1
|
Szabó B, Váczy‐Földi M, Vad CF, Pálffy K, Huỳnh T, Dobosy P, Fierpasz Á, Márton Z, Felföldi T, Horváth Z. Connectivity Loss in Experimental Pond Networks Leads to Biodiversity Loss in Microbial Metacommunities. GLOBAL CHANGE BIOLOGY 2024; 30:e70001. [PMID: 39673089 PMCID: PMC11645464 DOI: 10.1111/gcb.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/15/2024] [Accepted: 11/22/2024] [Indexed: 12/16/2024]
Abstract
Habitat fragmentation is among the most important global threats to biodiversity; however, the direct effects of its components including connectivity loss are largely unknown and still mostly inferred based on indirect evidence. Our understanding of these drivers is especially limited in microbial communities. Here, by conducting a 4-month outdoor experiment with artificial pond (mesocosm) metacommunities, we studied the effects of connectivity loss on planktonic microorganisms, primarily focusing on pro- and microeukaryotes. Connectivity loss was simulated by stopping the dispersal among local habitats after an initial period with dispersal. Keeping the habitat amount constant and the abiotic environment homogeneous allowed us to track the direct effects of the process of connectivity loss. We found that connectivity loss led to higher levels of extinction and a decrease in both local and regional diversity in microeukaryotes. In contrast, diversity patterns of prokaryotes remained largely unaffected, with some indications of extinction debt. Connectivity loss also led to lower evenness in microeukaryotes, likely through changes in biotic interactions with zooplankton grazers. Our results imply that connectivity loss can directly translate into species losses in communities and highlight the importance of conserving habitat networks with sufficient dispersal among local habitats.
Collapse
Affiliation(s)
- Beáta Szabó
- Institute of Aquatic EcologyHUN‐REN Centre for Ecological ResearchBudapestHungary
- National Multidisciplinary Laboratory for Climate ChangeHUN‐REN Centre for Ecological ResearchBudapestHungary
| | - Máté Váczy‐Földi
- Institute of Aquatic EcologyHUN‐REN Centre for Ecological ResearchBudapestHungary
- Department of Pharmacology and Pharmacotherapy, Faculty of MedicineSemmelweis UniversityBudapestHungary
| | - Csaba F. Vad
- Institute of Aquatic EcologyHUN‐REN Centre for Ecological ResearchBudapestHungary
- National Multidisciplinary Laboratory for Climate ChangeHUN‐REN Centre for Ecological ResearchBudapestHungary
| | - Károly Pálffy
- Institute of Aquatic EcologyHUN‐REN Centre for Ecological ResearchBudapestHungary
- National Multidisciplinary Laboratory for Climate ChangeHUN‐REN Centre for Ecological ResearchBudapestHungary
| | - Thu‐Hương Huỳnh
- Institute of Aquatic EcologyHUN‐REN Centre for Ecological ResearchBudapestHungary
- National Multidisciplinary Laboratory for Climate ChangeHUN‐REN Centre for Ecological ResearchBudapestHungary
- Doctoral School of Biology, Institute of BiologyELTE Eötvös Loránd UniversityBudapestHungary
| | - Péter Dobosy
- Institute of Aquatic EcologyHUN‐REN Centre for Ecological ResearchBudapestHungary
| | - Ádám Fierpasz
- Institute of Aquatic EcologyHUN‐REN Centre for Ecological ResearchBudapestHungary
- Doctoral School of Biology, Institute of BiologyELTE Eötvös Loránd UniversityBudapestHungary
| | - Zsuzsanna Márton
- Institute of Aquatic EcologyHUN‐REN Centre for Ecological ResearchBudapestHungary
- National Multidisciplinary Laboratory for Climate ChangeHUN‐REN Centre for Ecological ResearchBudapestHungary
- Department of MicrobiologyELTE Eötvös Loránd UniversityBudapestHungary
| | - Tamás Felföldi
- Institute of Aquatic EcologyHUN‐REN Centre for Ecological ResearchBudapestHungary
- Department of MicrobiologyELTE Eötvös Loránd UniversityBudapestHungary
| | - Zsófia Horváth
- Institute of Aquatic EcologyHUN‐REN Centre for Ecological ResearchBudapestHungary
- National Multidisciplinary Laboratory for Climate ChangeHUN‐REN Centre for Ecological ResearchBudapestHungary
- Department of Plant Systematics, Ecology and Theoretical BiologyELTE Eötvös Loránd UniversityBudapestHungary
| |
Collapse
|
2
|
Hackett TD, Sauve AMC, Maia KP, Montoya D, Davies N, Archer R, Potts SG, Tylianakis JM, Vaughan IP, Memmott J. Multi-habitat landscapes are more diverse and stable with improved function. Nature 2024; 633:114-119. [PMID: 39169178 PMCID: PMC11374697 DOI: 10.1038/s41586-024-07825-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 07/12/2024] [Indexed: 08/23/2024]
Abstract
