1
|
Kaspari M, Welti EAR. Nutrient dilution and the future of herbivore populations. Trends Ecol Evol 2024; 39:809-820. [PMID: 38876933 DOI: 10.1016/j.tree.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 06/16/2024]
Abstract
Nutrient dilution (ND) - the decrease in the concentration of nutritional elements in plant tissue - arises from an increase in the mass of carbohydrates and/or a decrease in the 20+ essential elements. Increasing CO2 levels and its promotion of biomass are linked to nutrient dilution. We build a case for nutrient dilution as a key driver in global declines in herbivore abundance. Herbivores must build element-rich animal tissue from nutrient-poor plant tissue, and their abundance commonly increases with fertilization of both macro- and micronutrients. We predict the global impacts of nutrient dilution will be magnified in some of Earth's most biodiverse, highly productive, and/or nutrient-poor ecosystems and should favor specific traits of herbivores, including sap-feeding and ruminant microbiomes.
Collapse
Affiliation(s)
- Michael Kaspari
- School of Biological Sciences, University of Oklahoma, Norman, OK 73019, USA; Conservation Ecology Center, Smithsonian's National Zoo and Conservation Biology Institute, Front Royal, VA 22630, USA.
| | - Ellen A R Welti
- Conservation Ecology Center, Smithsonian's National Zoo and Conservation Biology Institute, Front Royal, VA 22630, USA
| |
Collapse
|
2
|
Ade L, Ren J, Wu J, Ma Z, Wang Y, Zhou Q, Hou F. Forage taste agents manage plant communities through modifying grazing behavior of yak in alpine meadow. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:169999. [PMID: 38242471 DOI: 10.1016/j.scitotenv.2024.169999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 01/21/2024]
Abstract
The use of taste agents to regulate the grazing behavior of livestock is a new attempt in pasture management, but the effects on grassland plant communities are not clear at present. Therefore, the following scientific questions need to be addressed: (1) how do different taste agents affected plant community structure by changing feed intake? (2) What was the mechanism of this effect? We proposed the following hypotheses: (1) Salt and sweetener increased feed intake of livestock and decreased the biomass of plant community, while bitters did the opposite. (2) Taste agents can regulate the relationship between plant species, and different taste agents can enhance or weaken the competitiveness of the different plants. In order to test the hypothesis, a grazing experiment with yaks was conducted in the alpine meadows of the Tibetan Plateau. Denatonium benzoate (Bitterant), NaCl (Salt), and sodium cyclamate (Sweetener) were sprayed onto the meadows twice a year, along with a control treatment of tap water. The results showed that (1) Salt increased the feed intake of yak significantly; bitterant decreased the feed intake of livestock and increased the biomass of plant community. (2) Salt increased the Pielou index of the plant community significantly. (3) The stability of plant community ranking from high to low is as follows: Control > Bitterant > Sweetener > Salt. (4) Bitterant and salt improved grazing tolerance of grassland and salt reduced the edibility of grassland. (5) The use of taste agents reduced the correlation between dominant species and led to the fragmentation of the relationship chain. The results of this study will provide a theoretical basis for using taste agents to regulate the community, species biodiversity management, restoration of degraded grassland, promoting utilization of grassland though controlling livestock selectivity.
Collapse
Affiliation(s)
- Luji Ade
- State Key Laboratory of Grassland Argo-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Jingfei Ren
- State Key Laboratory of Grassland Argo-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Jing Wu
- State Key Laboratory of Grassland Argo-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Zhouwen Ma
- State Key Laboratory of Grassland Argo-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Yingxin Wang
- State Key Laboratory of Grassland Argo-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Qingping Zhou
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu 610041, China
| | - Fujiang Hou
- State Key Laboratory of Grassland Argo-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| |
Collapse
|
3
|
Siebert J, Sünnemann M, Hautier Y, Risch AC, Bakker JD, Biederman L, Blumenthal DM, Borer ET, Bugalho MN, Broadbent AAD, Caldeira MC, Cleland E, Davies KF, Eskelinen A, Hagenah N, Knops JMH, MacDougall AS, McCulley RL, Moore JL, Power SA, Price JN, Seabloom EW, Standish R, Stevens CJ, Zimmermann S, Eisenhauer N. Drivers of soil microbial and detritivore activity across global grasslands. Commun Biol 2023; 6:1220. [PMID: 38040868 PMCID: PMC10692199 DOI: 10.1038/s42003-023-05607-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 11/17/2023] [Indexed: 12/03/2023] Open
Abstract
Covering approximately 40% of land surfaces, grasslands provide critical ecosystem services that rely on soil organisms. However, the global determinants of soil biodiversity and functioning remain underexplored. In this study, we investigate the drivers of soil microbial and detritivore activity in grasslands across a wide range of climatic conditions on five continents. We apply standardized treatments of nutrient addition and herbivore reduction, allowing us to disentangle the regional and local drivers of soil organism activity. We use structural equation modeling to assess the direct and indirect effects of local and regional drivers on soil biological activities. Microbial and detritivore activities are positively correlated across global grasslands. These correlations are shaped more by global climatic factors than by local treatments, with annual precipitation and soil water content explaining the majority of the variation. Nutrient addition tends to reduce microbial activity by enhancing plant growth, while herbivore reduction typically increases microbial and detritivore activity through increased soil moisture. Our findings emphasize soil moisture as a key driver of soil biological activity, highlighting the potential impacts of climate change, altered grazing pressure, and eutrophication on nutrient cycling and decomposition within grassland ecosystems.
Collapse
Affiliation(s)
- Julia Siebert
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
- Institute of Biology, Leipzig University, Puschstrasse 4, 04103, Leipzig, Germany
| | - Marie Sünnemann
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany.
