1
|
Fredston AL, Tingley MW, Neate-Clegg MHC, Evans LJ, Antão LH, Ban NC, Chen IC, Chen YW, Comte L, Edwards DP, Evengard B, Fadrique B, Falkeis SH, Guralnick R, Klinges DH, Lembrechts JJ, Lenoir J, Palacios-Abrantes J, Pauchard A, Pecl G, Pinsky ML, Senior RA, Smith JE, Soifer LG, Sunday JM, Tape KD, Washam P, Scheffers BR. Reimagining species on the move across space and time. Trends Ecol Evol 2025:S0169-5347(25)00087-4. [PMID: 40345938 DOI: 10.1016/j.tree.2025.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 03/17/2025] [Accepted: 03/28/2025] [Indexed: 05/11/2025]
Abstract
Climate change is already leaving a broad footprint of impacts on biodiversity, from an individual caterpillar emerging earlier in spring to dominant plant communities migrating poleward. Despite the various modes of how species are on the move, we primarily document shifting species along only one gradient (e.g., latitude or phenology) and along one dimension (space or time). In this opinion article we present a unifying framework for integrating the study of species on the move over space and time and from micro to macro scales. Future conservation planning and natural resource management will depend on our ability to use this framework to improve understanding, attribution, and prediction of species on the move.
Collapse
Affiliation(s)
- Alexa L Fredston
- Department of Ocean Sciences, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA.
| | - Morgan W Tingley
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, 621 Charles E Young Dr S # 951606, Los Angeles, CA 90095, USA.
| | - Montague H C Neate-Clegg
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, 621 Charles E Young Dr S # 951606, Los Angeles, CA 90095, USA; Department of Environmental Studies, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Luke J Evans
- Department of Wildlife Ecology and Conservation, University of Florida, 110 Newins-Ziegler Hall, Gainesville, FL 32611, USA
| | - Laura H Antão
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1, P.O. Box 65, 00014 Helsinki, Finland; University of Turku, Vesilinnantie 5, 20500 Turku, Finland
| | - Natalie C Ban
- School of Environmental Studies, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| | - I-Ching Chen
- Department of Life Sciences, National Cheng Kung University, No.1 University Road, 701, Tainan, Taiwan
| | - Yi-Wen Chen
- Department of Life Sciences, National Cheng Kung University, No.1 University Road, 701, Tainan, Taiwan
| | - Lise Comte
- Conservation Science Partners, Inc., 11050 Pioneer Trail, Suite 202, Truckee, CA 96161, USA
| | - David P Edwards
- Department of Plant Sciences and Centre for Global Wood Security, University of Cambridge, Downing St, Cambridge, CB2 3EA, UK; Conservation Research Institute, University of Cambridge, The David Attenborough Building, Pembroke St, Cambridge, CB2 3QZ, UK
| | - Birgitta Evengard
- Department of Clinical Microbiology, Umea University, Universitetstorget 4, 90187 Umea, Sweden
| | - Belen Fadrique
- School of Geography, University of Leeds, Woodhouse, Leeds, LS2 9JT, UK; School of Environmental Sciences, University of Liverpool, Liverpool, L69 7ZT, UK
| | | | - Robert Guralnick
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - David H Klinges
- School of the Environment, Yale University, 195 Prospect St, New Haven, CT 06511, USA
| | - Jonas J Lembrechts
- Ecology & Biodiversity, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; Plants & Ecosystems, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Jonathan Lenoir
- UMR CNRS 7058 'Ecologie et Dynamique des Systèmes Anthropisés' (EDYSAN), Université de Picardie Jules Verne, 1 Rue des Louvels, 80000 Amiens, France
| | - Juliano Palacios-Abrantes
- Institute for the Oceans and Fisheries, The University of British Columbia, 2202 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Aníbal Pauchard
- Laboratorio de Invasiones Biológicas (LIB), Facultad de Ciencias Forestales, Universidad de Concepción, Concepción, Chile; Institute of Ecology and Biodiversity (IEB), Victoria 631, Concepción, Chile
| | - Gretta Pecl
- Institute for Marine and Antarctic Studies University of Tasmania, Hobart, 20 Castray Esplanade, Battery Point, Tasmania, 7004, Australia; Centre for Marine Socioecology, University of Tasmania, Hobart, 20 Castray Esplanade, Battery Point, Tasmania, 7004, Australia
| | - Malin L Pinsky
- Department of Ecology & Evolutionary Biology, University of California Santa Cruz, 130 McAllister Way, Santa Cruz, CA 95060, USA
| | - Rebecca A Senior
- Conservation Ecology Group, Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK
| | - Jennifer E Smith
- Institute for Marine and Antarctic Studies University of Tasmania, Hobart, 20 Castray Esplanade, Battery Point, Tasmania, 7004, Australia
| | - Lydia G Soifer
- School of Natural Resources and Environment, University of Florida, 2035 McCarty Hall D, Gainesville, FL 32611, USA
| | - Jennifer M Sunday
- Department of Biology, McGill University, 1205 Du Docteur-Penfield Ave, Montreal, Quebec, H3A 1B1, Canada
| | - Ken D Tape
- Geophysical Institute, University of Alaska Fairbanks, 2156 N Kotukuk Drive, Fairbanks, AK, 99775, USA
| | - Peter Washam
- Department of Astronomy, Cornell University, Space Sciences Bldg, 404, 122 Sciences Dr, Ithaca, NY 14850, USA; School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 311 Ferst Dr, Atlanta, GA 30332, USA
| | - Brett R Scheffers
- Department of Wildlife Ecology and Conservation, University of Florida, 110 Newins-Ziegler Hall, Gainesville, FL 32611, USA
| |
Collapse
|
2
|
Mäkinen J, Ellis EE, Antão LH, Davrinche A, Laine AL, Saastamoinen M, Conenna I, Hällfors M, Santangeli A, Kaarlejärvi E, Heliölä J, Huikkonen IM, Kuussaari M, Leinonen R, Lehikoinen A, Pöyry J, Suuronen A, Salemaa M, Tonteri T, Vuorio KM, Skjelbred B, Järvinen M, Drakare S, Carvalho L, Welk E, Seidler G, Vangansbeke P, Máliš F, Hédl R, Auffret AG, Plue J, De Frenne P, Kalwij JM, Vanhatalo J, Roslin T. Thermal homogenization of boreal communities in response to climate warming. Proc Natl Acad Sci U S A 2025; 122:e2415260122. [PMID: 40258150 PMCID: PMC12054843 DOI: 10.1073/pnas.2415260122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 03/11/2025] [Indexed: 04/23/2025] Open
Abstract
Globally, rising temperatures are increasingly favoring warm-affiliated species. Although changes in community composition are typically measured by the mean temperature affinity of species (the community temperature index, CTI), they may be driven by different processes and accompanied by shifts in the diversity of temperature affinities and breadth of species thermal niches. To resolve the pathways to community warming in Finnish flora and fauna, we examined multidecadal changes in the dominance and diversity of temperature affinities among understory forest plant, freshwater phytoplankton, butterfly, moth, and bird communities. CTI increased for all animal communities, with no change observed for plants or phytoplankton. In addition, the diversity of temperature affinities declined for all groups except butterflies, and this loss was more pronounced for the fastest-warming communities. These changes were driven in animals mainly by a decrease in cold-affiliated species and an increase in warm-affiliated species. In plants and phytoplankton the decline of thermal diversity was driven by declines of both cold- and warm-affiliated species. Plant and moth communities were increasingly dominated by thermal specialist species, and birds by thermal generalists. In general, climate warming outpaced changes in both the mean and diversity of temperature affinities of communities. Our results highlight the complex dynamics underpinning the thermal reorganization of communities across a large spatiotemporal gradient, revealing that extinctions of cold-affiliated species and colonization by warm-affiliated species lag behind changes in ambient temperature, while communities become less thermally diverse. Such changes can have important implications for community structure and ecosystem functioning under accelerating rates of climate change.