Conservation, restoration and land management are increasingly implemented at landscape scales1,2. However, because species interaction data are typically habitat- and/or guild-specific, exactly how those interactions connect habitats and affect the stability and function of communities at landscape scales remains poorly understood. We combine multi-guild species interaction data (plant-pollinator and three plant-herbivore-parasitoid communities, collected from landscapes with one, two or three habitats), a field experiment and a modelling approach to show that multi-habitat landscapes support higher species and interaction evenness, more complementary species interactions and more consistent robustness to species loss. These emergent network properties drive improved pollination success in landscapes with more habitats and are not explained by simply summing component habitat webs. Linking landscape composition, through community structure, to ecosystem function, highlights mechanisms by which several contiguous habitats can support landscape-scale ecosystem services.
Collapse
Affiliation(s)
- Talya D Hackett
- School of Biological Sciences, University of Bristol, Bristol, UK.
- Department of Biology, University of Oxford, Oxford, UK.
| | - Alix M C Sauve
- School of Biological Sciences, University of Bristol, Bristol, UK
- Department of Computer Science, University of Bristol, Bristol, UK
- University of Bordeaux, Integrative and Theoretical Ecology group, LabEx COTE, Pessac, France
| | - Kate P Maia
- School of Biological Sciences, University of Bristol, Bristol, UK
- Institute of Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Daniel Montoya
- School of Biological Sciences, University of Bristol, Bristol, UK
- Basque Centre for Climate Change (BC3), Parque Científico UPV-EHU, Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Nancy Davies
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Rose Archer
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Simon G Potts
- Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, University of Reading, Reading, UK
| | - Jason M Tylianakis
- Bioprotection Aotearoa and Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Ian P Vaughan
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Cardiff, UK
| | - Jane Memmott
- School of Biological Sciences, University of Bristol, Bristol, UK.
| |
Collapse
|
3
|
Moisset de Espanés P, Ramos-Jiliberto R. Both local stability and dispersal contribute to metacommunity sensitivity to asynchronous habitat availability. Sci Rep 2024; 14:6273. [PMID: 38491098 PMCID: PMC10943024 DOI: 10.1038/s41598-024-56632-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/08/2024] [Indexed: 03/18/2024] Open
Abstract
The stability of isolated communities depends on the complexity of their foodwebs. However, it remains unclear how local stability interacts with dispersal in multitrophic metacommunities to shape biodiversity patterns. This lack of understanding is deeper in the more realistic frame of landscapes that exhibit non-trivial and time-varying structures. Therefore, in this study, we aim to evaluate the influence of local stabilizing factors versus dispersal in determining the sensitivity of metacommunity biodiversity to increasing asynchrony of site availability. Additionally, we assess the role of foodweb complexity and landscape structure as modulating factors. To accomplish our goals we developed a model based on random matrices for local communities, which are linked by stochastic dispersal over explicit dynamic landscapes. We ran numerical simulations and computed the effect sizes of foodweb temperature, self-limitation, dispersal ability, and all pairwise combinations, on the sensitivity of biodiversity to landscape asynchrony. In our experiments we explored gradients of species richness, foodweb connectance, number of sites, and landscape modularity. Our results showed that asynchrony among site availability periods reduced α -diversity and increased β -diversity. Asynchrony increased γ -diversity at high dispersal rates. Both local and regional stabilizing factors determined the sensitivity of metacommunities to landscape asynchrony. Local factors were more influential in landscapes with fewer sites and lower modularity, as well as in metacommunities composed of complex foodwebs. This research offers insights into the dynamics of metacommunities in dynamic landscapes, providing valuable knowledge about the interplay between local and regional factors in shaping ecological stability and species persistence.
