1
|
Viblanc VA, Muller‐Landau HC. Insights Into Ecology, Evolution and Global Change Responses From Very Long-Term Studies. Ecol Lett 2025; 28:e70072. [PMID: 40172492 PMCID: PMC11963833 DOI: 10.1111/ele.70072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 01/09/2025] [Indexed: 04/04/2025]
Affiliation(s)
- Vincent A. Viblanc
- CNRS Écologie et EnvironnementParisFrance
- Université de Strasbourg, CNRSStrasbourgFrance
| | | |
Collapse
|
2
|
Zaerpour M, Hatami S, Ballarin AS, Papalexiou SM, Pietroniro A, Nazemi A. Agriculture's impact on water-energy balance varies across climates. Proc Natl Acad Sci U S A 2025; 122:e2410521122. [PMID: 40096605 PMCID: PMC11962491 DOI: 10.1073/pnas.2410521122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 02/05/2025] [Indexed: 03/19/2025] Open
Abstract
Agriculture is a cornerstone of global food production, accounting for a substantial portion of water withdrawals worldwide. As the world's population grows, so does the demand for water in agriculture, leading to alterations in regional water-energy balances. We present an approach to identify the influence of agriculture on the water-energy balance using empirical data. We explore the departure from the Budyko curve for catchments with agricultural expansion and their associations with changes in the water-energy balance using a causal discovery algorithm. Analyzing data from 1,342 catchments across three Köppen-Geiger climate classes-temperate, snowy, and others-from 1980 to 2014, we show that temperate and snowy catchments, which account for over 90% of stations, exhibit distinct patterns. Cropland percentage (CL%) emerges as the dominant factor, explaining 47 and 37% of the variance in deviations from the Budyko curve in temperate and snowy catchments, respectively. In temperate catchments, CL% shows a strong negative correlation with precipitation-streamflow (P-Q) causal strength (Spearman [Formula: see text]), suggesting that cropland exacerbates precipitation-driven deviations. A moderate negative correlation with aridity-streamflow (AR-Q) causal strength ([Formula: see text]) indicates additional influences of cropland through aridity-driven interactions. In snowy catchments, CL% is similarly influential, with a positive correlation with P-Q causal strength ([Formula: see text]). However, the negative correlation with AR-Q causal strength ([Formula: see text]) underscores the role of aridity as a secondary driver. While vegetation and precipitation seasonality also contribute to the deviations, their impacts are comparatively lower. These findings underscore the need for inclusion of agricultural activities in changing water-energy balance to secure future water supplies.
Collapse
Affiliation(s)
- Masoud Zaerpour
- Department of Civil Engineering, Schulich School of Engineering, University of Calgary, Calgary, ABT2N 1N4, Canada
| | - Shadi Hatami
- Department of Civil Engineering, Schulich School of Engineering, University of Calgary, Calgary, ABT2N 1N4, Canada
| | - André S. Ballarin
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Paulo13566-590, Brazil
| | - Simon Michael Papalexiou
- Department of Civil Engineering, Schulich School of Engineering, University of Calgary, Calgary, ABT2N 1N4, Canada
- Department of Water Resources and Environmental Modeling, Faculty of Environmental Sciences, Czech University of Life Sciences, Prague165 00, Czech Republic
| | - Alain Pietroniro
- Department of Civil Engineering, Schulich School of Engineering, University of Calgary, Calgary, ABT2N 1N4, Canada
| | - Ali Nazemi
- Department of Building, Civil, and Environmental Engineering, Concordia University, Montreal, QCH3G 2W1, Canada
| |
Collapse
|
3
|