Collapse
Affiliation(s)
- Jussi Mäkinen
- Research Center for Ecological Change, Organismal and Evolutionary Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, HelsinkiFI-00014, Finland
- Nature Solutions Unit, Finnish Environment Institute (Syke), HelsinkiFI-00790, Finland
| | - Emilie E. Ellis
- Research Center for Ecological Change, Organismal and Evolutionary Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, HelsinkiFI-00014, Finland
| | - Laura H. Antão
- Research Center for Ecological Change, Organismal and Evolutionary Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, HelsinkiFI-00014, Finland
- Department of Biology, University of Turku, TurkuFI-20014, Finland
| | - Andréa Davrinche
- Research Center for Ecological Change, Organismal and Evolutionary Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, HelsinkiFI-00014, Finland
| | - Anna-Liisa Laine
- Research Center for Ecological Change, Organismal and Evolutionary Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, HelsinkiFI-00014, Finland
| | - Marjo Saastamoinen
- Research Center for Ecological Change, Organismal and Evolutionary Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, HelsinkiFI-00014, Finland
| | - Irene Conenna
- Research Center for Ecological Change, Organismal and Evolutionary Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, HelsinkiFI-00014, Finland
| | - Maria Hällfors
- Research Center for Ecological Change, Organismal and Evolutionary Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, HelsinkiFI-00014, Finland
- Nature Solutions Unit, Finnish Environment Institute (Syke), HelsinkiFI-00790, Finland
| | - Andrea Santangeli
- Research Center for Ecological Change, Organismal and Evolutionary Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, HelsinkiFI-00014, Finland
- Animal Demography and Ecology Unit, The Mediterranean Institute for Advanced Studies, Spanish National Research Council, University of the Balearic Islands, EsporlesES-07190, Spain
| | - Elina Kaarlejärvi
- Research Center for Ecological Change, Organismal and Evolutionary Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, HelsinkiFI-00014, Finland
| | - Janne Heliölä
- Nature Solutions Unit, Finnish Environment Institute (Syke), HelsinkiFI-00790, Finland
| | - Ida-Maria Huikkonen
- Nature Solutions Unit, Finnish Environment Institute (Syke), HelsinkiFI-00790, Finland
| | - Mikko Kuussaari
- Nature Solutions Unit, Finnish Environment Institute (Syke), HelsinkiFI-00790, Finland
| | - Reima Leinonen
- Kainuu Centre for Economic Development, Transport and the Environment, KajaaniFI-87101, Finland
| | - Aleksi Lehikoinen
- Finnish Museum of Natural History, University of Helsinki, HelsinkiFI-00014, Finland
| | - Juha Pöyry
- Nature Solutions Unit, Finnish Environment Institute (Syke), HelsinkiFI-00790, Finland
| | - Anna Suuronen
- Nature Solutions Unit, Finnish Environment Institute (Syke), HelsinkiFI-00790, Finland
| | - Maija Salemaa
- Natural Resources Institute Finland, HelsinkiFI-00790, Finland
| | - Tiina Tonteri
- Natural Resources Institute Finland, HelsinkiFI-00790, Finland
| | - Kristiina M. Vuorio
- Nature Solutions Unit, Finnish Environment Institute (Syke), HelsinkiFI-00790, Finland
| | | | - Marko Järvinen
- Nature Solutions Unit, Finnish Environment Institute (Syke), HelsinkiFI-00790, Finland
| | - Stina Drakare
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, UppsalaSE-75007, Sweden
| | | | - Erik Welk
- Department of Geobotany and Botanical Garden, Martin Luther University, Halle-WittenbergD-06099, Germany
| | - Gunnar Seidler
- Department of Geobotany and Botanical Garden, Martin Luther University, Halle-WittenbergD-06099, Germany
| | - Pieter Vangansbeke
- Department of Environment, Forest & Nature Lab, Ghent University, GontrodeB-9090, Belgium
| | - František Máliš
- Department of Vegetation Ecology, Faculty of Forestry, Technical University in Zvolen, ZvolenSK-96053, Slovakia
| | - Radim Hédl
- Institute of Botany, Czech Academy of Sciences, BrnoCZ-60200, Czech Republic
- Department of Botany, Palacký University in Olomouc, OlomoucCZ-777900, Czech Republic
| | - Alistair G. Auffret
- Department of Ecology, Swedish University of Agricultural Sciences, UppsalaSE-75007, Sweden
| | - Jan Plue
- Department of Urban and Rural Development, Swedish University of Agricultural Sciences, UppsalaSE-75007, Sweden
| | - Pieter De Frenne
- Department of Environment, Forest & Nature Lab, Ghent University, GontrodeB-9090, Belgium
| | - Jesse M. Kalwij
- Institute of Geography and Geoecology, Karlsruhe Institute of Technology, KarlsruheD-76131, Germany
- Department of Zoology, Centre for Ecological Genomics & Wildlife Conservation, University of Johannesburg, Auckland ParkZA-2006, South Africa
| | - Jarno Vanhatalo
- Research Center for Ecological Change, Organismal and Evolutionary Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, HelsinkiFI-00014, Finland
- Department of Mathematics and Statistics, Faculty of Science, University of Helsinki, HelsinkiFI-00014, Finland
| | - Tomas Roslin
- Department of Ecology, Swedish University of Agricultural Sciences, UppsalaSE-75007, Sweden
- Faculty of Biological and Environmental Sciences, Research Center for Ecological Change, Ecosystems and Environment Research Programme, University of Helsinki, HelsinkiFI-00014, Finland
| |
Collapse
|
3
|
Carlson SM, Pregler KC, Obedzinski M, Gallagher SP, Rhoades SJ, Woelfle-Hazard C, Queener N, Thompson SE, Power ME. Anatomy of a range contraction: Flow-phenology mismatches threaten salmonid fishes near their trailing edge. Proc Natl Acad Sci U S A 2025; 122:e2415670122. [PMID: 40163726 PMCID: PMC12002297 DOI: 10.1073/pnas.2415670122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 02/24/2025] [Indexed: 04/02/2025] Open
Abstract
Climate change is redistributing life on Earth, with profound impacts for ecosystems and human well-being. While repeat surveys separated by multidecadal intervals can determine whether observed shifts are in the expected direction (e.g., poleward or upslope due to climate change), they do not reveal their mechanisms or time scales: whether they were gradual responses to environmental trends or punctuated responses to disturbance events. Here, we document population reductions and temporary range contractions at multiple sites resulting from drought for three Pacific salmonids at their ranges' trailing edge. During California's 2012 to 2016 historic multiyear drought, the 2013 to 2014 winter stood apart because rainfall was both reduced and delayed. Extremely low river flows during the breeding season ("flow-phenology mismatch") reduced or precluded access to breeding habitat. While Chinook (Oncorhynchus tshawytscha) experienced a down-river range shift, entire cohorts failed in individual tributaries (steelhead trout, O. mykiss) and in entire watersheds (coho salmon, O. kisutch). Salmonids returned to impacted sites in subsequent years, rescued by reserves in the ocean, life history diversity, and, in one case, a conservation broodstock program. Large population losses can, however, leave trailing-edge populations vulnerable to extinction due to demographic stochasticity, making permanent range contraction more likely. When only a few large storms occur during high flow season, the timing of particular storms plays an outsized role in determining which migratory fish species are able to access their riverine breeding grounds and persist.
Collapse
Affiliation(s)
- Stephanie M. Carlson
- Department of Environmental Science, Policy, & Management, University of California, Berkeley, CA94720
| | - Kasey C. Pregler
- Department of Environmental Science, Policy, & Management, University of California, Berkeley, CA94720
| | - Mariska Obedzinski
- Department of Environmental Science, Policy, & Management, University of California, Berkeley, CA94720
- California Sea Grant, Santa Rosa, CA95403
| | | | - Suzanne J. Rhoades
- Department of Environmental Science, Policy, & Management, University of California, Berkeley, CA94720
| | - Cleo Woelfle-Hazard
- Department of Environmental Science, Policy, & Management, University of California, Berkeley, CA94720
| | | | - Sally E. Thompson
- Department of Civil, Environmental, and Mining Engineering, University of Western Australia, Perth, WA6009, Australia
- Centre for Water and Spatial Science, University of Western Australia, Perth, WA6009, Australia
| | - Mary E. Power
- Department of Integrative Biology, University of California, Berkeley, CA94720
| |
Collapse
|
4
|
Rodrigues AV, Rissanen T, Jones MM, Huikkonen I, Huitu O, Korpimäki E, Kuussaari M, Lehikoinen A, Lindén A, Pietiäinen H, Pöyry J, Sihvonen P, Suuronen A, Vuorio K, Saastamoinen M, Vanhatalo J, Laine A. Cross-Taxa Analysis of Long-Term Data Reveals a Positive Biodiversity-Stability Relationship With Taxon-Specific Mechanistic Underpinning. Ecol Lett 2025; 28:e70003. [PMID: 40177995 PMCID: PMC11966686 DOI: 10.1111/ele.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 04/05/2025]
Abstract
Anthropogenic environmental change is altering biodiversity at unprecedented rates, threatening the stability of ecosystem services on which humans depend. However, most of what is known about biodiversity-stability relationships comes from experimental studies making extrapolation to real ecosystems difficult. Here, we ask whether the shape and underlying mechanisms of the biodiversity-stability relationship vary among taxa in real-world communities. Our study harnesses the power of six terrestrial and aquatic long-term monitoring datasets, encompassing entire assemblages at hundreds of georeferenced sites providing 20 years long community measurements, covering a 1200 km latitudinal gradient across Finland. In general, we detect a positive relationship between species richness and stability. Structural equation modelling reveals that this relationship is modified by functional trait community composition, with specific mechanisms varying among the taxa. Our study is among the first to highlight the importance of functional traits in elucidating both general and taxon-specific impacts of biodiversity on community stability.