Collapse
Affiliation(s)
- Pablo Moisset de Espanés
- Centro de Biotecnología y Bioingeniería, Universidad de Chile, Av. Beaucheff 851, Santiago, Chile
| | - Rodrigo Ramos-Jiliberto
- GEMA Center for Genomics, Ecology and Environment, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago, Chile.
| |
Collapse
|
4
|
Yang Q, Yan Y, Huang J, Wang Z, Feng M, Cheng H, Zhang P, Zhang H, Xu J, Zhang M. The Impact of Warming on Assembly Processes and Diversity Patterns of Bacterial Communities in Mesocosms. Microorganisms 2023; 11:2807. [PMID: 38004818 PMCID: PMC10672829 DOI: 10.3390/microorganisms11112807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Bacteria in lake water bodies and sediments play crucial roles in various biogeochemical processes. In this study, we conducted a comprehensive analysis of bacterioplankton and sedimentary bacteria community composition and assembly processes across multiple seasons in 18 outdoor mesocosms exposed to three temperature scenarios. Our findings reveal that warming and seasonal changes play a vital role in shaping microbial diversity, species interactions, and community assembly disparities in water and sediment ecosystems. We observed that the bacterioplankton networks were more fragile, potentially making them susceptible to disturbances, whereas sedimentary bacteria exhibited increased stability. Constant warming and heatwaves had contrasting effects: heatwaves increased stability in both planktonic and sedimentary bacteria communities, but planktonic bacterial networks became more fragile under constant warming. Regarding bacterial assembly, stochastic processes primarily influenced the composition of planktonic and sedimentary bacteria. Constant warming intensified the stochasticity of bacterioplankton year-round, while heatwaves caused a slight shift from stochastic to deterministic in spring and autumn. In contrast, sedimentary bacteria assembly is mainly dominated by drift and remained unaffected by warming. Our study enhances our understanding of how bacterioplankton and sedimentary bacteria communities respond to global warming across multiple seasons, shedding light on the complex dynamics of microbial ecosystems in lakes.
Collapse
Affiliation(s)
- Qian Yang
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Q.Y.); (Y.Y.); (J.H.); (Z.W.); (M.F.); (H.C.)
| | - Yifeng Yan
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Q.Y.); (Y.Y.); (J.H.); (Z.W.); (M.F.); (H.C.)
| | - Jinhe Huang
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Q.Y.); (Y.Y.); (J.H.); (Z.W.); (M.F.); (H.C.)
| | - Zhaolei Wang
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Q.Y.); (Y.Y.); (J.H.); (Z.W.); (M.F.); (H.C.)
| | - Mingjun Feng
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Q.Y.); (Y.Y.); (J.H.); (Z.W.); (M.F.); (H.C.)
| | - Haowu Cheng
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Q.Y.); (Y.Y.); (J.H.); (Z.W.); (M.F.); (H.C.)
| | - Peiyu Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (P.Z.); (H.Z.); (J.X.)
| | - Huan Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (P.Z.); (H.Z.); (J.X.)
| | - Jun Xu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (P.Z.); (H.Z.); (J.X.)
| | - Min Zhang
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Q.Y.); (Y.Y.); (J.H.); (Z.W.); (M.F.); (H.C.)
| |
Collapse
|
5
|
Vad CF, Hanny-Endrédi A, Kratina P, Abonyi A, Mironova E, Murray DS, Samchyshyna L, Tsakalakis I, Smeti E, Spatharis S, Tan H, Preiler C, Petrusek A, Bengtsson MM, Ptacnik R. Spatial insurance against a heatwave differs between trophic levels in experimental aquatic communities. GLOBAL CHANGE BIOLOGY 2023; 29:3054-3071. [PMID: 36946870 DOI: 10.1111/gcb.16692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 01/08/2023] [Accepted: 03/07/2023] [Indexed: 05/03/2023]
Abstract
Climate change-related heatwaves are major threats to biodiversity and ecosystem functioning. However, our current understanding of the mechanisms governing community resistance to and recovery from extreme temperature events is still rudimentary. The spatial insurance hypothesis postulates that diverse regional species pools can buffer ecosystem functioning against local disturbances through the immigration of better-adapted taxa. Yet, experimental evidence for such predictions from multi-trophic communities and pulse-type disturbances, like heatwaves, is largely missing. We performed an experimental mesocosm study to test whether species dispersal from natural lakes prior to a simulated heatwave could increase the resistance and recovery of plankton communities. As the buffering effect of dispersal may differ among trophic groups, we independently manipulated the dispersal of organisms from lower (phytoplankton) and higher (zooplankton) trophic levels. The experimental heatwave suppressed total community biomass by having a strong negative effect on zooplankton biomass, probably due to a heat-induced increase in metabolic costs, resulting in weaker top-down control on phytoplankton. While zooplankton dispersal did not alleviate the negative heatwave effects on zooplankton biomass, phytoplankton dispersal enhanced biomass recovery at the level of primary producers, providing partial evidence for spatial insurance. The differential responses to dispersal may be linked to the much larger regional species pool of phytoplankton than of zooplankton. Our results suggest high recovery capacity of community biomass independent of dispersal. However, community composition and trophic structure remained altered due to the heatwave, implying longer-lasting changes in ecosystem functioning.