Xie H, Jin X, Li W, Cai K, Yang G, Chen K, Xu J, Johnson AC. Identifying Critical Land Use Thresholds for Biodiversity Conservation in China's Lake Ecosystems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5431-5442. [PMID: 39998118 DOI: 10.1021/acs.est.4c09911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Aquatic biodiversity loss, particularly in rapidly developing nations, continues to raise concerns, prompting urgent debates on reconciling economic growth with environmental preservation through land use planning. While spatial variations in aquatic communities along land use gradients are well-documented, precise ecological thresholds for land use impacts on freshwater lakes remain elusive, hindering sustainable development efforts. This study investigated six representative freshwater lakes in China between 2019 and 2020, all significantly impacted by anthropogenic activities. We utilized macroinvertebrate communities as bioindicators and employed four categories of aquatic ecological metrics─taxonomic diversity, functional diversity, pollution tolerance, and water quality─to assess their responses to local land use patterns. Macroinvertebrate community composition varied significantly among the studied lakes, with pollution-tolerant taxa predominating in highly urbanized and eutrophic systems. Notably, benthic communities exhibited greater sensitivity to urban land use (ecological thresholds: 2-10%) compared to agricultural land use (thresholds: 15-40%). The most pronounced responses were observed within 1-5 km of the lakeshore, with circular buffers yielding more significant effects than fan-shaped buffers, excluding water areas. A novel land use intensity indicator─the ratio of nonecological to ecological land (NEL/EL = area of nonecological land/area of ecological land)─proved effective in predicting ecological shifts. Smaller or heavily urbanized lakes showed marked changes at NEL/EL ratios between 0 and 0.6, while larger or river-connected lakes exhibited shifts at ratios exceeding 1.5. These findings underscore the profound ecological footprint of human activities on lake ecosystems with urban land cover emerging as the most deleterious factor.
Collapse
Affiliation(s)
- Huiyu Xie
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- China National Environmental Monitoring Centre, Beijing 100012, China
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Xiaowei Jin
- China National Environmental Monitoring Centre, Beijing 100012, China
| | - Wenpan Li
- China National Environmental Monitoring Centre, Beijing 100012, China
| | - Kun Cai
- Jiangsu Environmental Monitoring Center, Nanjing, Jiangsu 210019, China
| | - Guangli Yang
- Jiangsu Huai'an Environmental Monitoring Center, Huai'an, Jiangsu 223001. China
| | - Kai Chen
- School of Marine Biology and Fisheries, and State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan 570228 P.R. China
| | - Jian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Andrew C Johnson
- UK Centre for Ecology and Hydrology, Wallingford, Oxfordshire OX10 8BB, U.K
| |
Collapse
|
4
|
Hao X, Holyoak M, Zhang Z, Yan C. Global Projection of Terrestrial Vertebrate Food Webs Under Future Climate and Land-Use Changes. GLOBAL CHANGE BIOLOGY 2025; 31:e70061. [PMID: 39895400 DOI: 10.1111/gcb.70061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/31/2024] [Accepted: 01/03/2025] [Indexed: 02/04/2025]
Abstract
Food webs represent an important nexus between biodiversity and ecosystem functioning, yet considering changes in food webs around the world has been limited by data availability. Previous studies have predicted food web collapses and coextinction, but changes in food web structure have been less investigated under climate warming and anthropogenic pressures on a global scale. We systematically amassed information about species' diets, traits, distributions, habitat use, and phylogenetics in the real world and used machine learning to predict changes in global meta-food webs of terrestrial vertebrates under climate and land-use changes. By year 2100, terrestrial vertebrate food webs are expected to decrease in web size by 32% and trophic links by 49%. Projections predict declines of over 25% in modularity, predator generality, and diversity of trophic groups. Increased species' dispersal could ameliorate these trends but indicate disproportionate vulnerability of regional food webs. Unlike many previous studies, this work combines extensive empirical data with advanced modeling techniques, providing a more detailed and spatially explicit prediction of how global food webs will respond to climate and land-use changes. Overall, our study predicts terrestrial vertebrate food webs will undergo drastic and spatially heterogeneous structural changes.