Collapse
Affiliation(s)
- Arthur V. Rodrigues
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
- Helsinki Institute of Life Science, University of HelsinkiHelsinkiFinland
| | - Tuuli Rissanen
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Mirkka M. Jones
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
- Aalto UniversityEspooFinland
| | | | - Otso Huitu
- Natural Resources Institute Finland (Luke)HelsinkiFinland
| | - Erkki Korpimäki
- Department of Biology, Section of EcologyUniversity of TurkuTurkuFinland
| | | | - Aleksi Lehikoinen
- Finnish Museum of Natural HistoryUniversity of HelsinkiHelsinkiFinland
| | - Andreas Lindén
- Natural Resources Institute Finland (Luke)HelsinkiFinland
| | | | - Juha Pöyry
- Finnish Environment Institute (SYKE)HelsinkiFinland
| | - Pasi Sihvonen
- Finnish Museum of Natural HistoryUniversity of HelsinkiHelsinkiFinland
| | | | | | - Marjo Saastamoinen
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Jarno Vanhatalo
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
- Department of Mathematics and Statistics, Faculty of ScienceUniversity of HelsinkiHelsinkiFinland
| | - Anna‐Liisa Laine
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
5
|
Muthukrishnan R, Smiley TM, Title PO, Fudickar AM, Jahn AE, Lau JA. Chasing the Niche: Escaping Climate Change Threats in Place, Time, and Space. GLOBAL CHANGE BIOLOGY 2025; 31:e70167. [PMID: 40197960 DOI: 10.1111/gcb.70167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 02/28/2025] [Accepted: 03/08/2025] [Indexed: 04/10/2025]
Abstract
Climate change is creating mismatches between species' current environments and their historical niches. Locations that once had the abiotic and biotic conditions to support the persistence of a species may now be too warm, too dry, or simply too different, to meet their niche requirements. Changes in behaviors, altered phenology, and range shifts are common responses to climate change. Though these responses are often studied in isolation by scientists from disparate subfields of ecology, they all represent variants of the same solution-strategies to realign the conditions populations experience with their niche. Here, we aim to (1) identify the physiological and ecological effects, and potential alignment, of these three ecological responses: shifts in behavior, phenology, or ranges, (2) determine the circumstances under which each type of response may be more or less effective at mitigating the effects of climate change, and (3) consider how these strategies might interact with each other. Each response has been previously reviewed, but efforts to consider relationships between ecological (or with evolutionary) responses have been limited. A synthetic perspective that considers the similarities among ecological responses and how they interact with each other and with evolutionary responses offers a more robust view on species' resilience to climate change.
Collapse
Affiliation(s)
- Ranjan Muthukrishnan
- Environmental Resilience Institute, Indiana University, Bloomington, Indiana, USA
- Department of Biology, St. Olaf College, Northfield, Minnesota, USA
| | - Tara M Smiley
- Environmental Resilience Institute, Indiana University, Bloomington, Indiana, USA
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, USA
| | - Pascal O Title
- Environmental Resilience Institute, Indiana University, Bloomington, Indiana, USA
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, USA
| | - Adam M Fudickar
- Environmental Resilience Institute, Indiana University, Bloomington, Indiana, USA
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Alex E Jahn
- Environmental Resilience Institute, Indiana University, Bloomington, Indiana, USA
- Department of Biology, Oregon State University, Corvallis, Oregon, USA
| | - Jennifer A Lau
- Environmental Resilience Institute, Indiana University, Bloomington, Indiana, USA
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
6
|
Debinski DM, Warchola N, Altizer S, Crone EE. Implications of summer breeding phenology on demography of monarch butterflies. J Anim Ecol 2025; 94:682-692. [PMID: 39962638 PMCID: PMC11962244 DOI: 10.1111/1365-2656.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 01/08/2025] [Indexed: 04/03/2025]
Abstract
Phenological changes have been widely documented in animal and plant responses to directional environmental change. However, predicting the consequences of these shifts for species interactions and population viability requires knowledge of vital rate responses to biotic and abiotic drivers. Here, we paired long-term phenology data documenting monarch butterfly abundance and occurrence of their milkweed hostplant with outdoor experiments in the central United States to ask how changes in spring arrival times to monarch breeding sites affect their development, survival, and within-season population growth. Monarch arrival times did not change across the 17 years of monitoring, but the peak abundance of monarchs, which occurred just prior to their fall migration, shifted 9 days later in 2019 as compared to 2003. Summer population growth declined from 2003 to 2019, significant in ~80% bootstrap calculations. Phenological changes in milkweed occurrence mirrored changes in monarch abundance, happening later through time. Our field experiment showed that early season larval survival was highest when the timing of hatching matched the average timing of the first natural monarch cohort; survival was lowest when egg hatching shifted 14 days earlier. The results of our study indicate that earlier arrival of adult monarchs to summer breeding habitat would be costly for monarchs-but field survey data show that arrival times have not changed to date. Instead, the local changes we observed in the timing of peak abundance occurred towards the end of the breeding season, not the onset. At present, we conclude that changes in early season phenology are not a threat to eastern North American monarchs living in the central United States, but drivers of breeding-season growth rates and changes in late-season phenology merit further study, both in the central United States and in other parts of the monarch's range.
Collapse
Affiliation(s)
| | - Norah Warchola
- Ecology and Evolutionary BiologyIowa State UniversityAmesIowaUSA
| | - Sonia Altizer
- Odum School of EcologyUniversity of GeorgiaAthensGeorgiaUSA
| | - Elizabeth E. Crone
- Department of BiologyTufts UniversityMedfordMassachusettsUSA
- Present address:
Department of Evolution and EcologyUniversity of California DavisDavisCaliforniaUSA
| |
Collapse
|
7
|
Stewart JE, Maclean IMD, Botham M, Dennis EB, Bridle J, Wilson RJ. Phenological variation in biotic interactions shapes population dynamics and distribution in a range-shifting insect herbivore. Proc Biol Sci 2024; 291:20240529. [PMID: 39626755 PMCID: PMC11614537 DOI: 10.1098/rspb.2024.0529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/31/2024] [Accepted: 10/18/2024] [Indexed: 12/08/2024] Open
Abstract
Phenological responses to climate change vary across trophic levels. However, how trophic phenological synchrony determines species' distributions through its effects on population dynamics has rarely been addressed. Here, we show that phenological variation underlies population and geographical range dynamics in a range-shifting herbivore, and demonstrate its interplay with changing trophic interactions. Using a novel modelling approach, we identify drivers of variation in phenology and population growth (productivity) for populations of the brown argus butterfly (Aricia agestis) feeding on ancestral and novel host plants in the UK. We demonstrate host plant-specific links between phenology and productivity, highlighting their role in the consumer's range expansion. Critically, later butterfly phenology is associated with higher productivity in the annual second brood, especially on novel annual hosts where later activity improves synchrony with germinating plants. In turn, later phenology and higher second brood productivity are associated with more rapid range expansion, particularly in regions where only the novel hosts occur. Therefore, phenological asynchrony imposes limits on local population growth, influencing consumer resource selection, evolutionary responses and emergent range dynamics. How existing and future trophic phenological synchrony determine population dynamics will be critical for the ecological and evolutionary outcomes of climate change.