Collapse
Affiliation(s)
- Csaba F Vad
- WasserCluster Lunz-Biologische Station, Lunz am See, Austria
- Institute of Aquatic Ecology, Centre for Ecological Research, Budapest, Hungary
- National Multidisciplinary Laboratory for Climate Change, Centre for Ecological Research, Budapest, Hungary
| | - Anett Hanny-Endrédi
- Institute of Aquatic Ecology, Centre for Ecological Research, Budapest, Hungary
| | - Pavel Kratina
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - András Abonyi
- WasserCluster Lunz-Biologische Station, Lunz am See, Austria
- Institute of Aquatic Ecology, Centre for Ecological Research, Budapest, Hungary
| | - Ekaterina Mironova
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - David S Murray
- Collaborative Centre for Sustainable Use of the Seas (CCSUS), School of Biological Sciences, University of East Anglia, Norfolk, UK
- The Centre for Environmental, Fisheries and Aquaculture Science (Cefas), Suffolk, Lowestoft, UK
| | - Larysa Samchyshyna
- Institute of Fisheries, National Academy of Agrarian Sciences, Kyiv, Ukraine
- Institute of Fisheries and Marine Ecology, Berdiansk, Ukraine
| | - Ioannis Tsakalakis
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Evangelia Smeti
- Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research, Anavissos, Greece
| | - Sofie Spatharis
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Hanrong Tan
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | | | - Adam Petrusek
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Mia M Bengtsson
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Robert Ptacnik
- WasserCluster Lunz-Biologische Station, Lunz am See, Austria
| |
Collapse
|
6
|
Jarillo J, Cao-García FJ, De Laender F. Spatial and Ecological Scaling of Stability in Spatial Community Networks. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.861537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
There are many scales at which to quantify stability in spatial and ecological networks. Local-scale analyses focus on specific nodes of the spatial network, while regional-scale analyses consider the whole network. Similarly, species- and community-level analyses either account for single species or for the whole community. Furthermore, stability itself can be defined in multiple ways, including resistance (the inverse of the relative displacement caused by a perturbation), initial resilience (the rate of return after a perturbation), and invariability (the inverse of the relative amplitude of the population fluctuations). Here, we analyze the scale-dependence of these stability properties. More specifically, we ask how spatial scale (local vs. regional) and ecological scale (species vs. community) influence these stability properties. We find that regional initial resilience is the weighted arithmetic mean of the local initial resiliences. The regional resistance is the harmonic mean of local resistances, which makes regional resistance particularly vulnerable to nodes with low stability, unlike regional initial resilience. Analogous results hold for the relationship between community- and species-level initial resilience and resistance. Both resistance and initial resilience are “scale-free” properties: regional and community values are simply the biomass-weighted means of the local and species values, respectively. Thus, one can easily estimate both stability metrics of whole networks from partial sampling. In contrast, invariability generally is greater at the regional and community-level than at the local and species-level, respectively. Hence, estimating the invariability of spatial or ecological networks from measurements at the local or species level is more complicated, requiring an unbiased estimate of the network (i.e., region or community) size. In conclusion, we find that scaling of stability depends on the metric considered, and we present a reliable framework to estimate these metrics.