- Institute of Biology, Leipzig University, Puschstrasse 4, 04103, Leipzig, Germany.
| | - Yann Hautier
- Ecology and Biodiversity Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Anita C Risch
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Community Ecology, Zuercherstrasse 111, 8903, Birmensdorf, Switzerland
| | - Jonathan D Bakker
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Lori Biederman
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50010, USA
| | - Dana M Blumenthal
- USDA-ARS Rangeland Resources & Systems Research Unit, Fort Collins, CO, 80526, USA
| | - Elizabeth T Borer
- Department of Ecology, Evolution, and Behavior; University of Minnesota, St. Paul, MN, 55108, USA
| | - Miguel N Bugalho
- Centre for Applied Ecology "Prof. Baeta Neves", School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Arthur A D Broadbent
- Department of Earth and Environmental Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Maria C Caldeira
- Forest Research Centre, School of Agriculture, University of Lisbon, Lisbon, Portugal
| | - Elsa Cleland
- Ecology, Behavior and Evolution Section, University of California San Diego, 9500 Gilman Dr. #0116, La Jolla, California, 92093-0116, USA
| | - Kendi F Davies
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Anu Eskelinen
- Institute of Biology, Leipzig University, Puschstrasse 4, 04103, Leipzig, Germany
- Ecology and Genetics Unit, University of Oulu, P.O. Box 8000, FI-90014 University of Oulu, Oulu, Finland
- Helmholtz Center for Environmental Research - UFZ, Department of Physiological Diversity, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Nicole Hagenah
- Mammal Research Institute, Department of Zoology & Entomology, University of Pretoria, Pretoria, South Africa
| | - Johannes M H Knops
- Health & Environmental Sciences Department, Xi'an Jiatong-Liverpool University, Suzhou, China
| | - Andrew S MacDougall
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Rebecca L McCulley
- Department of Plant & Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | - Joslin L Moore
- Arthur Rylah Institute for Environmental Research, 123 Brown Street, Heidelberg, VIC, 3084, Australia
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, VIC, 3800, Australia
| | - Sally A Power
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Jodi N Price
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Albury, NSW, 2640, Australia
| | - Eric W Seabloom
- Department of Ecology, Evolution, and Behavior; University of Minnesota, St. Paul, MN, 55108, USA
| | - Rachel Standish
- Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
- Institute of Agriculture, The University of Western Australia, 35 Stirling Hwy, Crawley, WA, 6009, Australia
| | - Carly J Stevens
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Stephan Zimmermann
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Forest Soils and Biogeochemistry, Zuercherstrasse 111, 8903, Birmensdorf, Switzerland
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
- Institute of Biology, Leipzig University, Puschstrasse 4, 04103, Leipzig, Germany
| |
Collapse
|
4
|
Santiago-Rosario LY, Salgado AL, Paredes-Burneo D, Harms KE. Low sodium availability in hydroponically manipulated host plants promotes cannibalism in a lepidopteran herbivore. Sci Rep 2023; 13:20822. [PMID: 38012267 PMCID: PMC10682487 DOI: 10.1038/s41598-023-48000-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023] Open
Abstract
As an abundant element in the Earth's crust, sodium plays an unusual role in food webs. Its availability in terrestrial environments is highly variable, but it is nonessential for most plants, yet essential for animals and most decomposers. Accordingly, sodium requirements are important drivers of various animal behavioural patterns and performance levels. To specifically test whether sodium limitation increases cannibalism in a gregarious lepidopteran herbivore, we hydroponically manipulated Helianthus annuus host plants' tissue-sodium concentrations. Gregarious larvae of the bordered patch butterfly, Chlosyne lacinia, cannibalized siblings when plant-tissue sodium concentrations were low in two separate experiments. Although cannibalism was almost non-existent when sodium concentrations were high, individual mortality rates were also high. Sodium concentration in host plants can have pronounced effects on herbivore behaviour, individual-level performance, and population demographics, all of which are important for understanding the ecology and evolution of plant-animal interactions across a heterogeneous phytochemical landscape.
Collapse
Affiliation(s)
- Luis Y Santiago-Rosario
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA.
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN, USA.
| | - Ana L Salgado
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Diego Paredes-Burneo
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
- Departamento de Dicotiledóneas, Museo de Historia Natural UNMSM, Av. Arenales 1256, Jesús María, Lima, Peru
| | - Kyle E Harms
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
5
|
Vogels JJ, Van de Waal DB, WallisDeVries MF, Van den Burg AB, Nijssen M, Bobbink R, Berg MP, Olde Venterink H, Siepel H. Towards a mechanistic understanding of the impacts of nitrogen deposition on producer-consumer interactions. Biol Rev Camb Philos Soc 2023; 98:1712-1731. [PMID: 37265074 DOI: 10.1111/brv.12972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 06/03/2023]
Abstract
Nitrogen (N) deposition has increased substantially since the second half of the 20th century due to human activities. This increase of reactive N into the biosphere has major implications for ecosystem functioning, including primary production, soil and water chemistry and producer community structure and diversity. Increased N deposition is also linked to the decline of insects observed over recent decades. However, we currently lack a mechanistic understanding of the effects of high N deposition on individual fitness, species richness and community structure of both invertebrate and vertebrate consumers. Here, we review the effects of N deposition on producer-consumer interactions, focusing on five existing ecological frameworks: C:N:P ecological stoichiometry, trace element ecological stoichiometry, nutritional geometry, essential micronutrients and allelochemicals. We link reported N deposition-mediated changes in producer quality to life-history strategies and traits of consumers, to gain a mechanistic understanding of the direction of response in consumers. We conclude that high N deposition influences producer quality via eutrophication and acidification pathways. This makes oligotrophic poorly buffered ecosystems most vulnerable to significant changes in producer quality. Changes in producer quality between the reviewed frameworks are often interlinked, complicating predictions of the effects of high N deposition on producer quality. The degree and direction of fitness responses of consumers to changes in producer quality varies among species but can be explained by differences in life-history traits and strategies, particularly those affecting species nutrient intake regulation, mobility, relative growth rate, host-plant specialisation, ontogeny and physiology. To increase our understanding of the effects of N deposition on these complex mechanisms, the inclusion of life-history traits of consumer species in future study designs is pivotal. Based on the reviewed literature, we formulate five hypotheses on the mechanisms underlying the effects of high N deposition on consumers, by linking effects of nutritional ecological frameworks to life-history strategies. Importantly, we expect that N-deposition-mediated changes in producer quality will result in a net decrease in consumer community as well as functional diversity. Moreover, we anticipate an increased risk of outbreak events of a small subset of generalist species, with concomitant declines in a multitude of specialist species. Overall, linking ecological frameworks with consumer life-history strategies provides a mechanistic understanding of the impacts of high N deposition on producer-consumer interactions, which can inform management towards more effective mitigation strategies.