Collapse
Affiliation(s)
- James E. Stewart
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Ilya M. D. Maclean
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Exeter, UK
| | - Marc Botham
- Centre for Ecology and Hydrology, Wallingford, OxfordshireOX10 8BB, UK
| | - Emily B. Dennis
- Butterfly Conservation, Manor Yard, East Lulworth, Wareham, Dorset, UK
| | - Jon Bridle
- School of Biological Sciences, University of Bristol, Bristol, UK
- Department of Genetics, Evolution, and Environment, University College London, London, UK
| | - Robert J. Wilson
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Exeter, UK
- Departmento de Biogeografía y Cambio Global, Museo Nacional de Ciencias Naturales, MadridE28006, Spain
| |
Collapse
|
8
|
Neate-Clegg MHC, Tonelli BA, Tingley MW. Advances in breeding phenology outpace latitudinal and elevational shifts for North American birds tracking temperature. Nat Ecol Evol 2024; 8:2027-2036. [PMID: 39223395 DOI: 10.1038/s41559-024-02536-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Terrestrial species can respond to a warming climate in multiple ways, including shifting in space (via latitude or elevation) and time (via phenology). Evidence for such shifts is often assessed independent of other temperature-tracking mechanisms; critically, no study has compared shifts across all three spatiotemporal dimensions. Here we used two continental-scale monitoring databases to estimate trends in the breeding latitude (311 species), elevation (251 species) and phenology (111 species) of North American landbirds over 27 years, with a shared pool of 102 species. We measured the magnitude of shifts and compared them relative to average regional warming (that is, shift ratios). Species shifted poleward (1.1 km per year, mean shift ratio 11%) and to higher elevations (1.2 m per year, mean shift ratio 17%), while also shifting their breeding phenology earlier (0.08 days per year, mean shift ratio 28%). These general trends belied substantial variation among species, with some species shifting faster than climate, whereas others shifted more slowly or in the opposite direction. Across the three dimensions (n = 102), birds cumulatively tracked temperature at 33% of current warming rates, 64% of which was driven by advances in breeding phenology as opposed to geographical shifts. A narrow focus on spatial dimensions of climate tracking may underestimate the responses of birds to climate change; phenological shifts may offer an alternative for birds-and probably other organisms-to conserve their thermal niche in a warming world.
Collapse
Affiliation(s)
| | - Benjamin A Tonelli
- Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Morgan W Tingley
- Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA.
| |
Collapse
|
9
|
Ho H, Altermatt F. Predicted community consequences of spatially explicit global change-induced processes on plant-insect networks. Ecol Evol 2024; 14:e70272. [PMID: 39286316 PMCID: PMC11405086 DOI: 10.1002/ece3.70272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/14/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
Plant-insect trophic systems should be particularly sensitive to processes altering species spatial co-occurrences, as impacts on one level can cascade effectively through the strong trophic reliance to the other level. Here, we predicted the biogeography of Lepidoptera-plant communities under global-change scenarios, exploiting spatially resolved data on 423 Lepidoptera species and their 848 food plants across the German state of Baden-Württemberg (ca. 36,000 km2). We performed simulations of plant extinction and Lepidoptera expansion, and respectively assessed their cascading consequences-namely secondary extinction of Lepidoptera and change in functional distance of plants-on the interaction networks. Importantly, the simulations were spatially explicit, as we accounted for realistic landscape contexts of both processes: Plant extinctions were simulated as "regional" (a species goes extinct in the whole region at once) vs. "isolation-driven" (a species gradually goes extinct from the peripheral or isolated localities according to its real regional distribution); Lepidoptera expansions were simulated with random, northward, and upward directions according to real topography. The consequences were assessed based on empirical community composition and trophic relationships. When evaluated by regional richness, the robustness of Lepidoptera assemblages against secondary extinctions was higher under isolation-driven plant extinctions than regional plant extinction; however, this relationship was reversed when evaluated by averaged local richness. Also, with isolation-driven plant extinctions, Lepidoptera at the central sub-region of Baden-Württemberg appeared to be especially vulnerable. With Lepidoptera expansions, plants' functional distances in local communities dropped, indicating a possible increase of competition among plants, yet to a lesser extent particularly with upward movements. Together, our results suggested that the communities' composition context at the landscape scale (i.e., how communities, with respective species composition, are arranged within the landscape) matters when assessing global-change influences on interaction systems; spatially explicit consideration of such context can reveal localised consequences that are not necessarily captured via a spatially implicit, regional perspective.
Collapse
Affiliation(s)
- Hsi‐Cheng Ho
- Department of Aquatic EcologySwiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
- Institute of Ecology and Evolutionary BiologyNational Taiwan UniversityTaipeiTaiwan
| | - Florian Altermatt
- Department of Aquatic EcologySwiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
| |
Collapse
|
10
|
Kotilainen A, Mattila ALK, Møller C, Koivusaari S, Hyvärinen M, Hällfors MH. Higher thermal plasticity in flowering phenology increases flowering output. Ecol Evol 2024; 14:e11657. [PMID: 38952655 PMCID: PMC11216813 DOI: 10.1002/ece3.11657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 07/03/2024] Open
Abstract
Ongoing climate change poses an increasing threat to biodiversity. To avoid decline or extinction, species need to either adjust or adapt to new environmental conditions or track their climatic niches across space. In sessile organisms such as plants, phenotypic plasticity can help maintain fitness in variable and even novel environmental conditions and is therefore likely to play an important role in allowing them to survive climate change, particularly in the short term. Understanding a species' response to rising temperature is crucial for planning well-targeted and cost-effective conservation measures. We sampled seeds of three Hypericum species (H. maculatum, H. montanum, and H. perforatum), from a total of 23 populations originating from different parts of their native distribution areas in Europe. We grew them under four different temperature regimes in a greenhouse to simulate current and predicted future climatic conditions in the distribution areas. We measured flowering start, flower count, and subsequent seed weight, allowing us to study variations in the thermal plasticity of flowering phenology and its relation to fitness. Our results show that individuals flowered earlier with increasing temperature, while the degree of phenological plasticity varied among species. More specifically, the plasticity of H. maculatum varied depending on population origin, with individuals from the leading range edge being less plastic. Importantly, we show a positive relationship between higher plasticity and increased flower production, indicating adaptive phenological plasticity. The observed connection between plasticity and fitness supports the idea that plasticity may be adaptive. This study underlines the need for information on plasticity for predicting species' potential to thrive under global change and the need for studies on whether higher phenotypic plasticity is currently being selected as natural populations experience a rapidly changing climate.
Collapse
Affiliation(s)
- Aino Kotilainen
- Botany and Mycology Unit, Finnish Museum of Natural HistoryUniversity of HelsinkiHelsinkiFinland
| | - Anniina L. K. Mattila
- Botany and Mycology Unit, Finnish Museum of Natural HistoryUniversity of HelsinkiHelsinkiFinland
| | - Charlotte Møller
- Botany and Mycology Unit, Finnish Museum of Natural HistoryUniversity of HelsinkiHelsinkiFinland
| | - Susanna Koivusaari
- Botany and Mycology Unit, Finnish Museum of Natural HistoryUniversity of HelsinkiHelsinkiFinland
- Nature Solutions UnitFinnish Environment Institute (Syke)HelsinkiFinland
| | - Marko‐Tapio Hyvärinen
- Botany and Mycology Unit, Finnish Museum of Natural HistoryUniversity of HelsinkiHelsinkiFinland
| | - Maria H. Hällfors
- Research Centre for Environmental Change, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
- Department of Geosciences and GeographyUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
11
|
Hällfors MH, Heikkinen RK, Kuussaari M, Lehikoinen A, Luoto M, Pöyry J, Virkkala R, Saastamoinen M, Kujala H. Recent range shifts of moths, butterflies, and birds are driven by the breadth of their climatic niche. Evol Lett 2024; 8:89-100. [PMID: 38370541 PMCID: PMC10872046 DOI: 10.1093/evlett/qrad004] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 01/26/2023] [Accepted: 02/07/2023] [Indexed: 02/20/2024] Open
Abstract
Species are altering their ranges as a response to climate change, but the magnitude and direction of observed range shifts vary considerably among species. The ability to persist in current areas and colonize new areas plays a crucial role in determining which species will thrive and which decline as climate change progresses. Several studies have sought to identify characteristics, such as morphological and life-history traits, that could explain differences in the capability of species to shift their ranges together with a changing climate. These characteristics have explained variation in range shifts only sporadically, thus offering an uncertain tool for discerning responses among species. As long-term selection to past climates have shaped species' tolerances, metrics describing species' contemporary climatic niches may provide an alternative means for understanding responses to on-going climate change. Species that occur in a broader range of climatic conditions may hold greater tolerance to climatic variability and could therefore more readily maintain their historical ranges, while species with more narrow tolerances may only persist if they are able to shift in space to track their climatic niche. Here, we provide a first-filter test of the effect of climatic niche dimensions on shifts in the leading range edges in three relatively well-dispersing species groups. Based on the realized changes in the northern range edges of 383 moth, butterfly, and bird species across a boreal 1,100 km latitudinal gradient over c. 20 years, we show that while most morphological or life-history traits were not strongly connected with range shifts, moths and birds occupying a narrower thermal niche and butterflies occupying a broader moisture niche across their European distribution show stronger shifts towards the north. Our results indicate that the climatic niche may be important for predicting responses under climate change and as such warrants further investigation of potential mechanistic underpinnings.