Collapse
|
7
|
Gordon SCC, Kerr JT. Floral diversity increases butterfly diversity in a multitrophic metacommunity. Ecology 2022; 103:e3735. [PMID: 35446439 DOI: 10.1002/ecy.3735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/10/2022] [Indexed: 11/08/2022]
Abstract
The impact of multitrophic interactions on metacommunity structure, despite extensive theory and modelling/manipulative studies, has remained largely unexplored within naturally occurring metacommunities. We investigated the impacts of mutualistic partners and predators on a butterfly metacommunity, as well as the impacts that local and landscape characteristics have across three trophic levels: flowering plants, butterflies, and butterfly predators. Using data for butterfly diversity/richness, flowering plant diversity/richness, and butterfly predation (on clay butterfly models) across 15 grassland sites, we asked 3 questions: 1) How do mutualist metacommunity structure, predation pressure, and local and regional habitat characteristics affect butterfly metacommunity structure? 2) How do local and regional habitat characteristics affect flowering plant metacommunity structure? 3) How do local and regional habitat characteristics affect predation pressure? Floral diversity and richness had a positive effect on butterfly diversity and richness (Question 1). Site size positively affected floral diversity and richness (Question 2), and through this relationship site size had an indirect positive effect on butterfly diversity and richness (Question 1). In contrast with previous work, no other variables impacted butterfly diversity/richness. This result was particularly surprising for predation pressure: our results suggest that within our study system butterfly community diversity and richness is not strongly impacted by predation. Predator attacks occurred more in larger and more isolated sites (Question 3), suggesting that predators respond more strongly to landscape characteristics than abundance or diversity of butterfly prey species. This decoupling of predation pressure and butterfly communities suggests that conserving and restoring healthy predator populations may not negatively impact butterfly communities. If diverse plant communities are maintained, even small and isolated habitat patches can be valuable for butterfly conservation, which may influence reserve design and habitat restoration strategies.
Collapse
Affiliation(s)
- Susan C C Gordon
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Jeremy T Kerr
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
8
|
Firkowski CR, Thompson PL, Gonzalez A, Cadotte MW, Fortin M. Multi‐trophic metacommunity interactions mediate asynchrony and stability in fluctuating environments. ECOL MONOGR 2021. [DOI: 10.1002/ecm.1484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Carina R. Firkowski
- Department of Ecology and Evolutionary Biology University of Toronto Toronto Ontario M5S 3B2 Canada
| | - Patrick L. Thompson
- Biodiversity Research Centre and Department of Zoology University of British Columbia Vancouver British Columbia V6T 1Z4 Canada
| | - Andrew Gonzalez
- Department of Biology McGill University Montreal Quebec H3A 1B1 Canada
| | - Marc W. Cadotte
- Department of Ecology and Evolutionary Biology University of Toronto Toronto Ontario M5S 3B2 Canada
- Department of Biological Sciences University of Toronto at Scarborough Scarborough Ontario M1C 1A4 Canada
| | - Marie‐Josée Fortin
- Department of Ecology and Evolutionary Biology University of Toronto Toronto Ontario M5S 3B2 Canada
| |
Collapse
|
9
|
Abstract
AbstractThe frequency, intensity, and duration of periods of extreme environmental warming are expected to rise over the next hundred years and play an increasing role in species loss resulting from climate change, and yet we know little about their potential future effects on variability in the composition of communities. This study analyzed patterns of species loss in a community of four rotifers and six ciliates exposed to different rates of extreme warming. Temperature of loss was positively correlated with warming rates for all species, consistent with theoretical frameworks suggesting that lower rates of warming increase exposure time and cumulative thermal stress at each temperature. The sequence of species loss during extreme warming depended on the environmental warming rate (i.e., warming rates had the capacity to drive reversals in the relative thermal tolerances of species), and changes in the sequence of species loss driven by the warming rate resulted in substantial variability in community composition. The results suggest that differences in warming rates across space and time may increase variability in community composition in ecosystems increasingly disturbed by extreme temperature, potentially altering interspecific interactions, the abiotic environment, and ecosystem function. Several ecological mechanisms may be responsible, singly or together, for changes in the sequence of species loss at different rates of warming, including (a) differences among species in their sensitivity to the intensity and duration of heat exposure, (b) the effects of warming rates on temperature-dependent interspecific interactions, and (c) differences in opportunities for evolution among species and across warming rates.