Collapse
Affiliation(s)
- Joost J Vogels
- Bargerveen Foundation, Toernooiveld 1, 6525 ED, Nijmegen, The Netherlands
- Department of Animal Ecology and Physiology, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Dedmer B Van de Waal
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Sciencepark 904, 1098 XH, Amsterdam, The Netherlands
| | - Michiel F WallisDeVries
- De Vlinderstichting / Dutch Butterfly Conservation, P.O. Box 6700 AM, Wageningen, The Netherlands
| | | | - Marijn Nijssen
- Bargerveen Foundation, Toernooiveld 1, 6525 ED, Nijmegen, The Netherlands
- Department of Animal Ecology and Physiology, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Roland Bobbink
- B-WARE Research Centre, Radboud University Nijmegen, Toernooiveld 1, 6525 ED, Nijmegen, The Netherlands
| | - Matty P Berg
- A-LIFE, Section Ecology & Evolution, Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
- GELIFES, Community and Conservation Ecology Group, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Harry Olde Venterink
- Department of Biology, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Henk Siepel
- Department of Animal Ecology and Physiology, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| |
Collapse
|
6
|
Filipiak ZM, Ollerton J, Filipiak M. Uncovering the significance of the ratio of food K:Na in bee ecology and evolution. Ecology 2023; 104:e4110. [PMID: 37232411 DOI: 10.1002/ecy.4110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/04/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
Bees provide important ecological services, and many species are threatened globally, yet our knowledge of wild bee ecology and evolution is limited. While evolving from carnivorous ancestors, bees had to develop strategies for coping with limitations imposed on them by a plant-based diet, with nectar providing energy and essential amino acids and pollen as an extraordinary, protein- and lipid-rich food nutritionally similar to animal tissues. Both nectar and pollen display one characteristic common to plants, a high ratio of potassium to sodium (K:Na), potentially leading to bee underdevelopment, health problems, and death. We discuss why and how the ratio of K:Na contributes to bee ecology and evolution and how considering this factor in future studies will provide new knowledge, more accurately depicting the relationship of bees with their environments. Such knowledge is essential for understanding how plants and bees function and interact and is needed to effectively protect wild bees.
Collapse
Affiliation(s)
- Zuzanna M Filipiak
- Institute of Nature Conservation, Polish Academy of Sciences, Kraków, Poland
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Jeff Ollerton
- Faculty or Arts, Science and Technology, University of Northampton, Northampton, UK
- Kunming Institute of Botany, Kunming, China
| | - Michał Filipiak
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
7
|
Mohanbabu N, Veldhuis MP, Jung D, Ritchie ME. Integrating defense and leaf economic spectrum traits in a tropical savanna plant. FRONTIERS IN PLANT SCIENCE 2023; 14:1185616. [PMID: 37342149 PMCID: PMC10277734 DOI: 10.3389/fpls.2023.1185616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/22/2023] [Indexed: 06/22/2023]
Abstract
Introduction Allocation to plant defense traits likely depends on resource supply, herbivory, and other plant functional traits such as the leaf economic spectrum (LES) traits. Yet, attempts to integrate defense and resource acquisitive traits remain elusive. Methods We assessed intraspecific covariation between different defense and LES traits in a widely distributed tropical savanna herb, Solanum incanum, a unique model species for studying allocations to physical, chemical, and structural defenses to mammalian herbivory. Results We found that in a multivariate trait space, the structural defenses - lignin and cellulose - were positively related to the resource conservative traits - low SLA and low leaf N. Phenolic content, a chemical defense, was positively associated with resource acquisitive traits - high SLA and high leaf N - while also being associated with an independent third component axis. Both principal components 1 and 3 were not associated with resource supply and herbivory intensity. In contrast, spine density - a physical defense - was orthogonal to the LES axis and positively associated with soil P and herbivory intensity. Discussion These results suggest a hypothesized "pyramid" of trade-offs in allocation to defense along the LES and herbivory intensity axes. Therefore, future attempts to integrate defense traits with the broader plant functional trait framework, such as the LES, needs a multifaceted approach that accounts for unique influences of resource acquisitive traits and herbivory risk.
Collapse
Affiliation(s)
- Neha Mohanbabu
- Department of Biology, Syracuse University, Syracuse, NY, United States
| | - Michiel P. Veldhuis
- Institute of Environmental Sciences, Universiteit Leiden, Leiden, The Netherlands
| | - Dana Jung
- Department of Biology, Syracuse University, Syracuse, NY, United States
| | - Mark E. Ritchie
- Department of Biology, Syracuse University, Syracuse, NY, United States
| |
Collapse
|
8
|
Shephard AM, Knudsen K, Snell-Rood EC. Anthropogenic sodium influences butterfly responses to nitrogen-enriched resources: implications for the nitrogen limitation hypothesis. Oecologia 2023; 201:941-952. [PMID: 36971819 DOI: 10.1007/s00442-023-05366-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
Humans are increasing the environmental availability of historically limited nutrients, which may significantly influence organismal performance and behavior. Beneficial or stimulatory responses to increases in nitrogen availability (i.e., nitrogen limitation) are generally observed in plants but less consistently in animals. One possible explanation is that animal responses to nitrogen enrichment depend on how nitrogen intake is balanced with sodium, a micronutrient crucial for animals but not plants. We tested this idea in the cabbage white butterfly (Pieris rapae), a species that frequently inhabits nutrient-enriched plants in agricultural settings and roadside verges. We asked (1) whether anthropogenic increases in sodium influence how nitrogen enrichment affects butterfly performance and (2) whether individuals can adaptively adjust their foraging behavior to such effects. Larval nitrogen enrichment enhanced growth of cabbage white larvae under conditions of low but not high sodium availability. In contrast, larval nitrogen enrichment increased egg production of adult females only when individuals developed with high sodium availability. Ovipositing females preferred nitrogen-enriched leaves regardless of sodium availability, while larvae avoided feeding on nitrogen-enriched leaves elevated in sodium. Our results show that anthropogenic increases in sodium influence whether individuals benefit from and forage on nitrogen-enriched resources. Yet, different nitrogen-to-sodium ratios are required to optimize larval and adult performance. Whether increases in sodium catalyze or inhibit benefits of nitrogen enrichment may depend on how evolved nutrient requirements vary across stages of animal development.