Collapse
Affiliation(s)
- Maria H Hällfors
- Research Centre for Environmental Change, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Nature solutions unit, Finnish Environment Institute (Syke), Helsinki, Finland
| | - Risto K Heikkinen
- Nature solutions unit, Finnish Environment Institute (Syke), Helsinki, Finland
| | - Mikko Kuussaari
- Nature solutions unit, Finnish Environment Institute (Syke), Helsinki, Finland
| | - Aleksi Lehikoinen
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Miska Luoto
- Department of Geosciences and Geography, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Juha Pöyry
- Nature solutions unit, Finnish Environment Institute (Syke), Helsinki, Finland
| | - Raimo Virkkala
- Nature solutions unit, Finnish Environment Institute (Syke), Helsinki, Finland
| | - Marjo Saastamoinen
- Research Centre for Environmental Change, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Heini Kujala
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| |
Collapse
|
12
|
Aben J, Travis JMJ, Van Dyck H, Vanwambeke SO. Integrating learning into animal range dynamics under rapid human-induced environmental change. Ecol Lett 2024; 27:e14367. [PMID: 38361475 DOI: 10.1111/ele.14367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/12/2023] [Accepted: 01/03/2024] [Indexed: 02/17/2024]
Abstract
Human-induced rapid environmental change (HIREC) is creating environments deviating considerably from natural habitats in which species evolved. Concurrently, climate warming is pushing species' climatic envelopes to geographic regions that offer novel ecological conditions. The persistence of species is likely affected by the interplay between the degree of ecological novelty and phenotypic plasticity, which in turn may shape an organism's range-shifting ability. Current modelling approaches that forecast animal ranges are characterized by a static representation of the relationship between habitat use and fitness, which may bias predictions under conditions imposed by HIREC. We argue that accounting for dynamic species-resource relationships can increase the ecological realism of range shift predictions. Our rationale builds on the concepts of ecological fitting, the process whereby individuals form successful novel biotic associations based on the suite of traits they carry at the time of encountering the novel condition, and behavioural plasticity, in particular learning. These concepts have revolutionized our view on fitness in novel ecological settings, and the way these processes may influence species ranges under HIREC. We have integrated them into a model of range expansion as a conceptual proof of principle highlighting the potentially substantial role of learning ability in range shifts under HIREC.
Collapse
Affiliation(s)
- Job Aben
- Center for Earth and Climate Research, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, Belgium
- Laboratoire Écologie, Systématique et Évolution, Université Paris-Saclay, CNRS, AgroParisTech, Gif-sur-Yvette, France
- CentraleSupélec, ENS Paris-Saclay, CNRS, LMPS-Laboratoire de Mécanique Paris-Saclay, Université Paris-Saclay, Gif-sur-Yvette, France
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Justin M J Travis
- The Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| | - Hans Van Dyck
- Behavioural Ecology and Conservation Group, Earth & Life Institute, UCLouvain, Belgium
| | - Sophie O Vanwambeke
- Center for Earth and Climate Research, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
13
|
Merckx T, Nielsen ME, Kankaanpää T, Kadlec T, Yazdanian M, Kivelä SM. Continent-wide parallel urban evolution of increased heat tolerance in a common moth. Evol Appl 2024; 17:e13636. [PMID: 38283598 PMCID: PMC10810253 DOI: 10.1111/eva.13636] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 01/30/2024] Open
Abstract
Urbanization and its urban-heat-island effect (UHI) have expanding footprints worldwide. The UHI means that urban habitats experience a higher mean and more frequent extreme high temperatures than rural habitats, impacting the ontogeny and resilience of urban biodiversity. However, many organisms occupy different microhabitats during different life stages and thus may experience the UHI differently across their development. While evolutionary changes in heat tolerance in line with the UHI have been demonstrated, it is unknown whether such evolutionary responses can vary across development. Here, using common-garden-reared Chiasmia clathrata moths from urban and rural populations from three European countries, we tested for urban evolution of heat shock tolerance in two life stages: larvae and adults. Our results indicate widespread urban evolution of increased heat tolerance in the adult stage only, suggesting that the UHI may be a stronger selective agent in adults. We also found that the difference in heat tolerance between urban and rural populations was similar to the difference between Mid- and North-European regions, suggesting similarity between adaptation to the UHI and natural, latitudinal temperature variation. Our observations incentivize further research to quantify the impact of these UHI adaptations on fitness during urbanization and climate change, and to check whether life-stage-specific adaptations in heat tolerance are typical of other ectothermic species that manage to survive in urbanized settings.
Collapse
Affiliation(s)
- Thomas Merckx
- WILD, Biology DepartmentVrije Universiteit BrusselBrusselsBelgium
- Ecology and Genetics Research UnitUniversity of OuluOuluFinland
| | - Matthew E. Nielsen
- Ecology and Genetics Research UnitUniversity of OuluOuluFinland
- Faculty 2 Biology/ChemistryUniversity of BremenBremenGermany
| | | | - Tomáš Kadlec
- Department of EcologyCzech University of Life Sciences PraguePragueCzech Republic
| | | | - Sami M. Kivelä
- Ecology and Genetics Research UnitUniversity of OuluOuluFinland
| |
Collapse
|
14
|
Habel JC, Schmitt T, Gros P, Ulrich W. Active around the year: Butterflies and moths adapt their life cycles to a warming world. GLOBAL CHANGE BIOLOGY 2024; 30:e17103. [PMID: 38273556 DOI: 10.1111/gcb.17103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 01/27/2024]
Abstract
Living in a warming world requires adaptations to altered annual temperature regimes. In Europe, spring is starting earlier, and the vegetation period is ending later in the year. These climatic changes are leading not only to shifts in distribution ranges of flora and fauna, but also to phenological shifts. Using long-term observation data of butterflies and moths collected during the past decades across northern Austria, we test for phenological shifts over time and changes in the number of generations. On average, Lepidoptera adults emerged earlier in the year and tended to extend their flight periods in autumn. Many species increased the annual number of generations. These changes were more pronounced at lower altitudes than at higher altitudes, leading to an altered phenological zonation. Our findings indicate that climate change does not only affect community composition but also the life history of insects. Increased activity and reproductive periods might alter Lepidoptera-host plant associations and food webs.
Collapse
Affiliation(s)
- Jan Christian Habel
- Evolutionary Zoology, Department of Environment and Biodiversity, University of Salzburg, Salzburg, Austria
| | - Thomas Schmitt
- Senckenberg German Entomological Institute, Müncheberg, Germany
- Entomology and Biogeography, Faculty of Science, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | | | - Werner Ulrich
- Department of Ecology and Biogeography, Nicolaus Copernicus University Toruń, Toruń, Poland
| |
Collapse
|
15
|
Westerduin C, Suokas M, Petäjä T, Saarela U, Vainio S, Mutanen M. Exploring and validating observations of non-local species in eDNA samples. Ecol Evol 2023; 13:e10612. [PMID: 37841221 PMCID: PMC10576249 DOI: 10.1002/ece3.10612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 10/17/2023] Open
Abstract
The development of DNA-based methods in recent decades has opened the door to numerous new lines of research in the biological sciences. While the speed and accuracy of DNA methodologies are clearly beneficial, the sensitivity of these methods has the adverse effect of increased susceptibility to false positives resulting from contamination in field or lab. Here, we present findings from a metabarcoding study on the diet of and food availability for five insectivorous birds, in which multiple lepidopteran species not known to occur locally were discovered. After describing the pattern of occurrences of these non-local species in the samples, we discuss various potential origins of these sequences. First, we assessed that the taxonomic assignments appeared reliable, and local occurrences of many of the species could be plausibly ruled out. Then, we looked into the possibilities of natural environmental contamination, judging it to be unlikely, albeit impossible to fully falsify. Finally, while dissimilar combinations of non-local species' occurrences across the samples did not initially suggest lab contamination, we found overlap with taxa and sequences handled in the same lab, which was undoubtedly not coincidental. Even so, not all exact sequences were accounted for in these locally conducted studies, nor was it clear if these and other sequences could remain detectable years later. Although the full explanation for the observations of non-local species remains inconclusive, these findings highlight the importance of critical examination of metabarcoding results, and showcase how species-level taxonomic assignments utilizing comprehensive reference libraries may be a tool in detecting potential contamination events, and false positives in general.