Collapse
|
10
|
Loreau M, Barbier M, Filotas E, Gravel D, Isbell F, Miller SJ, Montoya JM, Wang S, Aussenac R, Germain R, Thompson PL, Gonzalez A, Dee LE. Biodiversity as insurance: from concept to measurement and application. Biol Rev Camb Philos Soc 2021; 96:2333-2354. [PMID: 34080283 PMCID: PMC8519139 DOI: 10.1111/brv.12756] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 01/09/2023]
Abstract
Biological insurance theory predicts that, in a variable environment, aggregate ecosystem properties will vary less in more diverse communities because declines in the performance or abundance of some species or phenotypes will be offset, at least partly, by smoother declines or increases in others. During the past two decades, ecology has accumulated strong evidence for the stabilising effect of biodiversity on ecosystem functioning. As biological insurance is reaching the stage of a mature theory, it is critical to revisit and clarify its conceptual foundations to guide future developments, applications and measurements. In this review, we first clarify the connections between the insurance and portfolio concepts that have been used in ecology and the economic concepts that inspired them. Doing so points to gaps and mismatches between ecology and economics that could be filled profitably by new theoretical developments and new management applications. Second, we discuss some fundamental issues in biological insurance theory that have remained unnoticed so far and that emerge from some of its recent applications. In particular, we draw a clear distinction between the two effects embedded in biological insurance theory, i.e. the effects of biodiversity on the mean and variability of ecosystem properties. This distinction allows explicit consideration of trade-offs between the mean and stability of ecosystem processes and services. We also review applications of biological insurance theory in ecosystem management. Finally, we provide a synthetic conceptual framework that unifies the various approaches across disciplines, and we suggest new ways in which biological insurance theory could be extended to address new issues in ecology and ecosystem management. Exciting future challenges include linking the effects of biodiversity on ecosystem functioning and stability, incorporating multiple functions and feedbacks, developing new approaches to partition biodiversity effects across scales, extending biological insurance theory to complex interaction networks, and developing new applications to biodiversity and ecosystem management.
Collapse
Affiliation(s)
- Michel Loreau
- Theoretical and Experimental Ecology Station, CNRS2 route du CNRSMoulis09200France
| | - Matthieu Barbier
- Theoretical and Experimental Ecology Station, CNRS2 route du CNRSMoulis09200France
| | - Elise Filotas
- Center for Forest ResearchUniversité du Québec (TELUQ)5800 Saint‐DenisMontrealQCH2S 3L5Canada
| | - Dominique Gravel
- Département de BiologieUniversité de Sherbrooke2500 Boulevard de l'UniversitéSherbrookeQCJ1K 2R1Canada
| | - Forest Isbell
- Department of Ecology, Evolution and BehaviorUniversity of Minnesota1479 Gortner AveSt. PaulMN55108U.S.A.
| | - Steve J. Miller
- Environmental Studies ProgramUniversity of Colorado, Boulder4001 Discovery DriveBoulderCO80303U.S.A.
| | - Jose M. Montoya
- Theoretical and Experimental Ecology Station, CNRS2 route du CNRSMoulis09200France
| | - Shaopeng Wang
- Institute of Ecology, College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes of the Ministry of EducationPeking UniversityBeijing100871China
| | - Raphaël Aussenac
- Université Grenoble Alpes, INRAE, LESSEMSt‐Martin‐d'HèresF‐38402France
| | - Rachel Germain
- Biodiversity Research Centre and Department of ZoologyUniversity of British Columbia6270 University Blvd.VancouverBCV6T 1Z4Canada
| | - Patrick L. Thompson
- Biodiversity Research Centre and Department of ZoologyUniversity of British Columbia6270 University Blvd.VancouverBCV6T 1Z4Canada
| | - Andrew Gonzalez
- Department of BiologyMcGill University1205 Dr. Penfield AvenueMontrealQCH3A 1B1Canada
| | - Laura E. Dee
- Department of Ecology and Evolutionary BiologyUniversity of Colorado, Boulder1900 Pleasant St.BoulderCO80303U.S.A.