Collapse
Affiliation(s)
- Alexander M Shephard
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Twin Cities, 1987 Upper Buford Circle, St. Paul, MN, 55108, USA.
| | - Kyle Knudsen
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Twin Cities, 1987 Upper Buford Circle, St. Paul, MN, 55108, USA
| | - Emilie C Snell-Rood
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Twin Cities, 1987 Upper Buford Circle, St. Paul, MN, 55108, USA
| |
Collapse
|
9
|
Clay NA, Herrmann MC, Evans-White MA, Entrekin SA, West C. Sodium as a subsidy in the spring: evidence for a phenology of sodium limitation. Oecologia 2023; 201:783-795. [PMID: 36853383 PMCID: PMC10038971 DOI: 10.1007/s00442-023-05336-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/10/2023] [Indexed: 03/01/2023]
Abstract
Understanding the factors that mediate carbon (C) cycling is increasingly important as anthropogenic activities and climate change alter ecosystems. Decomposition rates mediate C cycling and are in part regulated by sodium (Na) where Na is limiting up to some threshold after which Na becomes stressful and reduces decomposition rates (i.e., the Sodium Subsidy-Stress hypothesis). An overlooked pathway by which decomposers encounter increased salts like NaCl is through plants, which often take up Na in proportion to soil concentrations. Here we tested the hypothesis that Na addition through litter (detritus) and water and their interaction would impact detrital processing and leachate chemistry. Laboratory riparian soil mesocosms received either artificial litter (100% cellulose sponges) soaked in 0.05% NaCl (NaClL) or just H2O (H2OL: control) and half of each litter treatment received weekly additions of 150 ml of either 0.05% NaCl water (NaClW) or just H2O (H2OW: control). After 8 weeks decomposition was higher in NaCl addition treatments (both NaClL and NaClW and their combo) than controls (H2OL + H2OW) but reflected a unimodal relationship where the saltiest treatment (NaClL + NaClW) was only marginally higher than controls indicating a subsidy-stress response. Previous studies in this system found that Na addition in either water or litter decreased decomposition. However, differences may reflect a phenology of Na demand where Na-limitation increases in the spring (this study). These results indicate that our understanding of how Na impacts detrital processes, C cycling, and aquatic-terrestrial linkages necessitates incorporation of temporal dynamics.
Collapse
Affiliation(s)
- Natalie A Clay
- School of Biological Sciences, Louisiana Tech University, 1 Adams Blvd., Ruston, LA, 71272, USA.
| | - Maggie C Herrmann
- School of Biological Sciences, Louisiana Tech University, 1 Adams Blvd., Ruston, LA, 71272, USA
| | - Michelle A Evans-White
- Department of Biological Sciences, University of Arkansas, 525 Old Main, Fayetteville, AR, 72701, USA
| | - Sally A Entrekin
- Department of Entomology, Virginia Tech, 170 Drillfield Drive, Blacksburg, VA, 24061, USA
| | - Colton West
- School of Biological Sciences, Louisiana Tech University, 1 Adams Blvd., Ruston, LA, 71272, USA
| |
Collapse
|
10
|
Kaspari M, Welti EAR. Electrolytes on the prairie: How urine-like additions of Na and K shape the dynamics of a grassland food web. Ecology 2023; 104:e3856. [PMID: 36053835 DOI: 10.1002/ecy.3856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/12/2022] [Indexed: 02/01/2023]
Abstract
The electrolytes Na and K both function to maintain water balance and membrane potential. However, these elements work differently in plants-where K is the primary electrolyte-than in animals-where ATPases require a balanced supply of Na and K. Here, we use monthly factorial additions of Na and K to simulate bovine urine inputs and explore how these electrolytes ramify through a prairie food web. Against a seasonal trend of increasing grass biomass and decreasing water and elemental tissue concentrations, +K and +Na plots boosted water content and, when added together, plant biomass. Compared to control plots, +Na and +K plots increased element concentrations in above-ground plant tissue early in summer and decreased them in September. Simultaneously, invertebrate abundance on Na and K additions were sequentially higher and lower than control plots from June to September and were most suppressed when grass was most nutrient rich. K was the more effective plant electrolyte, but Na frequently promoted similar changes in grass ionomes. The soluble/leachable ions of Na and K showed significant ability to shape plant growth, water content, and the 15-element ionome, with consequences for higher trophic levels. Grasslands with high inputs of Na and K-via large mammal grazers or coastal aerosol deposition-likely enhance the ability of plants to adjust their above-ground ionomes, with dramatic consequences for the distribution of invertebrate consumers.
Collapse
Affiliation(s)
- Michael Kaspari
- Geographical Ecology Group, Department of Biology, University of Oklahoma, Norman, Oklahoma, USA
| | - Ellen A R Welti
- Geographical Ecology Group, Department of Biology, University of Oklahoma, Norman, Oklahoma, USA.,Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
| |
Collapse
|
11
|
Huang G, Sun Y, Zhang X, Rodríguez LG, Luo J, Chen Z, Ou Y, Gao Y, Ghaffari H, Yao Y. Adaptation to low nitrogen and salt stresses in the desert poplar by effective regulation of nitrogen assimilation and ion balance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 193:14-24. [PMID: 36308848 DOI: 10.1016/j.plaphy.2022.10.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 09/02/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
As a main desert plant from arid regions of Central Asia, Populus euphratica always encounters with nitrogen shortage in its long life, apart from salt or drought stress. However, it remains unknown how this species responds to low nitrogen and combined stresses of low nitrogen and salinity. Thus, saplings of P. euphratica with uniform size were exposed to normal or low nitrogen condition (150 and 15 ppm ammonium nitrate separately) individually or in combination with salinity. Under low nitrogen conditions we found a positive effect on P. euphratica root growth, which could be associated to high level of nitrogen allocation to support root growth and effective regulation of nitrogen assimilation in comparison with the other poplar species reported before. Under salt stress the root growth of P. euphratica was significantly inhibited, with the side effects of oxidative stress, as saplings stored higher Na+ and Cl- contents in roots. Under the combined stressors of both salinity and low nitrogen, P. euphratica undergo a risky strategy, as stimulated root growth is accompanied by further oxidative stress.The concentrations of root K+ and whole plant NO3- were increased to support the tolerance of the combined stressors in P. euphratica, showing same characteristics with halophytes. Overall, our results provide evidence that the desert poplar can adapt to the salt stress/low nitrogen bundle, by effective regulation of nitrogen assimilation and ion homoeostasis.