Collapse
Affiliation(s)
- Xiyang Hao
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, P.R. China
| | - Marcel Holyoak
- Department of Environmental Science and Policy, University of California, Davis, California, USA
| | - Zhicheng Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, P.R. China
| | - Chuan Yan
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, P.R. China
| |
Collapse
|
5
|
López-Valcárcel ME, Del Arco A, Araújo CVM, Parra G. Reduced avoidance behaviour in Daphnia magna due to agrochemical-induced vulnerability. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117673. [PMID: 39893885 DOI: 10.1016/j.ecoenv.2025.117673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 01/02/2025] [Accepted: 01/02/2025] [Indexed: 02/04/2025]
Abstract
The continuous discharge of agrochemicals used in intensive agriculture contaminates aquatic systems, harming aquatic biota and their processes. Although mobile organisms can avoid continuous exposure by moving to less-affected habitats, their capacity can be altered by pollutant exposure. Populations with a previous disturbance history, which show a lower ability to respond to subsequent stressors, are defined as vulnerable. Therefore, this study investigated the so far unknown escape capacity of a vulnerable zooplankton population previously exposed to a contaminated environment. To this end, agrochemically driven vulnerability was induced in populations of Daphnia magna by exposure to sublethal concentrations of glyphosate. Vulnerability was verified using a starvation test in which significant differences were observed between the control populations and populations with a disturbance history. Both the Control and Vulnerable populations were assessed for their avoidance capacity by exposing them to a glyphosate gradient using a Heterogeneous Multiple-Habitat Assay System (HeMHAS). The control populations showed a rapid reaction from the beginning of the assay, with avoidance rates increasing over 24 h, while vulnerable populations were unable to avoid contaminated habitats for up to 24 h. Therefore, we concluded that vulnerable populations have a lower capacity to avoid contaminated habitats. In heterogeneously contaminated habitats, a lower avoidance capacity is responsible for the differential spatial distribution of the affected species, which impacts the ecosystem structure. Additionally, agrochemically induced vulnerability and its effect on avoidance behaviour may affect ecosystem functioning through the altered spatial distribution of zooplankton populations.
Collapse
Affiliation(s)
- María Eugenia López-Valcárcel
- Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, Campus de Las Lagunillas S/n, Jaén E-23071, Spain.
| | - Ana Del Arco
- Limnological Institute, University of Konstanz, Mainaustraße 252, Konstanz 78464, Germany
| | - Cristiano V M Araújo
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (ICMAN - CSIC), Campus Universitario Río San Pedro, Puerto Real 11519, Spain
| | - Gema Parra
- Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, Campus de Las Lagunillas S/n, Jaén E-23071, Spain
| |
Collapse
|
6
|
Konowalik K, Tomasello S, Urbaniak J. Genetic Diversity and Ecogeographical Niche Overlap Among Hybridising Ox-Eye Daisies (Leucanthemum, Asteraceae) in the Carpathian Mountains: The Impact of Anthropogenic Disturbances. Mol Ecol 2025; 34:e17581. [PMID: 39501404 DOI: 10.1111/mec.17581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 12/24/2024]
Abstract
Climate change and human influence are transforming mountain ecosystems, significantly impacting species distributions and biodiversity. Among these changes, the upward migration of lowland species into mountain regions stands out. This study examines the ecogeographical niche overlap and genetic diversity among three Leucanthemum species distributed along an altitudinal gradient in the Carpathian Mountains: the lowland L. ircutianum (4x), the montane L. rotundifolium (2x) and the alpine L. gaudinii (2x). By genotyping over 600 individuals using SNP analysis, followed by principal coordinate analysis (PCoA), Neighbour-Net Network and Structure clustering, we reveal not just distinct genetic groups but also hybridisation across all species, suggesting the potential for triple hybrids. Genetic admixture is further supported by environmental background and niche overlap analyses that reveal substantial overlap among species, particularly in line with their vertical distribution. Climate envelope plots indicate a likely reduction in available habitat for mountainous species due to climate change, leading to an increase in competition and an intensification of hybridisation. Anthropogenic influences are further intensifying these hybridisation trends. Among the studied species, L. gaudinii is most at risk of overwhelming hybridisation, whereas L. ircutianum may experience habitat expansion. By providing a comprehensive genetic and ecological overview, our research highlights the significance of hybridisation in biodiversity conservation and the challenges posed by environmental changes and anthropogenic activities in mountain environments. This study not only contributes to the understanding of genetic diversity in the Carpathians but also underscores the broader implications for molecular ecology and conservation strategies in mountain ecosystems.