| |
Collapse
|
11
|
Abstract
Perhaps more than any other ecological discipline, invasion biology has married the practices of basic science and the application of that science. The conceptual frameworks of population regulation, metapopulations, supply-side ecology, and community assembly have all to some degree informed the regulation, management, and prevention of biological invasions. Invasion biology needs to continue to adopt emerging frameworks and paradigms to progress as both a basic and applied science. This need is urgent as the biological invasion problem continues to worsen. The development of metacommunity theory in the last two decades represents a paradigm-shifting approach to community ecology that emphasizes the multi-scale nature of community assembly and biodiversity regulation. Work on metacommunities has demonstrated that even relatively simple processes at local scales are often heavily influenced by regional-scale processes driven primarily by the dispersal of organisms. Often the influence of dispersal interacts with, or even swamps, the influence of local-scale drivers like environmental conditions and species interactions. An emphasis on dispersal and a focus on multi-scale processes enable metacommunity theory to contribute strongly to the advancement of invasion biology. Propagule pressure of invaders has been identified as one of the most important drivers facilitating invasion, so the metacommunity concept, designed to address how dispersal-driven dynamics affect community structure, can directly address many of the central questions of invasion biology. Here we revisit many of the important concepts and paradigms of biological invasions—propagule pressure, biotic resistance, enemy release, functional traits, neonative species, human-assisted transport,—and view those concepts through the lens of metacommunity theory. In doing so, we accomplish several goals. First, we show that work on metacommunities has generated multiple predictions, models, and the tools that can be directly applied to invasion scenarios. Among these predictions is that invasibility of a community should decrease with both local controls on community assembly, and the dispersal rates of native species. Second, we demonstrate that framing biological invasions in metacommunity terms actually unifies several seemingly disparate concepts central to invasion biology. Finally, we recommend several courses of action for the control and management of invasive species that emerge from applying the concepts of metacommunity theory.
Collapse
|
12
|
Gonzalez A, Germain RM, Srivastava DS, Filotas E, Dee LE, Gravel D, Thompson PL, Isbell F, Wang S, Kéfi S, Montoya J, Zelnik YR, Loreau M. Scaling-up biodiversity-ecosystem functioning research. Ecol Lett 2020; 23:757-776. [PMID: 31997566 PMCID: PMC7497049 DOI: 10.1111/ele.13456] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/18/2019] [Accepted: 12/14/2019] [Indexed: 12/27/2022]
Abstract
A rich body of knowledge links biodiversity to ecosystem functioning (BEF), but it is primarily focused on small scales. We review the current theory and identify six expectations for scale dependence in the BEF relationship: (1) a nonlinear change in the slope of the BEF relationship with spatial scale; (2) a scale‐dependent relationship between ecosystem stability and spatial extent; (3) coexistence within and among sites will result in a positive BEF relationship at larger scales; (4) temporal autocorrelation in environmental variability affects species turnover and thus the change in BEF slope with scale; (5) connectivity in metacommunities generates nonlinear BEF and stability relationships by affecting population synchrony at local and regional scales; (6) spatial scaling in food web structure and diversity will generate scale dependence in ecosystem functioning. We suggest directions for synthesis that combine approaches in metaecosystem and metacommunity ecology and integrate cross‐scale feedbacks. Tests of this theory may combine remote sensing with a generation of networked experiments that assess effects at multiple scales. We also show how anthropogenic land cover change may alter the scaling of the BEF relationship. New research on the role of scale in BEF will guide policy linking the goals of managing biodiversity and ecosystems.
Collapse
Affiliation(s)
- Andrew Gonzalez
- Department of Biology, McGill University, 1205 Dr. Penfield Avenue, Montreal, H3A 1B1, Canada
| | - Rachel M Germain
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Diane S Srivastava
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Elise Filotas
- Center for Forest Research, Département Science et Technologie, Université du Québec, 5800 Saint-Denis, Téluq, Montreal, H2S 3L5, Canada
| | - Laura E Dee
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, 80309, USA
| | - Dominique Gravel
- Département de biologie, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, J1K 2R1, Canada
| | - Patrick L Thompson
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Forest Isbell
- Department of Ecology, Evolution, and Behavior, University of Minnesota, 1479 Gortner Avenue, St. Paul, MN, 55108, USA
| | - Shaopeng Wang
- Institute of Ecology, College of Urban and Environmental Science, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, 100871, Beijing, China
| | - Sonia Kéfi
- ISEM, CNRS, Univ. Montpellier, IRD, EPHE, Montpellier, France
| | - Jose Montoya
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS, 2 route du CNRS, 09200, Moulis, France
| | - Yuval R Zelnik
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS, 2 route du CNRS, 09200, Moulis, France
| | - Michel Loreau
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS, 2 route du CNRS, 09200, Moulis, France
| |
Collapse
|