Collapse
Affiliation(s)
- Gang Huang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yufang Sun
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China; College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Xuan Zhang
- Key Laboratory of Biogeography and Bioresources in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Science, Urumqi, 830011, China
| | - Lucas Gutiérrez Rodríguez
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Jianxun Luo
- Sichuan Academy of Forestry, Chengdu, 610081, China
| | - Zihao Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yongbin Ou
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yongfeng Gao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Hamideh Ghaffari
- Department of Agronomy, Faculty of Agriculture, Shahrekord University, Shahrekord, 8818634141, Iran
| | - Yinan Yao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
| |
Collapse
|
12
|
Filipiak M, Shields MW, Cairns SM, Grainger MNC, Wratten SD. The conserved and high K-to-Na ratio in sunflower pollen: Possible implications for bee health and plant-bee interactions. FRONTIERS IN PLANT SCIENCE 2022; 13:1042348. [PMID: 36388528 PMCID: PMC9664163 DOI: 10.3389/fpls.2022.1042348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Sodium (Na) concentrations are low in plant tissues, and its metabolic function in plants is minor; however, Na is a key nutrient for plant consumers. Previous studies have thus far focused on Na concentration. Nevertheless, a balanced potassium (K) to Na ratio (K:Na) is more important than Na concentration alone since food with high K:Na has detrimental effects on consumers irrespective of Na concentration. Therefore, plants may actively regulate K:Na in their tissues and products, shaping plant-insect interactions. Studies considering nutritional aspects of plant-insect interactions have focused on nonreproductive tissues and nectar. In this study, we consider pollen as serving a primary reproductive function for plants as well as a food of pollinivores. Plants might regulate K:Na in pollen to affect their interactions with pollinivorous pollinators. To investigate whether such a mechanism exists, we manipulated Na concentrations in soil and measured the proportion of K, Na, and 13 other nutrient elements in the pollen of two sunflower (Helianthus annuus) cultivars. This approach allowed us to account for the overall nutritional quality of pollen by investigating the proportions of many elements that could correlate with the concentrations of K and Na. Of the elements studied, only the concentrations of Na and K were highly correlated. Pollen K:Na was high in both cultivars irrespective of Na fertilization, and it remained high regardless of pollen Na concentration. Interestingly, pollen K:Na did not decrease as pollen increased the Na concentration. We hypothesize that high K:Na in pollen might benefit plant fertilization and embryonic development; therefore, a tradeoff might occur between producing low K:Na pollen as a reward for pollinators and high K:Na pollen to optimize the plant fertilization process. This is the first study to provide data on pollen K:Na regulation by plants. Our findings broaden the understanding of plant-bee interactions and provide a foundation for a better understanding of the role of the soil-plant-pollen-pollinator pathway in nutrient cycling in ecosystems. Specifically, unexplored costs and tradeoffs related to balancing the K:Na by plants and pollinivores might play a role in past and current shaping of pollination ecology.
Collapse
Affiliation(s)
- Michał Filipiak
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Morgan W. Shields
- Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand
| | - Sarah M. Cairns
- Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand
| | | | - Stephen D. Wratten
- Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand
| |
Collapse
|
13
|
Santiago‐Rosario LY, Harms KE, Craven D. Contrasts among cationic phytochemical landscapes in the southern United States. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2022; 3:226-241. [PMID: 37283990 PMCID: PMC10168053 DOI: 10.1002/pei3.10093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/01/2022] [Accepted: 09/21/2022] [Indexed: 06/08/2023]
Abstract
Understanding the phytochemical landscapes of essential and nonessential chemical elements to plants provides an opportunity to better link biogeochemical cycles to trophic ecology. We investigated the formation and regulation of the cationic phytochemical landscapes of four key elements for biota: Ca, Mg, K, and Na. We collected aboveground tissues of plants in Atriplex, Helianthus, and Opuntia and adjacent soils from 51, 131, and 83 sites, respectively, across the southern United States. We determined the spatial variability of these cations in plants and soils. Also, we quantified the homeostasis coefficient for each cation and genus combination, by using mixed-effect models, with spatially correlated random effects. Additionally, using random forest models, we modeled the influence of bioclimatic, soil, and spatial variables on plant cationic concentrations. Sodium variability and spatial autocorrelation were considerably greater than for Ca, Mg, or K. Calcium, Mg, and K exhibited strongly homeostatic patterns, in striking contrast to non-homeostatic Na. Even so, climatic and soil variables explained a large proportion of plants' cationic concentrations. Essential elements (Ca, Mg, and K) appeared to be homeostatically regulated, which contrasted sharply with Na, a nonessential element for most plants. In addition, we provide evidence for the No-Escape-from-Sodium hypothesis in real-world ecosystems, indicating that plant Na concentrations tend to increase as substrate Na levels increase.
Collapse
Affiliation(s)
| | - Kyle E. Harms
- Department of Biological SciencesLouisiana State UniversityBaton RougeLouisianaUSA
| | - Dylan Craven
- Centro de Modelación y Monitoreo de EcosistemasFacultad de Ciencias, Universidad MayorSantiago de ChileChile
| |
Collapse
|
14
|
Borer ET, Stevens CJ. Nitrogen deposition and climate: an integrated synthesis. Trends Ecol Evol 2022; 37:541-552. [PMID: 35428538 DOI: 10.1016/j.tree.2022.02.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/20/2022] [Accepted: 02/23/2022] [Indexed: 11/18/2022]
Abstract
Human activities have more than doubled reactive nitrogen (N) deposited in ecosystems, perturbing the N cycle and considerably impacting plant, animal, and microbial communities. However, biotic responses to N deposition can vary widely depending on factors including local climate and soils, limiting our ability to predict ecosystem responses. Here, we synthesize reported impacts of elevated N on grasslands and draw upon evidence from the globally distributed Nutrient Network experiment (NutNet) to provide insight into causes of variation and their relative importance across scales. This synthesis highlights that climate and elevated N frequently interact, modifying biotic responses to N. It also demonstrates the importance of edaphic context and widespread interactions with other limiting nutrients in controlling biotic responses to N deposition.
Collapse
Affiliation(s)
- Elizabeth T Borer
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St Paul, MN 55108, USA.
| | - Carly J Stevens
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| |
Collapse
|
15
|
Finkelstein CJ, CaraDonna PJ, Gruver A, Welti EA, Kaspari M, Sanders NJ. Sodium-enriched floral nectar increases pollinator visitation rate and diversity. Biol Lett 2022; 18:20220016. [PMID: 35232272 PMCID: PMC8889166 DOI: 10.1098/rsbl.2022.0016] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Plants have evolved a variety of approaches to attract pollinators, including enriching their nectar with essential nutrients. Because sodium is an essential nutrient for pollinators, and sodium concentration in nectar can vary both within and among species, we explored whether experimentally enriching floral nectar with sodium in five plant species would influence pollinator visitation and diversity. We found that the number of visits by pollinators increased on plants with sodium-enriched nectar, regardless of plant species, relative to plants receiving control nectar. Similarly, the number of species visiting plants with sodium-enriched nectar was twice that of controls. Our findings suggest that sodium in floral nectar may play an important but unappreciated role in the ecology and evolution of plant-pollinator mutualisms.