Collapse
Affiliation(s)
- Kamil Konowalik
- Department of Botany and Plant Ecology, Wrocław University of Environmental and Life Sciences, Wroclaw, Poland
| | - Salvatore Tomasello
- Department of Systematics, Biodiversity and Evolution of Plants (With Herbarium), Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
| | - Jacek Urbaniak
- Department of Botany and Plant Ecology, Wrocław University of Environmental and Life Sciences, Wroclaw, Poland
| |
Collapse
|
7
|
Durdov T, Perišin AŠ, Škaro N, Bukić J, Leskur D, Modun D, Božić J, Grgas M, Rušić D. Future Healthcare Workers and Ecopharmacovigilance: Where Do We Stand? PHARMACY 2024; 12:146. [PMID: 39452802 PMCID: PMC11511310 DOI: 10.3390/pharmacy12050146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
With the rapid development of the pharmaceutical industry and constant growth of drug usage, ecopharmacovigilance (EPV) has emerged as a way of coping with and minimizing the effects that drugs have on the environment. EPV concerns and describes unwanted effects that the use of a specific drug could have on the environment. The US, EU and Cananda are the improving position of EPV, both in legislation and practice. EPV requires further development as previous studies have shown that neither the general population nor healthcare professionals have enough knowledge about the subject. Improving awareness and knowledge about this topic is a key task for the future of EPV. The main objective was to determine students' level of knowledge about ecopharmacovigilance and to examine ways of storing and disposing of unused and expired drugs. Students' knowledge and habits were examined by a previously published survey. The survey contains twenty questions divided into three parts and the possibility of writing an additional note. There was no difference in the level of knowledge between the students of different studies. Also, students who had a family member working as healthcare professional did not show a higher level of knowledge compared to the others. Pharmacy students had a greater intention to educate their environment about EPV when compared to students of the other studies. This is in the line with a previous study which showed that the general public expects that pharmacists and physicians educate them about EPV. Medicine and dental medicine students will become prescribers after finishing their studies, and as such, they should be informed about eco-directed sustainable prescribing (EDSP) as part of an EPV strategy. More than half of the participants reported good adherence to prescribers' instruction, which decreased the amount of unused drugs. Most of the students found that the drug expiration date was legible, but they did not check it often. In comparison with similar studies, Croatian students had more knowledge and better practices concerning EPV and drug disposal. Structured learning strategies and curriculum implementation for EPV are much needed for further raising awareness about the subject among healthcare professionals and the public.
Collapse
Affiliation(s)
- Toni Durdov
- Department of Pharmacy, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia (N.Š.); (J.B.); (D.L.); (D.M.); (M.G.); (D.R.)
| | - Ana Šešelja Perišin
- Department of Pharmacy, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia (N.Š.); (J.B.); (D.L.); (D.M.); (M.G.); (D.R.)
| | - Nikolina Škaro
- Department of Pharmacy, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia (N.Š.); (J.B.); (D.L.); (D.M.); (M.G.); (D.R.)
| | - Josipa Bukić
- Department of Pharmacy, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia (N.Š.); (J.B.); (D.L.); (D.M.); (M.G.); (D.R.)
- Department of Laboratory Medicine and Pharmacy, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
| | - Dario Leskur
- Department of Pharmacy, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia (N.Š.); (J.B.); (D.L.); (D.M.); (M.G.); (D.R.)
| | - Darko Modun
- Department of Pharmacy, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia (N.Š.); (J.B.); (D.L.); (D.M.); (M.G.); (D.R.)
| | - Joško Božić
- Department of Pathophysiology, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia;
| | - Marjeta Grgas
- Department of Pharmacy, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia (N.Š.); (J.B.); (D.L.); (D.M.); (M.G.); (D.R.)
| | - Doris Rušić
- Department of Pharmacy, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia (N.Š.); (J.B.); (D.L.); (D.M.); (M.G.); (D.R.)
