microbial community assembly may change with increasing stand age for P. asperata plantations in the subalpine region.
Collapse
|
15
|
Penuelas J, Janssens IA, Ciais P, Obersteiner M, Sardans J. Anthropogenic global shifts in biospheric N and P concentrations and ratios and their impacts on biodiversity, ecosystem productivity, food security, and human health. GLOBAL CHANGE BIOLOGY 2020; 26:1962-1985. [PMID: 31912629 DOI: 10.1111/gcb.14981] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 06/10/2023]
Abstract
The availability of carbon (C) from high levels of atmospheric carbon dioxide (CO2 ) and anthropogenic release of nitrogen (N) is increasing, but these increases are not paralleled by increases in levels of phosphorus (P). The current unstoppable changes in the stoichiometries of C and N relative to P have no historical precedent. We describe changes in P and N fluxes over the last five decades that have led to asymmetrical increases in P and N inputs to the biosphere. We identified widespread and rapid changes in N:P ratios in air, soil, water, and organisms and important consequences to the structure, function, and biodiversity of ecosystems. A mass-balance approach found that the combined limited availability of P and N was likely to reduce C storage by natural ecosystems during the remainder of the 21st Century, and projected crop yields of the Millennium Ecosystem Assessment indicated an increase in nutrient deficiency in developing regions if access to P fertilizer is limited. Imbalances of the N:P ratio would likely negatively affect human health, food security, and global economic and geopolitical stability, with feedbacks and synergistic effects on drivers of global environmental change, such as increasing levels of CO2 , climatic warming, and increasing pollution. We summarize potential solutions for avoiding the negative impacts of global imbalances of N:P ratios on the environment, biodiversity, climate change, food security, and human health.
Collapse
Affiliation(s)
- Josep Penuelas
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, Spain
- CREAF, Cerdanyola del Valles, Spain
- Global Change Research Institute, Czech Academy of Sciences, Brno, Czech Republic
| | - Ivan A Janssens
- Research Group Plants and Ecosystems (PLECO), Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Philippe Ciais
- Laboratoire des Sciences du Climat et de l'Environnement, IPSL CEA CNRS UVSQ UPSACLAY, Gif-sur-Yvette, France
| | - Michael Obersteiner
- Ecosystems Services and Management, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
| | - Jordi Sardans
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, Spain
- CREAF, Cerdanyola del Valles, Spain
- Global Change Research Institute, Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
16
|
Paseka RE, Bratt AR, MacNeill KL, Burian A, See CR. Elemental Ratios Link Environmental Change and Human Health. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00378] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|