Collapse
Affiliation(s)
- Coen Westerduin
- Ecology and Genetics Research Unit, Faculty of ScienceUniversity of OuluOuluFinland
| | - Marko Suokas
- Ecology and Genetics Research Unit, Faculty of ScienceUniversity of OuluOuluFinland
| | - Tuukka Petäjä
- Department of Physics, Institute for Atmospheric and Earth System Research (INAR)University of HelsinkiHelsinkiFinland
| | - Ulla Saarela
- CRC, The Faculty of MedicineUniversity of OuluOuluFinland
- Laboratory of Developmental Biology, Faculty of Biochemistry and Molecular MedicineUniversity of OuluOuluFinland
| | - Seppo Vainio
- Laboratory of Developmental Biology, Faculty of Biochemistry and Molecular MedicineUniversity of OuluOuluFinland
| | - Marko Mutanen
- Ecology and Genetics Research Unit, Faculty of ScienceUniversity of OuluOuluFinland
| |
Collapse
|
16
|
Franzén M, Forsman A, Karimi B. Anthropogenic Influence on Moth Populations: A Comparative Study in Southern Sweden. INSECTS 2023; 14:702. [PMID: 37623412 PMCID: PMC10455763 DOI: 10.3390/insects14080702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023]
Abstract
As moths are vital components of ecosystems and serve as important bioindicators, understanding the dynamics of their communities and the factors influencing these dynamics, such as anthropogenic impacts, is crucial to understand the ecological processes. Our study focuses on two provinces in southern Sweden, Västergötland and Småland, where we used province records from 1974 to 2019 in combination with light traps (in 2020) to record the presence and abundance of moth species, subsequently assessing species traits to determine potential associations with their presence in anthropogenically modified landscapes. This study design provides a unique opportunity to assess temporal changes in moth communities and their responses to shifts in environmental conditions, including anthropogenic impacts. Across the Västergötland and Småland provinces in Sweden, we recorded 776 moth taxa belonging to fourteen different taxonomic families of mainly Macroheterocera. We captured 44% and 28% of the total moth species known from these provinces in our traps in Borås (Västergötland) and Kalmar (Småland), respectively. In 2020, the species richness and abundance were higher in Borås than in Kalmar, while the Shannon and Simpson diversity indices revealed a higher species diversity in Kalmar. Between 1974 and 2019, the colonisation rates of the provinces increased faster in Småland. Ninety-three species were found to have colonised these provinces since 1974, showing that species richness increased over the study period. We reveal significant associations between the probability of a species being present in the traps and distinct traits compared to a provincial species pool. Traits over-represented in the traps included species with a high variation in colour patterns, generalist habitat preferences, extended flight periods, lower host plant specificity, and overwintering primarily as eggs. Our findings underscore the ongoing ecological filtering that favours certain species-specific traits. This study sheds light on the roles of climate change and anthropogenic impacts in shaping moth biodiversity, offers key insights into the ecological processes involved, and can guide future conservation efforts.
Collapse
Affiliation(s)
- Markus Franzén
- Department of Biology and Environmental Science, Linnaeus University, 391 82 Kalmar, Sweden; (A.F.); (B.K.)
| | | | | |
Collapse
|
17
|
Sunde J, Franzén M, Betzholtz PE, Francioli Y, Pettersson LB, Pöyry J, Ryrholm N, Forsman A. Century-long butterfly range expansions in northern Europe depend on climate, land use and species traits. Commun Biol 2023; 6:601. [PMID: 37270651 DOI: 10.1038/s42003-023-04967-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/23/2023] [Indexed: 06/05/2023] Open
Abstract
Climate change is an important driver of range shifts and community composition changes. Still, little is known about how the responses are influenced by the combination of land use, species interactions and species traits. We integrate climate and distributional data for 131 butterfly species in Sweden and Finland and show that cumulative species richness has increased with increasing temperature over the past 120 years. Average provincial species richness increased by 64% (range 15-229%), from 46 to 70. The rate and direction of range expansions have not matched the temperature changes, in part because colonisations have been modified by other climatic variables, land use and vary according to species characteristics representing ecological generalisation and species interactions. Results emphasise the role of a broad ecological filtering, whereby a mismatch between environmental conditions and species preferences limit the ability to disperse and establish populations in emerging climates and novel areas, with potentially widespread implications for ecosystem functioning.
Collapse
Affiliation(s)
- Johanna Sunde
- Department of Biology and Environmental Science, Linnaeus University, SE-39182, Kalmar, Sweden.
| | - Markus Franzén
- Department of Biology and Environmental Science, Linnaeus University, SE-39182, Kalmar, Sweden
| | - Per-Eric Betzholtz
- Department of Biology and Environmental Science, Linnaeus University, SE-39182, Kalmar, Sweden
| | - Yannick Francioli
- Department of Biology and Environmental Science, Linnaeus University, SE-39182, Kalmar, Sweden
| | - Lars B Pettersson
- Biodiversity Unit, Department of Biology, Lund University, SE-22362, Lund, Sweden
| | - Juha Pöyry
- Finnish Environment Institute (SYKE), Nature Solutions, Latokartanonkaari 11, FI-00790, Helsinki, Finland
| | - Nils Ryrholm
- Department of Electronics, Mathematics and Natural Sciences, Faculty of Engineering and Sustainable Development, University of Gävle, SE-80176, Gävle, Sweden
| | - Anders Forsman
- Department of Biology and Environmental Science, Linnaeus University, SE-39182, Kalmar, Sweden
| |
Collapse
|
18
|
Riva F, Barbero F, Balletto E, Bonelli S. Combining environmental niche models, multi-grain analyses, and species traits identifies pervasive effects of land use on butterfly biodiversity across Italy. GLOBAL CHANGE BIOLOGY 2023; 29:1715-1728. [PMID: 36695553 DOI: 10.1111/gcb.16615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/10/2022] [Accepted: 01/03/2023] [Indexed: 05/28/2023]
Abstract
Understanding how species respond to human activities is paramount to ecology and conservation science, one outstanding question being how large-scale patterns in land use affect biodiversity. To facilitate answering this question, we propose a novel analytical framework that combines environmental niche models, multi-grain analyses, and species traits. We illustrate the framework capitalizing on the most extensive dataset compiled to date for the butterflies of Italy (106,514 observations for 288 species), assessing how agriculture and urbanization have affected biodiversity of these taxa from landscape to regional scales (3-48 km grains) across the country while accounting for its steep climatic gradients. Multiple lines of evidence suggest pervasive and scale-dependent effects of land use on butterflies in Italy. While land use explained patterns in species richness primarily at grains ≤12 km, idiosyncratic responses in species highlighted "winners" and "losers" across human-dominated regions. Detrimental effects of agriculture and urbanization emerged from landscape (3-km grain) to regional (48-km grain) scales, disproportionally affecting small butterflies and butterflies with a short flight curve. Human activities have therefore reorganized the biogeography of Italian butterflies, filtering out species with poor dispersal capacity and narrow niche breadth not only from local assemblages, but also from regional species pools. These results suggest that global conservation efforts neglecting large-scale patterns in land use risk falling short of their goals, even for taxa typically assumed to persist in small natural areas (e.g., invertebrates). Our study also confirms that consideration of spatial scales will be crucial to implementing effective conservation actions in the Post-2020 Global Biodiversity Framework. In this context, applications of the proposed analytical framework have broad potential to identify which mechanisms underlie biodiversity change at different spatial scales.