| |
Collapse
|
8
|
Wong MKL, Didham RK. Global meta-analysis reveals overall higher nocturnal than diurnal activity in insect communities. Nat Commun 2024; 15:3236. [PMID: 38622174 PMCID: PMC11018786 DOI: 10.1038/s41467-024-47645-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/09/2024] [Indexed: 04/17/2024] Open
Abstract
Insects sustain key ecosystem functions, but how their activity varies across the day-night cycle and the underlying drivers are poorly understood. Although entomologists generally expect that more insects are active at night, this notion has not been tested with empirical data at the global scale. Here, we assemble 331 quantitative comparisons of the abundances of insects between day and night periods from 78 studies worldwide and use multi-level meta-analytical models to show that insect activity is on average 31.4% (CI: -6.3%-84.3%) higher at night than in the day. We reveal diel preferences of major insect taxa, and observe higher nocturnal activity in aquatic taxa than in terrestrial ones, as well as in warmer environments. In a separate analysis of the small subset of studies quantifying diel patterns in taxonomic richness (31 comparisons from 13 studies), we detect preliminary evidence of higher nocturnal richness in tropical than temperate communities. The higher overall (but variable) nocturnal activity in insect communities underscores the need to address threats such as light pollution and climate warming that may disproportionately impact nocturnal insects.
Collapse
Affiliation(s)
- Mark K L Wong
- School of Biological Sciences, The University of Western Australia, Crawley, WA, 6009, Australia.
- CSIRO Health & Biosecurity, Centre for Environment and Life Sciences, Floreat, WA, 6014, Australia.
| | - Raphael K Didham
- School of Biological Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
- CSIRO Health & Biosecurity, Centre for Environment and Life Sciences, Floreat, WA, 6014, Australia
| |
Collapse
|
9
|
Khaliq I, Rixen C, Zellweger F, Graham CH, Gossner MM, McFadden IR, Antão L, Brodersen J, Ghosh S, Pomati F, Seehausen O, Roth T, Sattler T, Supp SR, Riaz M, Zimmermann NE, Matthews B, Narwani A. Warming underpins community turnover in temperate freshwater and terrestrial communities. Nat Commun 2024; 15:1921. [PMID: 38429327 PMCID: PMC10907361 DOI: 10.1038/s41467-024-46282-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/21/2024] [Indexed: 03/03/2024] Open
Abstract
Rising temperatures are leading to increased prevalence of warm-affinity species in ecosystems, known as thermophilisation. However, factors influencing variation in thermophilisation rates among taxa and ecosystems, particularly freshwater communities with high diversity and high population decline, remain unclear. We analysed compositional change over time in 7123 freshwater and 6201 terrestrial, mostly temperate communities from multiple taxonomic groups. Overall, temperature change was positively linked to thermophilisation in both realms. Extirpated species had lower thermal affinities in terrestrial communities but higher affinities in freshwater communities compared to those persisting over time. Temperature change's impact on thermophilisation varied with community body size, thermal niche breadth, species richness and baseline temperature; these interactive effects were idiosyncratic in the direction and magnitude of their impacts on thermophilisation, both across realms and taxonomic groups. While our findings emphasise the challenges in predicting the consequences of temperature change across communities, conservation strategies should consider these variable responses when attempting to mitigate climate-induced biodiversity loss.
Collapse
Affiliation(s)
- Imran Khaliq
- Department of Aquatic Ecology, Eawag (Swiss Federal Institute of Aquatic Science and Technology) Überlandstrasse 133, 8600, Dübendorf, Switzerland.
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Flüelastrasse 11, 7260, Davos Dorf, Switzerland.
- Climate Change, Extremes and Natural Hazards in Alpine Regions Research Centre CERC, Flüelastrasse 11, 7260, Davos Dorf, Switzerland.