Collapse
Affiliation(s)
- Carrie J. Finkelstein
- Environmental Program, Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, VT 05405, USA
| | - Paul J. CaraDonna
- Chicago Botanic Garden, 1000 Lake Cook Road, Glencoe, IL 60647, USA,Plant Biology and Conservation, Northwestern University, Evanston, IL 60208, USA,Rocky Mountain Biological Laboratory, P.O. Box 519, Crested Butte, CO 81224, USA
| | - Andrea Gruver
- Chicago Botanic Garden, 1000 Lake Cook Road, Glencoe, IL 60647, USA,Plant Biology and Conservation, Northwestern University, Evanston, IL 60208, USA
| | - Ellen A. R. Welti
- Conservation Ecology Center, Smithsonian Conservation Biology Institute, Front Royal, VA, USA
| | - Michael Kaspari
- Department of Biology, Geographical Ecology Group, University of Oklahoma, Norman, OK 73019, USA
| | - Nathan J. Sanders
- Rocky Mountain Biological Laboratory, P.O. Box 519, Crested Butte, CO 81224, USA,Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
16
|
Herrmann MC, Entrekin SA, Evans-White MA, Clay NA. Salty water and salty leaf litter alters riparian detrital processes: Evidence from sodium-addition laboratory mesocosm experiments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151392. [PMID: 34740665 DOI: 10.1016/j.scitotenv.2021.151392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Terrestrial and freshwater secondary salinization is a global phenomenon arising partially from anthropogenic activities. How low-level direct (e.g., sodium exposure through irrigation runoff) or indirect (e.g., sodium exposure through sodium-enriched leaves as riparian plants uptake sodium that via senescence enters detrital systems) impacts detrital processes in riparia have received little attention. Based on the sodium ecosystem respiration hypothesis, we predicted low-level salinization of an inland mesic riparia would result in increased detrital processing and increased leachate dissolved organic carbon (DOC) and conductivity. Two riparian soil mesocosm experiments tested how low-level salinization affects leachate chemistry and conductivity and riparian decomposition rates and detritivore community structure: 1) direct low-level NaCl deposition in water (weekly additions of 300 ml of 0.05% NaCl or just H2O (controls)), and 2) indirect low-level NaCl deposition through Na-enriched artificial litter (0.05% NaCl or just H2O (controls)). After three months, leachate Na+ concentrations were 12-fold and 1.5-fold higher in Na-addition than control mesocosms for direct and indirect Na-addition experiments, respectively. Contrary to predictions, decomposition rate was 1.3-fold lower in indirect Na-addition than control mesocosms but invertebrate communities were similar. Decomposition rate did not differ in direct Na-addition experiments, and although invertebrate abundance was lower, diversity was 1.4-fold higher in Na-addition than control mesocosms. Leachate DOC did not differ between Na-addition and control mesocosms for either direct or indirect Na-addition experiments. This study adds to the growing evidence that even low-level Na addition can stress inland mesic terrestrial systems and demonstrates that even Na-enriched detritus alone can induce salt-stress in riparian soil systems. These results suggest that even low-level salinization of riparia can impact riparian ecosystem function and leachate chemistry through direct exposure and indirectly through Na-enriched detritus, a previously overlooked pathway.
Collapse
Affiliation(s)
- M C Herrmann
- Louisiana Tech University, School of Biological Sciences, 1 Adams Blvd., Ruston, LA 71272, USA
| | - S A Entrekin
- Virginia Tech, Department of Entomology, 170 Drillfield Drive, Blacksburg, VA 24061, USA
| | - M A Evans-White
- University of Arkansas, Department of Biological Sciences, 525 Old Main, Fayetteville, AR 72701, USA
| | - N A Clay
- Louisiana Tech University, School of Biological Sciences, 1 Adams Blvd., Ruston, LA 71272, USA.
| |
Collapse
|
17
|
Neugebauer K, Broadley MR, El-Serehy HA, George TS, Graham NS, Thompson JA, Wright G, White PJ. Sodium hyperaccumulators in the Caryophyllales are characterized by both abnormally large shoot sodium concentrations and [Na]shoot/[Na]root quotients greater than unity. ANNALS OF BOTANY 2022; 129:65-78. [PMID: 34605859 PMCID: PMC8752394 DOI: 10.1093/aob/mcab126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND AIMS Some Caryophyllales species accumulate abnormally large shoot sodium (Na) concentrations in non-saline environments. It is not known whether this is a consequence of altered Na partitioning between roots and shoots. This paper tests the hypotheses (1) that Na concentrations in shoots ([Na]shoot) and in roots ([Na]root) are positively correlated among Caryophyllales, and (2) that shoot Na hyperaccumulation is correlated with [Na]shoot/[Na]root quotients. METHODS Fifty two genotypes, representing 45 Caryophyllales species and 4 species from other angiosperm orders, were grown hydroponically in a non-saline, complete nutrient solution. Concentrations of Na in shoots and in roots were determined using inductively coupled plasma mass spectrometry (ICP-MS). KEY RESULTS Sodium concentrations in shoots and roots were not correlated among Caryophyllales species with normal [Na]shoot, but were positively correlated among Caryophyllales species with abnormally large [Na]shoot. In addition, Caryophyllales species with abnormally large [Na]shoot had greater [Na]shoot/[Na]root than Caryophyllales species with normal [Na]shoot. CONCLUSIONS Sodium hyperaccumulators in the Caryophyllales are characterized by abnormally large [Na]shoot, a positive correlation between [Na]shoot and [Na]root, and [Na]shoot/[Na]root quotients greater than unity.