Collapse
Affiliation(s)
- Federico Riva
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Francesca Barbero
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, Turin, Italy
| | - Emilio Balletto
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, Turin, Italy
| | - Simona Bonelli
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, Turin, Italy
| |
Collapse
|
19
|
Betzholtz PE, Forsman A, Franzén M. Associations of 16-Year Population Dynamics in Range-Expanding Moths with Temperature and Years since Establishment. INSECTS 2023; 14:55. [PMID: 36661983 PMCID: PMC9864116 DOI: 10.3390/insects14010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/20/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Parallel to the widespread decline of plants and animals, there is also an ongoing expansion of many species, which is especially pronounced in certain taxonomic groups and in northern latitudes. In order to inform an improved understanding of population dynamics in range-expanding taxa, we studied species richness, abundance and population growth in a sample of 25,138 individuals representing 107 range-expanding moth species at three light-trap sites in southeastern Sweden over 16 years (from 2005 to 2020) in relation to temperature and years since colonisation. Species richness and average abundance across range-expanding moths increased significantly over time, indicating a continuous influx of species expanding their ranges northward. Furthermore, average abundance and population growth increased significantly with increasing average ambient air temperature during the recording year, and average abundance also increased significantly with increasing temperature during the previous year. In general, population growth increased between years (growth rate > 1), although the population growth rate decreased significantly in association with years since colonisation. These findings highlight that, in contrast to several other studies in different parts of the world, species richness and abundance have increased in southeastern Sweden, partly because the warming climate enables range-expanding moths to realise their capacity for rapid distribution shifts and population growth. This may lead to fast and dramatic changes in community composition, with consequences for species interactions and the functioning of ecosystems. These findings are also of applied relevance for agriculture and forestry in that they can help to forecast the impacts of future invasive pest species.
Collapse
|
20
|
Tobin PC, Robinet C. Advances in understanding and predicting the spread of invading insect populations. CURRENT OPINION IN INSECT SCIENCE 2022; 54:100985. [PMID: 36216241 DOI: 10.1016/j.cois.2022.100985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Understanding and predicting the spread of invading insects is a critical challenge in management programs that aim to minimize ecological and economic harm to native ecosystems. Although efforts to quantify spread rates have been well studied over the past several decades, opportunities to improve our ability to estimate rates of spread, and identify the factors, such as habitat suitability and climate, that influence spread, remain. We review emerging sources of data that can be used to delineate distributional boundaries through time and thus serve as a basis for quantifying spread rates. We then address advances in modeling methods that facilitate our understanding of factors that drive invasive insect spread. We conclude by highlighting some remaining challenges in understanding and predicting invasive insect spread, such as the role of climate change and biotic similarity between the native and introduced ranges, particularly as it applies to decision-making in management programs.
Collapse
Affiliation(s)
- Patrick C Tobin
- University of Washington, School of Environmental and Forest Sciences, 123 Anderson Hall, 3715 W. Stevens Way NE, Seattle, WA, USA.
| | | |
Collapse
|
21
|
Franzén M, Francioli Y, Askling J, Kindvall O, Johansson V, Forsman A. Yearly weather variation and surface temperature drives the spatiotemporal dynamics of a threatened butterfly and its host plant. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.917991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It remains unclear to what extent yearly weather variation and spatial variation in microclimate influences the outcome of interacting plant-animal species and whether responses differ between life stages. We collected data over several years on 46 ha on File Hajdar, Gotland, Sweden, and executed a complete mapping of larva nests (n = 776) and imago (n = 5,952) of the marsh fritillary butterfly Euphydryas aurinia and its host plant Succisa pratensis. The phenology of the butterflies and the major nectar plants visited varied among years. The duration of the adult flight period decreased with increasing ambient air temperatures. The density of butterflies, host plants, and host plant leaf size increased between years with increasing precipitation in the preceding year, and decreased with increasing average ambient air temperature in the preceding year. In 2021–2022 we deployed a unmanned aerial vehicle (UAV) with a high-resolution thermal sensor to measure spatial variation in surface temperatures in the study area. We found that survival from the egg to the larva stage increased with increasing surface temperature and host plant density. Host plants and larva nests generally occupied warmer microhabitats compared to imago butterflies. The results further suggested that the relationships linking surface temperature to the densities of imago, larva, host plants, and leaf size differed qualitatively between years. In 2017, larva nests and host plant density increased with increasing surface temperatures, and butterflies showed a non-linear response with a density peak at intermediate temperatures. As a result of the extreme drought in 2018 there was a reduction in maximum leaf size, and in the densities of plants, larvae, and butterflies. Moreover, the slopes of the relationships linking the density of larvae, butterflies, and plants to temperature shifted from linear positive to negative or curvilinear. Our findings demonstrate how yearly weather variation and heterogeneous surface temperatures can drive the spatiotemporal distribution and dynamics of butterflies and their host plants. The context specificity of the responses indicated by our results makes it challenging to project how climate change will affect the dynamics of ecological communities.
Collapse
|
22
|
Belitz MW, Larsen EA, Shirey V, Li D, Guralnick RP. Phenological research based on natural history collections: practical guidelines and a Lepidopteran case study. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Michael W. Belitz
- Florida Museum of Natural History University of Florida Gainesville FL USA
| | - Elise A. Larsen
- Department of Biology Georgetown University Washington DC USA
| | - Vaughn Shirey
- Department of Biology Georgetown University Washington DC USA
| | - Daijiang Li
- Department of Biological Sciences Louisiana State University Baton Rouge LA USA
- Center for Computation & Technology Louisiana State University Baton Rouge LA USA
| | | |
Collapse
|
23
|
Wellenreuther M, Dudaniec RY, Neu A, Lessard JP, Bridle J, Carbonell JA, Diamond SE, Marshall KE, Parmesan C, Singer MC, Swaegers J, Thomas CD, Lancaster LT. The importance of eco-evolutionary dynamics for predicting and managing insect range shifts. CURRENT OPINION IN INSECT SCIENCE 2022; 52:100939. [PMID: 35644339 DOI: 10.1016/j.cois.2022.100939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Evolutionary change impacts the rate at which insect pests, pollinators, or disease vectors expand or contract their geographic ranges. Although evolutionary changes, and their ecological feedbacks, strongly affect these risks and associated ecological and economic consequences, they are often underappreciated in management efforts. Greater rigor and scope in study design, coupled with innovative technologies and approaches, facilitates our understanding of the causes and consequences of eco-evolutionary dynamics in insect range shifts. Future efforts need to ensure that forecasts allow for demographic and evolutionary change and that management strategies will maximize (or minimize) the adaptive potential of range-shifting insects, with benefits for biodiversity and ecosystem services.
Collapse
Affiliation(s)
- Maren Wellenreuther
- The New Zealand Institute for Plant & Food Research Ltd, Nelson, New Zealand; School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Rachael Y Dudaniec
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Anika Neu
- Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| | | | - Jon Bridle
- Department of Genetics, Evolution and Environment, University College London, UK
| | - José A Carbonell
- Department of Zoology, Faculty of Biology, University of Seville, Seville, Spain; Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, Leuven B-3000, Belgium
| | - Sarah E Diamond
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Katie E Marshall
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Camille Parmesan
- Station d'Écologie Théorique et Expérimentale (SETE), CNRS, 2 route du CNRS, 09200 Moulis, France; Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK; Dept of Geological Sciences, University of Texas at Austin, Austin, Texas 78712
| | - Michael C Singer
- Station d'Écologie Théorique et Expérimentale (SETE), CNRS, 2 route du CNRS, 09200 Moulis, France; Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Janne Swaegers
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, Leuven B-3000, Belgium
| | - Chris D Thomas
- Leverhulme Centre for Anthropocene Biodiversity, University of York, Wentworth Way, York YO10 5DD, UK
| | - Lesley T Lancaster
- School of Biological Sciences, University of Aberdeen, Aberdeen UK AB24 2TZ.
| |
Collapse
|
24
|
Buckley LB. Temperature-sensitive development shapes insect phenological responses to climate change. CURRENT OPINION IN INSECT SCIENCE 2022; 52:100897. [PMID: 35257968 DOI: 10.1016/j.cois.2022.100897] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 05/23/2023]
Abstract
Phenological shifts vary within and among insect species and locations based on exposure and sensitivity to climate change. Shifts in environmental conditions and seasonal constraints along elevation and latitudinal gradients can select for differences in temperature sensitivity that generate differential phenological shifts. I examine the phenological implications of observed variation in developmental traits. Coupling physiological and ecological insight to link the environmental sensitivity of development to phenology and fitness offers promise in understanding variable phenological responses to climate change and their community and ecosystem implications. A key challenge in establishing these linkages is extrapolating controlled, laboratory experiments to temporally variable, natural environments. New lab and field experiments that incorporate realistic environmental variation are needed to test the extrapolations. Establishing the linkages can aid understanding and anticipating impacts of climate change on insects.