- Department of Zoology, Government (defunct) post-graduate college, Dera Ghazi Khan, 32200, Pakistan.
| | - Christian Rixen
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Flüelastrasse 11, 7260, Davos Dorf, Switzerland
- Climate Change, Extremes and Natural Hazards in Alpine Regions Research Centre CERC, Flüelastrasse 11, 7260, Davos Dorf, Switzerland
| | - Florian Zellweger
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
| | - Catherine H Graham
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
| | - Martin M Gossner
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
- ETH Zurich, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, 8092, Zurich, Switzerland
| | - Ian R McFadden
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
- ETH Zurich, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, 8092, Zurich, Switzerland
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE, Amsterdam, The Netherlands
- University of London, Queen Mary, London, UK
| | - Laura Antão
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, University of Helsinki, PO Box 65 (Viikinkaari 1), 00014, Helsinki, Finland
| | - Jakob Brodersen
- Department of Fish Ecology and Evolution, Eawag (Swiss Federal Institute of Aquatic Science and Technology), Seestrasse 79, 6047, Kastanienbaum, Switzerland
- Department of Environmental Sciences, Zoology, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland
| | - Shyamolina Ghosh
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Flüelastrasse 11, 7260, Davos Dorf, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
- Department of Fish Ecology and Evolution, Eawag (Swiss Federal Institute of Aquatic Science and Technology), Seestrasse 79, 6047, Kastanienbaum, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Francesco Pomati
- Department of Aquatic Ecology, Eawag (Swiss Federal Institute of Aquatic Science and Technology) Überlandstrasse 133, 8600, Dübendorf, Switzerland
| | - Ole Seehausen
- Department of Fish Ecology and Evolution, Eawag (Swiss Federal Institute of Aquatic Science and Technology), Seestrasse 79, 6047, Kastanienbaum, Switzerland
- Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012, Bern, Switzerland
| | - Tobias Roth
- Department of Environmental Sciences, Zoology, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland
- Hintermann & Weber AG Austrasse 2a, 4153, Reinach, Switzerland
| | - Thomas Sattler
- Swiss Ornithological Institute, Seerose 1, 6204, Sempach, Switzerland
| | - Sarah R Supp
- Denison University, Data Analytics Program, Granville, OH, 43023, USA
| | - Maria Riaz
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, 63571, Gelnhausen, Germany
- Faculty of Biological Sciences, Institute for Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany
| | - Niklaus E Zimmermann
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
- ETH Zurich, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, 8092, Zurich, Switzerland
| | - Blake Matthews
- Department of Fish Ecology and Evolution, Eawag (Swiss Federal Institute of Aquatic Science and Technology), Seestrasse 79, 6047, Kastanienbaum, Switzerland
| | - Anita Narwani
- Department of Aquatic Ecology, Eawag (Swiss Federal Institute of Aquatic Science and Technology) Überlandstrasse 133, 8600, Dübendorf, Switzerland.
| |
Collapse
|
10
|
Boivin S, Bourceret A, Maurice K, Laurent-Webb L, Figura T, Bourillon J, Nespoulous J, Domergue O, Chaintreuil C, Boukcim H, Selosse MA, Fiema Z, Botte E, Nehme L, Ducousso M. Revealing human impact on natural ecosystems through soil bacterial DNA sampled from an archaeological site. Environ Microbiol 2024; 26:e16546. [PMID: 38086774 DOI: 10.1111/1462-2920.16546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/17/2023] [Indexed: 01/30/2024]
Abstract
Human activities have affected the surrounding natural ecosystems, including belowground microorganisms, for millennia. Their short- and medium-term effects on the diversity and the composition of soil microbial communities are well-documented, but their lasting effects remain unknown. When unoccupied for centuries, archaeological sites are appropriate for studying the long-term effects of past human occupancy on natural ecosystems, including the soil compartment. In this work, the soil chemical and bacterial compositions were compared between the Roman fort of Hegra (Saudi Arabia) abandoned for 1500 years, and a preserved area located at 120 m of the southern wall of the Roman fort where no human occupancy was detected. We show that the four centuries of human occupancy have deeply and lastingly modified both the soil chemical and bacterial compositions inside the Roman fort. We also highlight different bacterial putative functions between the two areas, notably associated with human occupancy. Finally, this work shows that the use of soils from archaeological sites causes little disruption and can bring relevant information, at a large scale, during the initial surveys of archaeological sites.