Collapse
Affiliation(s)
- Konrad Neugebauer
- Ecological Sciences Department, The James Hutton Institute, Invergowrie, Dundee, UK
- Plant and Crop Sciences Division, University of Nottingham, Sutton Bonington, Loughborough, UK
| | - Martin R Broadley
- Plant and Crop Sciences Division, University of Nottingham, Sutton Bonington, Loughborough, UK
| | - Hamed A El-Serehy
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Timothy S George
- Ecological Sciences Department, The James Hutton Institute, Invergowrie, Dundee, UK
| | - Neil S Graham
- Plant and Crop Sciences Division, University of Nottingham, Sutton Bonington, Loughborough, UK
| | | | - Gladys Wright
- Ecological Sciences Department, The James Hutton Institute, Invergowrie, Dundee, UK
| | - Philip J White
- Ecological Sciences Department, The James Hutton Institute, Invergowrie, Dundee, UK
- King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
18
|
Kaspari M. The Invisible Hand of the Periodic Table: How Micronutrients Shape Ecology. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2021. [DOI: 10.1146/annurev-ecolsys-012021-090118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Beyond the better-studied carbohydrates and the macronutrients nitrogen and phosphorus, a remaining 20 or so elements are essential for life and have distinct geographical distributions, making them of keen interest to ecologists. Here, I provide a framework for understanding how shortfalls in micronutrients like iodine, copper, and zinc can regulate individual fitness, abundance, and ecosystem function. With a special focus on sodium, I show how simple experiments manipulating biogeochemistry can reveal why many of the variables that ecologists study vary so dramatically from place to place. I conclude with a discussion of how the Anthropocene's changing temperature, precipitation, and atmospheric CO2 levels are contributing to nutrient dilution (decreases in the nutrient quality at the base of food webs).
Collapse
Affiliation(s)
- Michael Kaspari
- Geographical Ecology Group, Department of Biology, University of Oklahoma, Norman, Oklahoma 73019, USA
| |
Collapse
|
19
|
Santiago‐Rosario LY, Harms KE, Elderd BD, Hart PB, Dassanayake M. No escape: The influence of substrate sodium on plant growth and tissue sodium responses. Ecol Evol 2021; 11:14231-14249. [PMID: 34707851 PMCID: PMC8525147 DOI: 10.1002/ece3.8138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/16/2021] [Accepted: 09/01/2021] [Indexed: 01/21/2023] Open
Abstract
As an essential micronutrient for many organisms, sodium plays an important role in ecological and evolutionary dynamics. Although plants mediate trophic fluxes of sodium, from substrates to higher trophic levels, relatively little comparative research has been published about plant growth and sodium accumulation in response to variation in substrate sodium. Accordingly, we carried out a systematic review of plants' responses to variation in substrate sodium concentrations.We compared biomass and tissue-sodium accumulation among 107 cultivars or populations (67 species in 20 plant families), broadly expanding beyond the agricultural and model taxa for which several generalizations previously had been made. We hypothesized a priori response models for each population's growth and sodium accumulation as a function of increasing substrate NaCl and used Bayesian Information Criterion to choose the best model. Additionally, using a phylogenetic signal analysis, we tested for phylogenetic patterning of responses across taxa.The influence of substrate sodium on growth differed across taxa, with most populations experiencing detrimental effects at high concentrations. Irrespective of growth responses, tissue sodium concentrations for most taxa increased as sodium concentration in the substrate increased. We found no strong associations between the type of growth response and the type of sodium accumulation response across taxa. Although experiments often fail to test plants across a sufficiently broad range of substrate salinities, non-crop species tended toward higher sodium tolerance than domesticated species. Moreover, some phylogenetic conservatism was apparent, in that evolutionary history helped predict the distribution of total-plant growth responses across the phylogeny, but not sodium accumulation responses.Our study reveals that saltier plants in saltier soils proves to be a broadly general pattern for sodium across plant taxa. Regardless of growth responses, sodium accumulation mostly followed an increasing trend as substrate sodium levels increased.
Collapse
Affiliation(s)
| | - Kyle E. Harms
- Department of Biological SciencesLouisiana State UniversityBaton RougeLouisianaUSA
| | - Bret D. Elderd
- Department of Biological SciencesLouisiana State UniversityBaton RougeLouisianaUSA
| | - Pamela B. Hart
- Department of Biological SciencesLouisiana State UniversityBaton RougeLouisianaUSA
| | - Maheshi Dassanayake
- Department of Biological SciencesLouisiana State UniversityBaton RougeLouisianaUSA
| |
Collapse
|
20
|
Vogels JJ, Verberk WCEP, Kuper JT, Weijters MJ, Bobbink R, Siepel H. How to Restore Invertebrate Diversity of Degraded Heathlands? A Case Study on the Reproductive Performance of the Field Cricket Gryllus campestris (L.). Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.659363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BackgroundNitrogen (NOx, NHy) and acidifying (NOx, NHy, SOx) deposition has reduced the biodiversity of European dry heathlands. Restoration efforts such as sod-cutting (removal of vegetation, litter and humus layer) often shifted these systems from N to P limitation and have had limited success in restoring the invertebrate community. Possible reasons for this include the unresolved acidification and a change in food plant stoichiometry. Here, we investigate how liming and P addition change food nutritional quality and their consequences for invertebrate performance.MethodsWe performed feeding experiments with field crickets (Gryllus campestris), using plant material collected from a full factorial field experiment with liming and P addition. We related female reproduction as measure of individual fitness to elemental ratios of plants fed to the crickets.ResultsP addition stimulated cricket daily reproduction and shortened their reproductive period, resulting in no difference in total reproduction. Liming greatly reduced both daily and total reproduction and resulted in more females cannibalizing on their male mates. Females that did so could partly offset the liming induced reduction in reproduction, suggesting dietary deficiency. P-addition improved food quality (lower N:P ratios) while liming led to skewed Mn:Mg and Fe:Mg ratios that compare unfavorably to ratios found in terrestrial invertebrates.ConclusionIncreased plant N:P ratio following sod-cutting constrains the reproductive potential in Gryllus campestris in a non-linear way. Liming reduced nutritional quality, likely by inducing deficiencies in Fe or Mn.Management ImplicationsHigh-impact restoration management practices such as sod cutting and liming cause new problems for invertebrates rooted in ecological stoichiometry. Since P-addition only partially offsets these negative effects, we instead advocate the use of less intensive N removal management and weaker buffering agents to reduce soil acidification. Furthermore, a reduction in N emission is paramount as it will remove the need for disruptive interventions.