Collapse
Affiliation(s)
- Lauren B Buckley
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA.
| |
Collapse
|
25
|
The effects of protected areas on the ecological niches of birds and mammals. Sci Rep 2022; 12:11601. [PMID: 35804004 PMCID: PMC9270413 DOI: 10.1038/s41598-022-15949-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/01/2022] [Indexed: 12/03/2022] Open
Abstract
Protected areas are a cornerstone for biodiversity conservation, and typically support more natural and undisturbed habitats compared to unprotected lands. The effect of protected areas on intra-specific ecological niche has been rarely investigated. Here, we explore potential differences in ecological niche properties of birds and mammals across protected and unprotected areas, and relate such differences to species traits. We combine two decades of survey data of birds and mammals from protected and unprotected areas, and apply robust matching to obtain a set of environmentally comparable protected and unprotected sites. Next, we calculate intra-specific niche volume change and habitat shift between protected and unprotected areas, and use generalized linear mixed models to explain these responses with species traits (habitat specialization, body mass, diet, and red list status). The majority of bird and mammal species (83% and 90%, respectively) show different habitat use when occurring within and outside protected areas, with the magnitude of this shift highly varying across species. A minority of species (16% of birds and 10% of mammals) do not change their niche volume nor shift their habitat between protected and unprotected areas. Variation in niche properties is largely unrelated to species traits. Overall, the varying ecological niche responses of birds and mammals to protected areas underscore that there is no universal niche-based response, and that niche responses to land protection are species-specific.
Collapse
|
26
|
Colom P, Ninyerola M, Pons X, Traveset A, Stefanescu C. Phenological sensitivity and seasonal variability explain climate-driven trends in Mediterranean butterflies. Proc Biol Sci 2022; 289:20220251. [PMID: 35473386 PMCID: PMC9043697 DOI: 10.1098/rspb.2022.0251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although climate-driven phenological shifts have been documented for many taxa across the globe, we still lack knowledge of the consequences they have on populations. Here, we used a comprehensive database comprising 553 populations of 51 species of north-western Mediterranean butterflies to investigate the relationship between phenology and population trends in a 26-year period. Phenological trends and sensitivity to climate, along with various species traits, were used to predict abundance trends. Key ecological traits accounted for a general decline of more than half of the species, most of which, surprisingly, did not change their phenology under a climate warming scenario. However, this was related to the regional cooling in a short temporal window that includes late winter and early spring, during which most species concentrate their development. Finally, we demonstrate that phenological sensitivity—but not phenological trends—predicted population trends, and argue that species that best adjust their phenology to inter-annual climate variability are more likely to maintain a synchronization with trophic resources, thereby mitigating possible negative effects of climate change. Our results reflect the importance of assessing not only species' trends over time but also species’ abilities to respond to a changing climate based on their sensitivity to temperature.
Collapse
Affiliation(s)
- Pau Colom
- Global Change Research Group, Institut Mediterrani d'Estudis Avançats (IMEDEA-CSIC-UIB), Miquel Marqués 21, 07190 Esporles, Mallorca, Balearic Islands, Spain
| | - Miquel Ninyerola
- Grumets Research Group, Departament de Biologia Animal, Biologia Vegetal i Ecologia. Edifici C. Universitat Autònoma de Barcelona, 08193 (Bellaterra, Barcelona), Catalonia, Spain
| | - Xavier Pons
- Grumets Research Group, Departament de Geografia. Edifici B, Universitat Autònoma de Barcelona, 08193 (Bellaterra, Barcelona), Catalonia, Spain
| | - Anna Traveset
- Global Change Research Group, Institut Mediterrani d'Estudis Avançats (IMEDEA-CSIC-UIB), Miquel Marqués 21, 07190 Esporles, Mallorca, Balearic Islands, Spain
| | - Constantí Stefanescu
- Natural Sciences Museum of Granollers, Francesc Macià 51, 08402 (Granollers, Barcelona), Catalonia, Spain.,Centre de Recerca Ecològica i Aplicacions Forestals (CREAF-CSIC-UAB), Universitat Autònoma de Barcelona, 08193 (Cerdanyola de Vallès, Barcelona), Catalonia, Spain
| |
Collapse
|
27
|
Parmesan C, Singer MC. Mosaics of climatic stress across species' ranges: tradeoffs cause adaptive evolution to limits of climatic tolerance. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210003. [PMID: 35184595 PMCID: PMC8859515 DOI: 10.1098/rstb.2021.0003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 01/17/2022] [Indexed: 01/11/2023] Open
Abstract
Studies in birds and trees show climatic stresses distributed across species' ranges, not only at range limits. Here, new analyses from the butterfly Euphydryas editha reveal mechanisms generating these stresses: geographic mosaics of natural selection, acting on tradeoffs between climate adaptation and fitness traits, cause some range-central populations to evolve to limits of climatic tolerance, while others remain resilient. In one ecotype, selection for predator avoidance drives evolution to limits of thermal tolerance. In a second ecotype, the endangered Bay Checkerspot, selection on fecundity drives evolution to the climate-sensitive limit of ability to complete development within the lifespans of ephemeral hosts, causing routinely high mortality from insect-host phenological asynchrony. The tradeoff between maternal fecundity and offspring mortality generated similar values of fitness on different dates, partly explaining why fecundity varied by more than an order of magnitude. Evolutionary response to the tradeoff rendered climatic variability the main driver of Bay Checkerspot dynamics, and increases in this variability, associated with climate change, were a key factor behind permanent extinction of a protected metapopulation. Finally, we discuss implications for conservation planning of our finding that adaptive evolution can reduce population-level resilience to climate change and generate geographic mosaics of climatic stress. This article is part of the theme issue 'Species' ranges in the face of changing environments (Part II)'.
Collapse
Affiliation(s)
- Camille Parmesan
- Station d’Écologie Théorique et Expérimentale, CNRS, 2 route du CNRS, 09200 Moulis, France
- Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
- Department of Geological Sciences, University of Texas at Austin, Austin, Texas 78712, USA
| | - Michael C. Singer
- Station d’Écologie Théorique et Expérimentale, CNRS, 2 route du CNRS, 09200 Moulis, France
- Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| |
Collapse
|
28
|
Couet J, Marjakangas EL, Santangeli A, Kålås JA, Lindström Å, Lehikoinen A. Short-lived species move uphill faster under climate change. Oecologia 2022; 198:877-888. [PMID: 34989860 PMCID: PMC9056483 DOI: 10.1007/s00442-021-05094-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 12/07/2021] [Indexed: 11/13/2022]
Abstract
Climate change is pushing species ranges and abundances towards the poles and mountain tops. Although many studies have documented local altitudinal shifts, knowledge of general patterns at a large spatial scale, such as a whole mountain range, is scarce. From a conservation perspective, studying altitudinal shifts in wildlife is relevant because mountain regions often represent biodiversity hotspots and are among the most vulnerable ecosystems. Here, we examine whether altitudinal shifts in birds' abundances have occurred in the Scandinavian mountains over 13 years, and assess whether such shifts are related to species' traits. Using abundance data, we show a clear pattern of uphill shift in the mean altitude of bird abundance across the Scandinavian mountains, with an average speed of 0.9 m per year. Out of 76 species, 7 shifted significantly their abundance uphill. Altitudinal shift was strongly related to species' longevity: short-lived species showed more pronounced uphill shifts in abundance than long-lived species. The observed abundance shifts suggest that uphill shifts are not only driven by a small number of individuals at the range boundaries, but the overall bird abundances are on the move. Overall, the results underscore the wide-ranging impact of climate change and the potential vulnerability of species with slow life histories, as they appear less able to timely respond to rapidly changing climatic conditions.
Collapse
Affiliation(s)
- Joséphine Couet
- Finnish Museum of Natural History, University of Helsinki, P. O. Box 17, 00014, Helsinki, Finland
| | - Emma-Liina Marjakangas
- Finnish Museum of Natural History, University of Helsinki, P. O. Box 17, 00014, Helsinki, Finland
| | - Andrea Santangeli
- Finnish Museum of Natural History, University of Helsinki, P. O. Box 17, 00014, Helsinki, Finland
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, University of Helsinki, 00014, Helsinki, Finland
- FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Cape Town, South Africa
| | - John Atle Kålås
- Norwegian Institute for Nature Research, Torgarden, Postboks 5685, 7485, Trondheim, Norway
| | - Åke Lindström
- Department of Biology, Biodiversity unit, Lund University, Ecology Building, S-223 62, Lund, Sweden
| | - Aleksi Lehikoinen
- Finnish Museum of Natural History, University of Helsinki, P. O. Box 17, 00014, Helsinki, Finland.
| |
Collapse
|