Collapse
Affiliation(s)
- Stéphane Boivin
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), CIRAD, IRD, INRAE, University of Montpellier, Montpellier SupAgro, Montpellier, France
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Paris, France
- Valorhiz, Montferrier sur Lez, France
| | - Amélia Bourceret
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Paris, France
| | - Kenji Maurice
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), CIRAD, IRD, INRAE, University of Montpellier, Montpellier SupAgro, Montpellier, France
| | - Liam Laurent-Webb
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Paris, France
| | - Tomáš Figura
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Paris, France
- Faculty of Science, Department of Experimental Plant Biology, Charles University, Prague, Czech Republic
| | - Julie Bourillon
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), CIRAD, IRD, INRAE, University of Montpellier, Montpellier SupAgro, Montpellier, France
| | | | - Odile Domergue
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), CIRAD, IRD, INRAE, University of Montpellier, Montpellier SupAgro, Montpellier, France
| | - Clémence Chaintreuil
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), CIRAD, IRD, INRAE, University of Montpellier, Montpellier SupAgro, Montpellier, France
| | | | - Marc-André Selosse
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Paris, France
- Institut Universitaire de France, Paris, France
- Department of Plant Taxonomy and Nature Conservation, University of Gdańsk, Gdańsk, Poland
| | - Zbigniew Fiema
- Department of Culture, Faculty of Art, University of Helsinki, Helsinki, Finland
| | - Emmanuel Botte
- Centre Camille Julian, CNRS, Université Aix-Marseille, Aix en Provence, France
| | - Laila Nehme
- CNRS, Orient et Méditerranée: Textes, Archéologie, Histoire, Paris, France
| | - Marc Ducousso
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), CIRAD, IRD, INRAE, University of Montpellier, Montpellier SupAgro, Montpellier, France
| |
Collapse
|
11
|
Peng Z, Yang Y, Liu Y, Bu L, Qi J, Gao H, Chen S, Pan H, Chen B, Liang C, Li X, An Y, Wang S, Wei G, Jiao S. The neglected roles of adjacent natural ecosystems in maintaining bacterial diversity in agroecosystems. GLOBAL CHANGE BIOLOGY 2024; 30:e16996. [PMID: 37916454 DOI: 10.1111/gcb.16996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023]
Abstract
A central aim of community ecology is to understand how local species diversity is shaped. Agricultural activities are reshaping and filtering soil biodiversity and communities; however, ecological processes that structure agricultural communities have often overlooked the role of the regional species pool, mainly owing to the lack of large datasets across several regions. Here, we conducted a soil survey of 941 plots of agricultural and adjacent natural ecosystems (e.g., forest, wetland, grassland, and desert) in 38 regions across diverse climatic and soil gradients to evaluate whether the regional species pool of soil microbes from adjacent natural ecosystems is important in shaping agricultural soil microbial diversity and completeness. Using a framework of multiscales community assembly, we revealed that the regional species pool was an important predictor of agricultural bacterial diversity and explained a unique variation that cannot be predicted by historical legacy, large-scale environmental factors, and local community assembly processes. Moreover, the species pool effects were associated with microbial dormancy potential, where taxa with higher dormancy potential exhibited stronger species pool effects. Bacterial diversity in regions with higher agricultural intensity was more influenced by species pool effects than that in regions with low intensity, indicating that the maintenance of agricultural biodiversity in high-intensity regions strongly depends on species present in the surrounding landscape. Models for community completeness indicated the positive effect of regional species pool, further implying the community unsaturation and increased potential in bacterial diversity of agricultural ecosystems. Overall, our study reveals the indubitable role of regional species pool from adjacent natural ecosystems in predicting bacterial diversity, which has useful implication for biodiversity management and conservation in agricultural systems.
Collapse
Affiliation(s)
- Ziheng Peng
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Yu Liu
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Lianyan Bu
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiejun Qi
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Hang Gao
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Shi Chen
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Haibo Pan
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Beibei Chen
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Chunling Liang
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaomeng Li
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yining An
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Shaopeng Wang
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Gehong Wei
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Shuo Jiao
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|