Collapse
|
21
|
Welti EAR, Kaspari M. Sodium addition increases leaf herbivory and fungal damage across four grasslands. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13796] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Ellen A. R. Welti
- Geographical Ecology Group Department of Biology University of Oklahoma Norman OK USA
- Senckenberg Research Institute and Natural History Museum Frankfurt Gelnhausen Germany
| | - Michael Kaspari
- Geographical Ecology Group Department of Biology University of Oklahoma Norman OK USA
| |
Collapse
|
22
|
Peterson TN, Welti EAR, Kaspari M. Dietary sodium levels affect grasshopper growth and performance. Ecosphere 2021. [DOI: 10.1002/ecs2.3392] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Taylor N. Peterson
- Geographical Ecology Group Department of Biology University of Oklahoma Norman Oklahoma73019USA
| | - Ellen A. R. Welti
- Geographical Ecology Group Department of Biology University of Oklahoma Norman Oklahoma73019USA
- Senckenberg Research Institute and Natural History Museum Frankfurt Gelnhausen Germany
| | - Michael Kaspari
- Geographical Ecology Group Department of Biology University of Oklahoma Norman Oklahoma73019USA
| |
Collapse
|
23
|
Mitchell TS, Agnew L, Meyer R, Sikkink KL, Oberhauser KS, Borer ET, Snell-Rood EC. Traffic influences nutritional quality of roadside plants for monarch caterpillars. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:138045. [PMID: 32408428 DOI: 10.1016/j.scitotenv.2020.138045] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/17/2020] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
Abstract
Roadside habitats are increasingly being targeted for restoration and conservation. Roadside habitats often exhibit altered soil and plant chemistry due to pollution from maintenance (e.g. de-icing salt), car deterioration, and exhaust. Roadside plants may attract animals due to elevated levels of sodium or nitrogen, but high concentrations of heavy metals and sodium can be toxic, potentially setting an ecological trap. In this study, we determine how roads influence the chemistry of common milkweed (Asclepias syriaca) as it is the primary roadside host plant for the declining monarch butterfly (Danaus plexippus) in the eastern United States. Even though road salt is applied during the winter, we detect enhanced sodium along roads the following growing season. Road salts increase soil sodium, which in turn elevates host-plant foliar sodium (occasionally to toxic levels in <10% of plants) and sodium content in monarch caterpillars feeding on these plants. Sodium levels of milkweed leaves are highest close to the edge of busy roads. Some heavy metals (lead, zinc) are also elevated in roadside soils or plants. Nitrogen content was affected by adjacent agricultural use, but not traffic volume or proximity to a road. Other potential road pollutants (e.g. nickel) were not elevated in soil or plants. Despite a clear signature of road pollution in the chemistry of milkweed, most plants are likely still suitable for developing monarchs. Nonetheless, restoration investments in snowy regions should prioritize sites with lower-traffic density that are further from the road edge to minimize toxic impacts of high sodium. To extend this research to other insects of conservation concern, future work should characterize the nutritional quality of nectar, pollen, and other species of host-plants in roadside habitats.
Collapse
Affiliation(s)
- Timothy S Mitchell
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN 55108, United States of America.
| | - Lauren Agnew
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN 55108, United States of America
| | - Rebecca Meyer
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN 55108, United States of America
| | - Kristin L Sikkink
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN 55108, United States of America
| | - Karen S Oberhauser
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN 55108, United States of America
| | - Elizabeth T Borer
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN 55108, United States of America
| | - Emilie C Snell-Rood
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN 55108, United States of America
| |
Collapse
|
24
|
Kaspari M. The seventh macronutrient: how sodium shortfall ramifies through populations, food webs and ecosystems. Ecol Lett 2020; 23:1153-1168. [PMID: 32380580 DOI: 10.1111/ele.13517] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/28/2020] [Accepted: 03/17/2020] [Indexed: 11/27/2022]
Abstract
Of the 25 elements required to build most organisms, sodium has a unique set of characteristics that ramify through terrestrial ecology. In plants, sodium is found in low concentrations and has little metabolic function; in plant consumers, particularly animals, sodium is essential to running costly Na-K ATPases. Here I synthesise a diverse literature from physiology, agronomy and ecology, towards identifying sodium's place as the '7th macronutrient', one whose shortfall targets two trophic levels - herbivores and detritivores. I propose that sodium also plays a central, though unheralded role in herbivore digestion, via its importance to maintaining microbiomes and denaturing tannins. I highlight how sodium availability is a key determinant of consumer abundance and the geography of herbivory and detritivory. And I propose a re-appraisal of the assumption that, because sodium is metabolically unimportant to most plants, it is of little use. Instead, I suggest that sodium's critical role in limiting herbivore performance makes it a commodity used by plants to manipulate their herbivores and mutualists, and by consumers like bison and elephants to generate grazing lawns: dependable sources of sodium.
Collapse
Affiliation(s)
- Michael Kaspari
- Geographical Ecology Group, Department of Biology, University of Oklahoma, Norman, OK, USA
| |
Collapse
|
25
|
Quigley KM, Griffith DM, Donati GL, Anderson TM. Soil nutrients and precipitation are major drivers of global patterns of grass leaf silicification. Ecology 2020; 101:e03006. [PMID: 32020594 PMCID: PMC7317429 DOI: 10.1002/ecy.3006] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 11/26/2019] [Accepted: 12/20/2019] [Indexed: 11/23/2022]
Abstract
Grasses accumulate high concentrations of silicon (Si) in their tissues, with potential benefits including herbivore defense, improved water balance, and reduced leaf construction costs. Although Si is one of the most widely varying leaf constituents among individuals, species, and ecosystems, the environmental forces driving this variation remain elusive and understudied. To understand relationships between environmental factors and grass Si accumulation better, we analyzed foliar chemistry of grasses from 17 globally distributed sites where nutrient inputs and grazing were manipulated. These sites span natural gradients in temperature, precipitation, and underlying soil properties, which allowed us to assess the relative importance of soil moisture and nutrients across variation in climate. Foliar Si concentration did not respond to large mammalian grazer exclusion, but significant variation in herbivore abundance among sites may have precluded the observation of defoliation effects at these sites. However, nutrient addition consistently reduced leaf Si, especially at sites with low soil nitrogen prior to nutrient addition. Additionally, a leaf‐level trade‐off between Si and carbon (C) existed that was stronger at arid sites than mesic sites. Our results suggest soil nutrient limitation favors investment in Si over C‐based leaf construction, and that fixing C is especially costly relative to assimilating Si when water is limiting. Our results demonstrate the importance of soil nutrients and precipitation as key drivers of global grass silicification patterns.
Collapse
Affiliation(s)
- Kathleen M Quigley
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, 27109, USA
| | - Daniel M Griffith
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, 27109, USA
| | - George L Donati
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina, 27109, USA
| | - T Michael Anderson
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, 27109, USA
| |
Collapse
|